EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet The Mighty Gecko ZigBee & Thread family of SoCs is part of the Wireless Gecko portfolio. Mighty Gecko SoCs are ideal for enabling energy-friendly ZigBee & Thread networking for IoT devices. The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup times, a scalable power amplifier, an integrated balun and no-compromise MCU features. • 32-bit ARM® Cortex®-M4 core with 40 MHz maximum operating frequency • Scalable Memory and Radio configuration options available in several footprint compatible QFN packages • 12-channel Peripheral Reflex System enabling autonomous interaction of MCU peripherals Mighty Gecko applications include: • • • • • KEY FEATURES Connected Home Lighting Health and Wellness Metering Home and Building Automation and Security • Autonomous Hardware Crypto Accelerator and Random Number Generator • Integrated balun for 2.4 GHz and integrated PA with up to 19.5 dBm transmit power for 2.4 GHz and 20 dBm transmit power for Sub-GHz radios • Integrated DC-DC with RF noise mitigation Core / Memory ARM CortexTM M4 processor with DSP extensions and FPU Flash Program Memory Clock Management Memory Protection Unit RAM Memory Debug Interface DMA Controller Energy Management Other High Frequency Crystal Oscillator High Frequency RC Oscillator Voltage Regulator Voltage Monitor CRYPTO Low Frequency RC Oscillator Auxiliary High Frequency RC Oscillator DC-DC Converter Power-On Reset CRC Low Frequency Crystal Oscillator Ultra Low Frequency RC Oscillator Brown-Out Detector 32-bit bus Peripheral Reflex System DEMOD FRC Sub-GHz RF Frontend: LNA, PA, I/Q Mixer Serial Interfaces PGA IFADC BUFC Radio Transceiver I/O Ports Timers and Triggers USART External Interrupts Timer/Counter Protocol Timer ADC Low Energy UARTTM General Purpose I/O Low Energy Timer Watchdog Timer Analog Comparator I2C Pin Reset Pulse Counter Real Time Counter and Calendar IDAC RFSENSE To RF Frontend Circuits AGC RAC Frequency Synthesizer CRC BALUN 2.4 GHz RF Frontend: LNA, PA, I/Q Mixer Analog I/F MOD Pin Wakeup Cryotimer Lowest power mode with peripheral operational: EM0—Active EM1—Sleep silabs.com | Building a more connected world. EM2—Deep Sleep EM3—Stop EM4—Hibernate EM4—Shutoff Rev. 1.1 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Radio. . . . . . . . . . . . 3.2.1 Antenna Interface . . . . . . . 3.2.2 Fractional-N Frequency Synthesizer. 3.2.3 Receiver Architecture. . . . . . 3.2.4 Transmitter Architecture . . . . . 3.2.5 Wake on Radio . . . . . . . . 3.2.6 RFSENSE . . . . . . . . . 3.2.7 Flexible Frame Handling. . . . . 3.2.8 Packet and State Trace . . . . . 3.2.9 Data Buffering . . . . . . . . 3.2.10 Radio Controller (RAC). . . . . 3.2.11 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Power . . . . . . . . . . 3.3.1 Energy Management Unit (EMU) . 3.3.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 8 . 8 3.4 General Purpose Input/Output (GPIO). . . . . . . . . . . . . . . . . . . . . . 8 3.5 Clocking . . . . . . . . . . 3.5.1 Clock Management Unit (CMU) . 3.5.2 Internal and External Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 8 . 8 3.6 Counters/Timers and PWM . . . . . . . . 3.6.1 Timer/Counter (TIMER) . . . . . . . . . 3.6.2 Real Time Counter and Calendar (RTCC) . . . 3.6.3 Low Energy Timer (LETIMER). . . . . . . 3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.6.5 Pulse Counter (PCNT) . . . . . . . . . 3.6.6 Watchdog Timer (WDOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Communications and Other Digital Peripherals . . . . . . . . . 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) 3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . 3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 9 .10 .10 .10 3.8 Security Features. . . . . . . . . . . . . . . 3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) . 3.8.2 Crypto Accelerator (CRYPTO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 .10 .10 3.9 Analog . . . . . . . . . . 3.9.1 Analog Port (APORT) . . . . 3.9.2 Analog Comparator (ACMP) . . 3.9.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 .10 .10 .11 silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 5 5 5 6 6 6 6 6 7 9 9 9 9 9 9 9 Rev. 1.1 3.9.4 Digital to Analog Current Converter (IDAC) . . . . . . . . . . . . . . . . . . .11 3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . .11 3.11 Core and Memory . . . . . . . . . . . 3.11.1 Processor Core . . . . . . . . . . . 3.11.2 Memory System Controller (MSC) . . . . . 3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 .11 3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.13 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .13 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . 4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . 4.1.2.1 General Operating Conditions . . . . . . . . . . . . . . . . . . 4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . 4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Current Consumption. . . . . . . . . . . . . . . . . . . . . . 4.1.5.1 Current Consumption 3.3 V without DC-DC Converter . . . . . . . . . . 4.1.5.2 Current Consumption 3.3 V using DC-DC Converter . . . . . . . . . . 4.1.5.3 Current Consumption 1.85 V without DC-DC Converter . . . . . . . . . 4.1.5.4 Current Consumption Using Radio . . . . . . . . . . . . . . . . 4.1.6 Wake up times . . . . . . . . . . . . . . . . . . . . . . . . 4.1.7 Brown Out Detector . . . . . . . . . . . . . . . . . . . . . . 4.1.8 Frequency Synthesizer Characteristics . . . . . . . . . . . . . . . . 4.1.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . 4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . . 4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . . 4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . . 4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band. . . . . 4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band . 4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band. . 4.1.10 Sub-GHz RF Transceiver Characteristics . . . . . . . . . . . . . . 4.1.10.1 Sub-GHz RF Transmitter Characteristics in the 915 MHz Band . . . . . . 4.1.10.2 Sub-GHz RF Receiver Characteristics in the 915 MHz Band . . . . . . . 4.1.10.3 Sub-GHz RF Transmitter Characteristics in the 868 MHz Band . . . . . . 4.1.10.4 Sub-GHz RF Receiver Characteristics in the 868 MHz Band . . . . . . . 4.1.10.5 Sub-GHz RF Transmitter Characteristics in the 490 MHz Band . . . . . . 4.1.10.6 Sub-GHz RF Receiver Characteristics in the 490 MHz Band . . . . . . . 4.1.10.7 Sub-GHz RF Transmitter Characteristics in the 433 MHz Band . . . . . . 4.1.10.8 Sub-GHz RF Receiver Characteristics in the 433 MHz Band . . . . . . . 4.1.10.9 Sub-GHz RF Transmitter Characteristics in the 315 MHz Band . . . . . . 4.1.10.10 Sub-GHz RF Receiver Characteristics in the 315 MHz Band . . . . . . . 4.1.10.11 Sub-GHz RF Transmitter Characteristics in the 169 MHz Band . . . . . . 4.1.10.12 Sub-GHz RF Receiver Characteristics in the 169 MHz Band . . . . . . . 4.1.11 Modem Features . . . . . . . . . . . . . . . . . . . . . . . 4.1.12 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.12.1 LFXO . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.12.2 HFXO . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.12.3 LFRCO . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.12.4 HFRCO and AUXHFRCO . . . . . . . . . . . . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .15 .17 .17 .18 .19 .21 .21 .22 .24 .25 .27 .27 .28 .29 .29 .30 .31 .33 .35 .38 .40 .41 .45 .48 .49 .51 .52 .54 .57 .60 .63 .65 .66 .67 .68 .68 .69 .69 .70 Rev. 1.1 4.1.12.5 ULFRCO . . . . . . . 4.1.13 Flash Memory Characteristics 4.1.14 GPIO. . . . . . . . . 4.1.15 VMON . . . . . . . . 4.1.16 ADC . . . . . . . . . 4.1.17 IDAC . . . . . . . . . 4.1.18 Analog Comparator (ACMP) . 4.1.19 I2C . . . . . . . . . 4.1.20 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 .71 .72 .73 .74 .77 .79 .81 .84 4.2 Typical Performance Curves 4.2.1 Supply Current . . . . 4.2.2 DC-DC Converter . . . 4.2.3 Internal Oscillators. . . 4.2.4 2.4 GHz Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 .86 .88 .90 .96 . . . . . . . . . . 5. Typical Connection Diagrams 5.1 Power . . . . . . . 5.2 RF Matching Networks . 5.3 Other Connections . . . . . . . . . . . . . . . . . . . . . . . . 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 . 100 . .101 6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout . . . . . . . . . . . . . . . . . .102 6.1.1 QFN48 2.4 GHz and Sub-GHz GPIO Overview . . . . . . . . . . . . . . . . . 113 6.2 QFN48 2.4 GHz Device Pinout . . . . . . . . . . . . . . . . . . . . . . .114 6.2.1 QFN48 2.4 GHz GPIO Overview . . . . . . . . . . . . . . . . . . . . . . 126 6.3 QFN32 2.4 GHz Device Pinout . . . . . . . . . . . . . . . . . . . . . . .127 6.3.1 QFN32 2.4 GHz GPIO Overview . . . . . . . . . . . . . . . . . . . . . . 134 6.4 Alternate Functionality Overview . 6.5 Analog Port (APORT) Client Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 . . . 141 7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 145 7.1 QFN48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2 QFN48 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 147 . 7.3 QFN48 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . 149 8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 150 8.1 QFN32 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 150 8.2 QFN32 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 152 . 8.3 QFN32 Package Marking . 9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . 154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 9.1 Revision 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 55 9.2 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 55 9.3 Revision 0.97 . 9.4 Revision 0.951 . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 . 155 . Rev. 1.1 9.5 Revision 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.6 Revision 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 56 9.7 Revision 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 56 9.8 Revision 0.75 . 9.9 Revision 0.7 . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 . 1 . 57 Rev. 1.1 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Feature List 1. Feature List The EFR32MG1 highlighted features are listed below. • Low Power Wireless System-on-Chip. • High Performance 32-bit 40 MHz ARM Cortex®-M4 with DSP instruction and floating-point unit for efficient signal processing • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • 2.4 GHz and Sub-GHz radio operation • Transmit power: • 2.4 GHz radio: Up to 19.5 dBm • Sub-GHz radio: Up to 20 dBm • Low Energy Consumption • 8.7 mA RX current at 2.4 GHz • 8.2 mA TX current @ 0 dBm output power at 2.4 GHz • 8.1 mA RX current at 868 MHz • 34.5 mA TX current @ 14 dBm output power at 868 MHz • 63 μA/MHz in Active Mode (EM0) • 1.4 μA EM2 DeepSleep current (full RAM retention and RTCC running from LFXO) • 0.58 μA EM4H Hibernate Mode (128 byte RAM retention) • Wake on Radio with signal strength detection, preamble pattern detection, frame detection and timeout • High Receiver Performance • -94 dBm sensitivity @ 1 Mbit/s GFSK (2.4GHz) • -121.4 dBm sensitivity at 2.4 kbps GFSK (868 MHz) • Supported Modulation Formats • 2-FSK / 4-FSK with fully configurable shaping • Shaped OQPSK / (G)MSK • Configurable DSSS and FEC • BPSK / DBPSK TX • OOK / ASK • Supported Protocols: • Proprietary Protocols • Wireless M-Bus • Low Power Wide Area Networks • Support for Internet Security • General Purpose CRC • Random Number Generation • Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC silabs.com | Building a more connected world. • Wide selection of MCU peripherals • 12-bit 1 Msps SAR Analog to Digital Converter (ADC) • 2× Analog Comparator (ACMP) • Digital to Analog Current Converter (IDAC) • Up to 31 pins connected to analog channels (APORT) shared between Analog Comparators, ADC, and IDAC • Up to 31 General Purpose I/O pins with output state retention and asynchronous interrupts • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) • 2×16-bit Timer/Counter • 3 + 4 Compare/Capture/PWM channels • 32-bit Real Time Counter and Calendar • 16-bit Low Energy Timer for waveform generation • 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode • 16-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator @ 50nA • 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S) • Low Energy UART (LEUART™) • I2C interface with SMBus support and address recognition in EM3 Stop • Wide Operating Range • 1.85 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • -40 °C to 85 °C • QFN32 5x5 mm Package • QFN48 7x7 mm Package Rev. 1.1 | 1 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Ordering Information 2. Ordering Information Ordering Code Protocol Stack Frequency Band @ Max TX Power Flash (kB) RAM (kB) GPIO Package EFR32MG1P233F256GM48-C0 • Bluetooth Smart • ZigBee • Thread • ZigBee RC • Proprietary • 2.4 GHz @ 19.5 dBm • Sub-GHz @ 20 dBm 256 32 28 QFN48 EFR32MG1P232F256GM48-C0 • Bluetooth Smart • ZigBee • Thread • ZigBee RC • Proprietary 2.4 GHz @ 19.5 dBm 256 32 31 QFN48 EFR32MG1P232F256GM32-C0 • Bluetooth Smart • ZigBee • Thread • ZigBee RC • Proprietary 2.4 GHz @ 19.5 dBm 256 32 16 QFN32 EFR32MG1P133F256GM48-C0 • Bluetooth Smart • ZigBee • Thread • ZigBee RC • Proprietary • 2.4 GHz @ 16.5 dBm • Sub-GHz @ 16.5 dBm 256 32 28 QFN48 EFR32MG1P132F256GM48-C0 • Bluetooth Smart • ZigBee • Thread • ZigBee RC • Proprietary 2.4 GHz @ 16.5 dBm 256 32 31 QFN48 EFR32MG1P132F256GM32-C0 • Bluetooth Smart • ZigBee • Thread • ZigBee RC • Proprietary 2.4 GHz @ 16.5 dBm 256 32 16 QFN32 EFR32MG1B232F256GM48-C0 • ZigBee • Thread • ZigBee RC 2.4 GHz @ 19.5 dBm 256 32 31 QFN48 EFR32MG1B232F256GM32-C0 • ZigBee • Thread • ZigBee RC 2.4 GHz @ 19.5 dBm 256 32 16 QFN32 silabs.com | Building a more connected world. Rev. 1.1 | 2 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Ordering Information Ordering Code Protocol Stack Frequency Band @ Max TX Power Flash (kB) RAM (kB) GPIO Package EFR32MG1B132F256GM48-C0 • ZigBee • Thread • ZigBee RC 2.4 GHz @ 16.5 dBm 256 32 31 QFN48 EFR32MG1B132F256GM32-C0 • ZigBee • Thread • ZigBee RC 2.4 GHz @ 16.5 dBm 256 32 16 QFN32 EFR32MG1V132F256GM48-C0 • ZigBee • Thread • ZigBee RC 2.4 GHz @ 8 dBm 256 32 31 QFN48 EFR32MG1V132F256GM32-C0 • ZigBee • Thread • ZigBee RC 2.4 GHz @ 8 dBm 256 32 16 QFN32 EFR32 X G 1 P 132 F 256 G M 32 – C0 R Tape and Reel (Optional) Revision Pin Count Package – M (QFN), J (CSP) Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code – r2r1r0 r2: Reserved r1: RF Type – 3 (TRX), 2 (RX), 1 (TX) r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band) Performance Grade – P (Performance), B (Basic), V (Value) Series Gecko Family – M (Mighty), B (Blue), F (Flex) Wireless Gecko 32-bit Figure 2.1. OPN Decoder silabs.com | Building a more connected world. Rev. 1.1 | 3 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3. System Overview 3.1 Introduction The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual. A block diagram of the EFR32MG1 family is shown in Figure 3.1 Detailed EFR32MG1 Block Diagram on page 4. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. Radio Transciever I PA Q Frequency Synthesizer To RF Frontend Circuits IOVDD FRC Floating Point Unit USART LEUART Watchdog Timer Brown Out / Power-On Reset A A H P B B ULFRCO AUXHFRCO CRC Analog Peripherals Internal Reference VDD VREF 12-bit ADC HFXTAL_N LFXO HFXO PCn Port D Drivers PDn Port F Drivers PFn VDD Temp Sensor LFRCO LFXTAL_P / N Port C Drivers IDAC HFRCO HFXTAL_P PBn CRYPTO Clock Management Reset Management Unit Port B Drivers APORT Serial Wire Debug / Programming PAn I2C DMA Controller Voltage Regulator Port A Drivers Port Mapper Input MUX DC-DC Converter DECOUPLE RESETn BUFC Memory Protection Unit bypass VSS VREGVSS RFVSS PAVSS PCNT RTC / RTCC Up to 32 KB RAM Voltage Monitor DVDD VREGSW MOD CRYOTIMER Up to 256 KB ISP Flash Program Memory RFVDD VREGVDD AGC ARM Cortex-M4 Core Energy Management PAVDD AVDD IOVDD TIMER 2.4 GHz RF LNA BALUN IFADC PGA Q Digital Peripherals LETIMER RAC PA RFSENSE 2G4RF_IOP DEMOD LNA CRC SUBGRF_IP SUBGRF_IN SUBGRF_OP SUBGRF_ON 2G4RF_ION Port I/O Configuration Sub-GHz RF I + Analog Comparator Figure 3.1. Detailed EFR32MG1 Block Diagram 3.2 Radio The Mighty Gecko family features a radio transceiver supporting Bluetooth Smart® and proprietary short range wireless protocols. silabs.com | Building a more connected world. Rev. 1.1 | 4 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.2.1 Antenna Interface The EFR32MG1 family includes devices which support both single-band and dual-band RF communication over separate physical RF interfaces. The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The 2G4RF_ION pin should be grounded externally. The sub-GHz antenna interface consists of a differential transmit interface (pins SUBGRF_OP and SUBGRF_ON) and a differential receive interface (pinsSUBGRF_IP and SUBGRF_IN). The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching Networks section. 3.2.2 Fractional-N Frequency Synthesizer The EFR32MG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier. The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption. 3.2.3 Receiver Architecture The EFR32MG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC). The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency. The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz radio can be calibrated on-demand by the user for the desired frequency band. Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS). A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception. The EFR32MG1 features integrated support for antenna diversity to improve link budget for 802.15.4 DSSS-OQPSK PHY configuration in the 2.4GHz band, using complementary control outputs to an external switch. Internal configurable hardware controls automatic switching between antennae during RF receive detection operations. 3.2.4 Transmitter Architecture The EFR32MG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping. Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32MG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access. 3.2.5 Wake on Radio The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals. silabs.com | Building a more connected world. Rev. 1.1 | 5 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.2.6 RFSENSE The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4. RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal RF reception. Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals. 3.2.7 Flexible Frame Handling EFR32MG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator: • Highly adjustable preamble length • Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts • Frame disassembly and address matching (filtering) to accept or reject frames • Automatic ACK frame assembly and transmission • Fully flexible CRC generation and verification: • Multiple CRC values can be embedded in a single frame • 8, 16, 24 or 32-bit CRC value • Configurable CRC bit and byte ordering • Selectable bit-ordering (least significant or most significant bit first) • Optional data whitening • Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding • Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing • Optional symbol interleaving, typically used in combination with FEC • Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware • UART encoding over air, with start and stop bit insertion / removal • Test mode support, such as modulated or unmodulated carrier output • Received frame timestamping 3.2.8 Packet and State Trace The EFR32MG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features: • Non-intrusive trace of transmit data, receive data and state information • Data observability on a single-pin UART data output, or on a two-pin SPI data output • Configurable data output bitrate / baudrate • Multiplexed transmitted data, received data and state / meta information in a single serial data stream 3.2.9 Data Buffering The EFR32MG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations. 3.2.10 Radio Controller (RAC) The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1. It performs the following tasks: • Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry • Run-time calibration of receiver, transmitter and frequency synthesizer • Detailed frame transmission timing, including optional LBT or CSMA-CA silabs.com | Building a more connected world. Rev. 1.1 | 6 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.2.11 Random Number Generator The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications. Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna. silabs.com | Building a more connected world. Rev. 1.1 | 7 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.3 Power The EFR32MG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.3.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.3.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.4 General Purpose Input/Output (GPIO) EFR32MG1 has up to 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.5 Clocking 3.5.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the EFR32MG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. 3.5.2 Internal and External Oscillators The EFR32MG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. silabs.com | Building a more connected world. Rev. 1.1 | 8 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.6 Counters/Timers and PWM 3.6.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.6.2 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes. 3.6.3 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. 3.6.5 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.6.6 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.7 Communications and Other Digital Peripherals 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S silabs.com | Building a more connected world. Rev. 1.1 | 9 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.7.3 Inter-Integrated Circuit Interface (I2C) The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.7.4 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.8 Security Features 3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.8.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.9 Analog 3.9.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.9.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. silabs.com | Building a more connected world. Rev. 1.1 | 10 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.9.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. 3.9.4 Digital to Analog Current Converter (IDAC) The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.10 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFR32MG1. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.11 Core and Memory 3.11.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • Configuration and event handling of all modules • 2-pin Serial-Wire debug interface 3.11.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.11.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. silabs.com | Building a more connected world. Rev. 1.1 | 11 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview 3.12 Memory Map The EFR32MG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.2. EFR32MG1 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.1 | 12 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet System Overview Figure 3.3. EFR32MG1 Memory Map — Peripherals 3.13 Configuration Summary The features of the EFR32MG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration. Table 3.1. Configuration Summary Module Configuration Pin Connections USART0 IrDA SmartCard US0_TX, US0_RX, US0_CLK, US0_CS USART1 IrDA I2S SmartCard US1_TX, US1_RX, US1_CLK, US1_CS TIMER0 with DTI. TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 silabs.com | Building a more connected world. TIM1_CC[3:0] Rev. 1.1 | 13 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. Refer to Table 4.2 General Operating Conditions on page 17 for more details about operational supply and temperature limits. silabs.com | Building a more connected world. Rev. 1.1 | 14 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range TSTG Min Typ Max Unit -50 — 150 °C External main supply voltage VDDMAX 0 — 3.8 V External main supply voltage VDDRAMPMAX ramp rate — — 1 V / μs -0.3 — Min of 5.25 and IOVDD +2 V -0.3 — IOVDD+0.3 V -0.3 — 1.4 V Voltage on any 5V tolerant GPIO pin1 VDIGPIN Voltage on non-5V tolerant GPIO pins Test Condition Voltage on HFXO pins VHFXOPIN Input RF level on pins 2G4RF_IOP and 2G4RF_ION PRFMAX2G4 — — 10 dBm Voltage differential between RF pins (2G4RF_IOP 2G4RF_ION) VMAXDIFF2G4 -50 — 50 mV -0.3 — 3.3 V Absolute Voltage on RF pins VMAX2G4 2G4RF_IOP and 2G4RF_ION Input RF level on pins SUBGRF_IP and SUBGRF_IN PRFMAXSUBG — — 10 dBm Voltage differential between RF pins (SUBGRF_IP SUBGRF_IN) VMAXDIFFSUBG -50 — 50 mV -0.3 — 3.3 V Total current into VDD power IVDDMAX lines (source) — — 200 mA Total current into VSS ground lines (sink) IVSSMAX — — 200 mA Current per I/O pin (sink) IIOMAX — — 50 mA — — 50 mA — — 200 mA — — 200 mA — — 0.3 V Absolute Voltage on RF pins VMAXSUBG SUBGRF_IP, SUBGRF_IN, SUBGRF_OP, and SUBGRF_ON Current per I/O pin (source) Current for all I/O pins (sink) IIOALLMAX Current for all I/O pins (source) Voltage difference between AVDD and VREGVDD ΔVDD silabs.com | Building a more connected world. Rev. 1.1 | 15 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Junction Temperature TJ Test Condition Min Typ Max Unit -40 — 105 °C Note: 1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD. silabs.com | Building a more connected world. Rev. 1.1 | 16 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.2 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be the highest voltage in the system • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD • RFVDD ≤ AVDD • PAVDD ≤ AVDD 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit -G temperature grade, Ambient Temperature -40 25 85 °C 1.85 3.3 3.8 V DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.85 3.3 3.8 V DCDC not in use. DVDD externally shorted to VREGVDD 1.85 3.3 3.8 V — — 200 mA 1.62 — VVREGVDD V DVDD Operating supply volt- VDVDD age 1.62 — VVREGVDD V PAVDD Operating supply voltage VPAVDD 1.62 — VVREGVDD V IOVDD Operating supply voltage VIOVDD 1.62 — VVREGVDD V — — 0.1 V 0 wait-states (MODE = WS0) 3 — — 26 MHz 1 wait-states (MODE = WS1) 3 — — 40 MHz Operating temperature range TOP AVDD Supply voltage1 VAVDD VREGVDD Operating supply VVREGVDD voltage1 2 VREGVDD Current IVREGVDD RFVDD Operating supply voltage VRFVDD DCDC in bypass Difference between AVDD dVDD and VREGVDD, ABS(AVDDVREGVDD) HFCLK frequency fCORE Note: 1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max 3. In MSC_READCTRL register silabs.com | Building a more connected world. Rev. 1.1 | 17 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Parameter Symbol Test Condition Thermal Resistance THETAJA silabs.com | Building a more connected world. Min Typ Max Unit QFN32 Package, 2-Layer PCB, Air velocity = 0 m/s — 79 — °C/W QFN32 Package, 2-Layer PCB, Air velocity = 1 m/s — 62.2 — °C/W QFN32 Package, 2-Layer PCB, Air velocity = 2 m/s — 54.1 — °C/W QFN32 Package, 4-Layer PCB, Air velocity = 0 m/s — 32 — °C/W QFN32 Package, 4-Layer PCB, Air velocity = 1 m/s — 28.1 — °C/W QFN32 Package, 4-Layer PCB, Air velocity = 2 m/s — 26.9 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 0 m/s — 64.5 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 1 m/s — 51.6 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 2 m/s — 47.7 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 0 m/s — 26.2 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 1 m/s — 23.1 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 2 m/s — 22.1 — °C/W Rev. 1.1 | 18 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: LDCDC=4.7 µH (Murata LQH3NPN4R7MM0L), CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V, VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.85 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Output voltage programmable range1 VDCDC_O Regulation DC Accuracy ACCDC Regulation Window2 WINREG MAX — VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low power (LP) mode, LPCMPBIAS3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 μA 1.63 — 2.2 V Low power (LP) mode, LPCMPBIAS3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V Steady-state output ripple VR Radio disabled. — 3 — mVpp Output voltage under/overshoot VOV CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — — 150 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — — 150 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 50 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 125 — mV DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.1 | 19 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive4 — — 200 mA Low noise (LN) mode, Medium Drive4 — — 100 mA Low noise (LN) mode, Light Drive4 — — 50 mA Low power (LP) mode, LPCMPBIAS3 = 0 — — 75 μA Low power (LP) mode, LPCMPBIAS3 = 3 — — 10 mA CDCDC 25% tolerance 1 1 1 μF DCDC nominal output induc- LDCDC tor 20% tolerance 4.7 4.7 4.7 μH — 1.2 2.5 Ω DCDC nominal output capacitor Resistance in Bypass mode RBYP Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits 3. In EMU_DCDCMISCCTRL register 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. silabs.com | Building a more connected world. Rev. 1.1 | 20 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.5 Current Consumption 4.1.5.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. TOP = 25 °C. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98. Table 4.5. Current Consumption 3.3V without DC/DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash1 — 130 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 88 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 100 105 μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 112 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 106 μA/MHz 1 MHz HFRCO, CPU running while loop from flash — 222 350 μA/MHz 38.4 MHz crystal1 — 65 — μA/MHz 38 MHz HFRCO — 35 38 μA/MHz 26 MHz HFRCO — 37 41 μA/MHz 1 MHz HFRCO — 157 275 μA/MHz Full RAM retention and RTCC running from LFXO — 3.3 — μA 4 kB RAM retention and RTCC running from LFRCO — 3 6.3 μA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO — 2.8 6 μA Current consumption in EM4H Hibernate mode 128 byte RAM retention, RTCC running from LFXO — 1.1 — μA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.65 — μA 128 byte RAM retention, no RTCC — 0.65 1.3 μA no RAM retention, no RTCC — 0.04 0.11 μA Current consumption in EM0 IACTIVE Active mode with all peripherals disabled Current consumption in EM1 IEM1 Sleep mode with all peripherals disabled Current consumption in EM2 IEM2 Deep Sleep mode. Current consumption in EM4S Shutoff mode IEM4 IEM4S Test Condition Note: 1. CMU_HFXOCTRL_LOWPOWER=0 silabs.com | Building a more connected world. Rev. 1.1 | 21 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.5.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC output. TOP = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98. Table 4.6. Current Consumption 3.3V with DC-DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash2 — 88 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 63 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 71 — μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 78 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 76 — μA/MHz 38.4 MHz crystal, CPU running while loop from flash2 — 98 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 75 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 81 — μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 88 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 94 — μA/MHz 38.4 MHz crystal2 — 49 — μA/MHz 38 MHz HFRCO — 32 — μA/MHz 26 MHz HFRCO — 38 — μA/MHz 38.4 MHz crystal2 — 61 — μA/MHz 38 MHz HFRCO — 45 — μA/MHz 26 MHz HFRCO — 58 — μA/MHz Current consumption in EM2 IEM2 Deep Sleep mode. DCDC in Low Power mode4. Full RAM retention and RTCC running from LFXO — 1.4 — μA 4 kB RAM retention and RTCC running from LFRCO — 1.4 — μA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO — 1.1 — μA Current consumption in EM4H Hibernate mode 128 byte RAM retention, RTCC running from LFXO — 0.86 — μA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.58 — μA 128 byte RAM retention, no RTCC — 0.58 — μA Current consumption in EM0 IACTIVE Active mode with all peripherals disabled, DCDC in Low Noise DCM mode1. Current consumption in EM0 Active mode with all peripherals disabled, DCDC in Low Noise CCM mode3. Current consumption in EM1 IEM1 Sleep mode with all peripherals disabled, DCDC in Low Noise DCM mode1. Current consumption in EM1 Sleep mode with all peripherals disabled, DCDC in Low Noise CCM mode3. IEM4 silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 22 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Current consumption in EM4S Shutoff mode IEM4S no RAM retention, no RTCC Min Typ Max Unit — 0.04 — μA Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD 2. CMU_HFXOCTRL_LOWPOWER=0 3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD 4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD silabs.com | Building a more connected world. Rev. 1.1 | 23 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.5.3 Current Consumption 1.85 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.85 V. TOP = 25 °C. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98. Table 4.7. Current Consumption 1.85V without DC/DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash1 — 131 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 88 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 100 — μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 112 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 — μA/MHz 1 MHz HFRCO, CPU running while loop from flash — 220 — μA/MHz 38.4 MHz crystal1 — 65 — μA/MHz 38 MHz HFRCO — 35 — μA/MHz 26 MHz HFRCO — 37 — μA/MHz 1 MHz HFRCO — 154 — μA/MHz Full RAM retention and RTCC running from LFXO — 3.2 — μA 4 kB RAM retention and RTCC running from LFRCO — 2.8 — μA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO — 2.7 — μA Current consumption in EM4H Hibernate mode 128 byte RAM retention, RTCC running from LFXO — 1 — μA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.62 — μA 128 byte RAM retention, no RTCC — 0.62 — μA No RAM retention, no RTCC — 0.02 — μA Current consumption in EM0 IACTIVE Active mode with all peripherals disabled Current consumption in EM1 IEM1 Sleep mode with all peripherals disabled Current consumption in EM2 IEM2 Deep Sleep mode Current consumption in EM4S Shutoff mode IEM4 IEM4S Test Condition Note: 1. CMU_HFXOCTRL_LOWPOWER=0 silabs.com | Building a more connected world. Rev. 1.1 | 24 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.5.4 Current Consumption Using Radio Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. TOP = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 or Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98. Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC Parameter Symbol Test Condition Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled) IRX silabs.com | Building a more connected world. Min Typ Max Unit 500 kbit/s, 2GFSK, F = 915MHz , Radio clock prescaled by 4 — 8.4 10 mA 38.4 kbit/s, 2GFSK, F = 868 MHz , Radio clock prescaled by 4 — 8.1 10 mA 38.4 kbit/s, 2GFSK, F = 490 MHz , Radio clock prescaled by 4 — 7.9 10 mA 50 kbit/s, 2GFSK, F = 433 MHz , Radio clock prescaled by 4 — 7.7 10 mA 38.4 kbit/s, 2GFSK, F = 315MHz , Radio clock prescaled by 4 — 7.9 10 mA 38.4 kbit/s, 2GFSK, F = 169MHz , Radio clock prescaled by 4 — 7.6 10 mA 1 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 8.7 — mA 802.15.4 receiving frame, F = 2.4 GHz, Radio clock prescaled by 3 — 9.8 — mA Rev. 1.1 | 25 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled) ITX RFSENSE current consump- IRFSENSE tion silabs.com | Building a more connected world. Min Typ Max Unit F = 915 MHz, CW, 20 dBm match, PAVDD connected directly to external 3.3V supply — 80.2 104 mA F = 915 MHz, CW, 14 dBm match, PAVDD connected to DCDC output — 35.5 40.9 mA F = 868 MHz, CW, 20 dBm match, PAVDD connected directly to external 3.3V supply — 84.9 114 mA F = 868 MHz, CW, 14 dBm match, PAVDD connected to DCDC output — 34.5 42 mA F = 490 MHz, CW, 20 dBm match, PAVDD connected directly to external 3.3V supply — 82.8 112 mA F = 433 MHz, CW, 14 dBm match, PAVDD connected to DCDC output — 32.3 37.8 mA F = 433 MHz, CW, 10 dBm match, PAVDD connected to DCDC output — 19.5 22.1 mA F = 315 MHz, CW, 14 dBm match, PAVDD connected to DCDC output — 32.5 39.4 mA F = 169 MHz, CW, 20 dBm match, PAVDD connected directly to external 3.3V supply — 80.2 106.9 mA F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 3 — 8.2 — mA F = 2.4 GHz, CW, 3 dBm output power — 16.5 — mA F = 2.4 GHz, CW, 8 dBm output power — 23.3 — mA F = 2.4 GHz, CW, 10.5 dBm output power — 32.7 — mA F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply — 83.9 — mA F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply — 126.7 — mA — 51 — nA Rev. 1.1 | 26 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.6 Wake up times Table 4.9. Wake up times Parameter Symbol Test Condition Wake up from EM2 Deep Sleep tEM2_WU Wakeup time from EM1 Sleep tEM1_WU Wake up from EM3 Stop tEM3_WU Wake up from EM4H Hibernate1 tEM4H_WU Wake up from EM4S Shutoff1 tEM4S_WU Min Typ Max Unit Code execution from flash — 10.7 — μs Code execution from RAM — 3 — μs Executing from flash — 3 — AHB Clocks Executing from RAM — 3 — AHB Clocks Executing from flash — 10.7 — μs Executing from RAM — 3 — μs Executing from flash — 60 — μs — 290 — μs Min Typ Max Unit Note: 1. Time from wakeup request until first instruction is executed. Wakeup results in device reset. 4.1.7 Brown Out Detector Table 4.10. Brown Out Detector Parameter Symbol Test Condition DVDDBOD threshold VDVDDBOD DVDD rising — — 1.62 V DVDD falling 1.35 — — V DVDD BOD hysteresis VDVDDBOD_HYST — 24 — mV DVDD response time tDVDDBOD_DELAY Supply drops at 0.1V/μs rate — 2.4 — μs AVDD BOD threshold VAVDDBOD AVDD rising — — 1.85 V AVDD falling 1.62 — — V AVDD BOD hysteresis VAVDDBOD_HYST — 21 — mV AVDD response time tAVDDBOD_DELAY Supply drops at 0.1V/μs rate — 2.4 — μs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 46 — mV — 300 — μs EM4 BOD hysteresis VEM4BOD_HYST EM4 response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/μs rate Rev. 1.1 | 27 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.8 Frequency Synthesizer Characteristics Table 4.11. Frequency Synthesizer Characteristics Parameter Symbol Test Condition Min Typ Max Unit RF Synthesizer Frequency range FRANGE_2400 2.4 GHz frequency range 2400 — 2483.5 MHz LO tuning frequency range FRANGE_900 Sub GHz frequency range 779 — 956 MHz FRANGE_433 390 — 574 MHz FRANGE_315 195 — 358 MHz FRANGE_169 110 — 191 MHz LO tuning frequency resolution with 38.4 MHz crystal Frequency deviation resolution with 38.4 MHz crystal Maximum frequency deviation with 38.4 MHz crystal FRES_2400 2400 - 2483.5 MHz — — 73 Hz FRES_900 779 - 956 MHz — — 24 Hz FRES_433 390 - 574 MHz — — 12.2 Hz FRES_315 195 - 358 MHz — — 7.3 Hz FRES_169 110 - 191 MHz — — 4.6 Hz ΔFRES_2400 2400 - 2483.5 MHz — — 73 Hz ΔFRES_900 779 - 956 MHz — — 24 Hz ΔFRES_433 390 - 574 MHz — — 12.2 Hz ΔFRES_315 195 - 358 MHz — — 7.3 Hz ΔFRES_169 110 - 191 MHz — — 4.6 Hz ΔFMAX_2400 2400 - 2483.5 MHz — — 1677 kHz ΔFMAX_900 779 - 956 MHz — — 559 kHz ΔFMAX_433 390 - 574 MHz — — 280 kHz ΔFMAX_315 195 - 358 MHz — — 167 kHz ΔFMAX_169 110 - 191 MHz — — 105 kHz silabs.com | Building a more connected world. Rev. 1.1 | 28 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.9 2.4 GHz RF Transceiver Characteristics 4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100. Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band Parameter Symbol Test Condition Min Typ Max Unit Maximum TX power1 POUTMAX 19.5 dBm-rated part numbers. PAVDD connected directly to external 3.3V supply2 — 19.5 — dBm 16.5 dBm-rated part numbers. PAVDD connected directly to external 3.3V supply — 16.5 — dBm 8 dBm-rated part numbers — 8 — dBm -30 — dBm Minimum active TX Power POUTMIN CW Output power step size POUTSTEP -5 dBm< Output power < 0 dBm — 1 — dB 0 dBm < output power < POUTMAX — 0.5 — dB 1.85 V < VVREGVDD < 3.3 V, PAVDD connected directly to external supply, for output power > 10.5 dBm. — 4.5 — dB 1.85 V < VVREGVDD < 3.3 V, PAVDD connected directly to external supply, for output power = 10.5 dBm. — 3.8 — dB 1.85 V < VVREGVDD < 3.3 V using DC-DC converter — 2.2 — dB From -40 to +85 °C, PAVDD connected to DC-DC output — 1.5 — dB From -40 to +85 °C, PAVDD connected to external supply — 1.5 — dB Over RF tuning frequency range — 0.4 — dB 2400 — 2483.5 MHz Output power variation vs supply at POUTMAX Output power variation vs temperature at POUTMAX POUTVAR_V POUTVAR_T Output power variation vs RF POUTVAR_F frequency at POUTMAX RF tuning frequency range FRANGE Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information 2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions. silabs.com | Building a more connected world. Rev. 1.1 | 29 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100. Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band Parameter Symbol RF tuning frequency range FRANGE Receive mode maximum spurious emission SPURRX Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) Level above which RFSENSE will trigger1 RFSENSETRIG Level below which RFSENSE will not trigger1 RFSENSETHRES 1% PER Sensitivity SENS2GFSK 0.1% BER Sensitivity Test Condition Min Typ Max Unit 2400 — 2483.5 MHz 30 MHz to 1 GHz — -57 — dBm 1 GHz to 12 GHz — -47 — dBm 216 MHz to 960 MHz, Conducted Measurement — -55.2 — dBm Above 960 MHz, Conducted Measurement — -47.2 — dBm CW at 2.45 GHz — -24 — dBm — -50 — dBm 2 Mbps 2GFSK signal2 — -89.2 — dBm 250 kbps 2GFSK signal — -99.1 — dBm Note: 1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. 2. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83dBm on this channel. silabs.com | Building a more connected world. Rev. 1.1 | 30 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.44 GHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100. Table 4.14. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band Parameter Symbol Transmit 6dB bandwidth TXBW Power spectral density limit PSDLIMIT Min Typ Max Unit — 740 — kHz Per FCC part 15.247 at 10 dBm — -6.5 — dBm/ 3kHz Per FCC part 15.247 at 20 dBm — -2.6 — dBm/ 3kHz Per ETSI 300.328 at 10 dBm/1 MHz — 10 — dBm Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 99% BW at highest and lowest channels in band — 1.1 — MHz In-band spurious emissions at 10 dBm, with allowed exceptions1 At ±2 MHz — -39.8 — dBm At ±3 MHz — -42.1 — dBm At ±2 MHz — — -20 dBm At ±3 MHz — — -30 dBm 2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier — -47 — dBm Spurious emissions out-ofSPUROOB_FCC band, per FCC part 15.247, excluding harmonics captured in SPURHARM,FCC. Restricted Bands Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier3 — -47 — dBm Spurious emissions out-ofband, per FCC part 15.247, excluding harmonics captured in SPURHARM,FCC. Non Restricted Bands Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier — -26 — dBc [2400-BW to 2400] MHz, [2483.5 to 2483.5+BW] MHz — -16 — dBm [2400-2BW to 2400-BW] MHz, [2483.5+BW to 2483.5+2BW] MHz per ETSI 300.328 — -26 — dBm 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz — -60 — dBm 25-1000 MHz — -42 — dBm 1-12 GHz — -36 — dBm SPURINB In-band spurious emissions at 20 dBm, with allowed exceptions1 2 Emissions of harmonics outof-band, per FCC part 15.247 Spurious emissions out-ofband; per ETSI 300.328 SPURHRM_FCC SPURETSI328 Spurious emissions per ETSI SPURETSI440 EN300.440 silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 31 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less. 2. For 2456 MHz, a maximum output power of 15 dBm is used to achieve this value. 3. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value. silabs.com | Building a more connected world. Rev. 1.1 | 32 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100. Table 4.15. RF Receiver Characteristics for Bluetooth Smart in the 2.4GHz Band Parameter Symbol Test Condition Min Typ Max Unit Max usable receiver input level, 0.1% BER SAT Signal is reference signal1. Packet length is 20 bytes. — 10 — dBm Sensitivity, 0.1% BER2 SENS Signal is reference signal1. Using DC-DC converter — -94 — dBm With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1 — -92 — dBm Signal to co-channel interfer- C/ICC er, 0.1% BER Desired signal 3 dB above reference sensitivity — 8.3 — dB N+1 adjacent channel (1 C/I1+ MHz) selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at +1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -3 — dB N-1 adjacent channel (1 C/I1MHz) selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at -1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -0.5 — dB Alternate (2 MHz) selectivity, C/I2 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at ± 2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -43 — dB Alternate (3 MHz) selectivity, C/I3 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at ±3 MHz offset. Desired frequency 2404 MHz ≤ Fc ≤ 2480 MHz — -46.7 — dB Selectivity to image frequen- C/IIM cy, 0.1% BER. Desired is reference signal at -67 dBm Interferer is reference signal at image frequency with 1 MHz precision — -38.7 — dB Selectivity to image frequency +1 MHz, 0.1% BER. Desired is reference signal at -67 dBm Interferer is reference signal at image frequency +1 MHz with 1 MHz precision — -48.2 — dB Interferer frequency 30 MHz ≤ f ≤ 2000 MHz — -27 — dBm Interferer frequency 2003 MHz ≤ f ≤ 2399 MHz — -32 — dBm Interferer frequency 2484 MHz ≤ f ≤ 2997 MHz — -32 — dBm Interferer frequency 3 GHz ≤ f ≤ 12.75 GHz — -27 — dBm C/IIM+1 Blocking, 0.1% BER, Desired BLOCKOOB is reference signal at -67 dBm. Interferer is CW in OOB range. silabs.com | Building a more connected world. Rev. 1.1 | 33 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit — -25.8 — dBm Upper limit of input power RSSIMAX range over which RSSI resolution is maintained 4 — — dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained — — -101 dBm — — 0.5 dB Intermodulation performance IM RSSI resolution RSSIRES Test Condition Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3 Over RSSIMIN to RSSIMAX Note: 1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm 2. Receive sensitivity on Bluetooth Smart channel 26 is -86 dBm silabs.com | Building a more connected world. Rev. 1.1 | 34 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100. Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band Parameter Symbol Test Condition Min Typ Max Unit Error vector magnitude (offset EVM), per 802.15.4-2011, not including 2415 MHz channel1 EVM Average across frequency. Signal is DSSS-OQPSK reference packet2 — 5.5 — % rms Power spectral density limit PSDLIMIT Relative, at carrier ±3.5 MHz — -26 — dBc Absolute, at carrier ±3.5 MHz3 — -36 — dBm Per FCC part 15.247 — -4.2 — dBm/ 3kHz Output power level which meets 10dBm/MHz ETSI 300.328 specification — 12 — dBm Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 99% BW at highest and lowest channels in band — 2.25 — MHz Spurious emissions of harSPURHRM_FCC_ monics in restricted bands R per FCC Part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz Continuous transmission of modulated carrier — -45.8 — dBm — -26 — dBc Spurious emissions of harmonics in harmonics in nonrestricted bands per FCC Part 15.247/15.35, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz SPURHRM_FCC_ NRR silabs.com | Building a more connected world. Rev. 1.1 | 35 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Spurious emissions out-ofband in restricted bands (30-88 MHz), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz SPUROOB_FCC_ Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier4 — -52 — dBm Spurious emissions out-ofband in restricted bands (88-216 MHz), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz — -62 — dBm Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz — -57 — dBm Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz — -48 — dBm R Spurious emissions out-ofSPUROOB_FCC_ band in non-restricted bands NR per FCC Part 15.247, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier — -26 — dBc Spurious emissions out-ofband; per ETSI 300.3285 [2400-BW to 2400], [2483.5 to 2483.5+BW]; — -16 — dBm [2400-2BW to 2400-BW], [2483.5+BW to 2483.5+2BW]; per ETSI 300.328 — -26 — dBm 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz — -60 — dBm 25-1000 MHz, excluding above frequencies — -42 — dBm 1G-14G — -36 — dBm SPURETSI328 Spurious emissions per ETSI SPURETSI440 EN300.4405 silabs.com | Building a more connected world. Rev. 1.1 | 36 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Typical EVM for the 2415 MHz channel is 7.9% 2. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with pseudo-random packet data content 3. For 2415 MHz, a maximum duty cycle of 50% is used to achieve this value. 4. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value. 5. Specified at maximum power output level of 10 dBm silabs.com | Building a more connected world. Rev. 1.1 | 37 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.445 GHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100. Table 4.17. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Parameter Symbol Test Condition Min Typ Max Unit Max usable receiver input level, 1% PER SAT Signal is reference signal1. Packet length is 20 octets. — 10 — dBm Sensitivity, 1% PER2 SENS Signal is reference signal. Packet length is 20 octets. Using DC-DC converter. — -101 — dBm Signal is reference signal. Packet length is 20 octets. Without DCDC converter. — -101 — dBm Co-channel interferer rejection, 1% PER CCR Desired signal 10 dB above sensitivity limit — -2.6 — dB High-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level3 ACR+1 Interferer is reference signal at +1 channel-spacing. — 33.75 — dB Interferer is filtered reference signal4 at +1 channel-spacing. — 52.2 — dB Interferer is CW at +1 channelspacing.5 — 58.6 — dB Interferer is reference signal at -1 channel-spacing. — 35 — dB Interferer is filtered reference signal4 at -1 channel-spacing. — 54.7 — dB Interferer is CW at -1 channelspacing. — 60.1 — dB Interferer is reference signal at ±2 channel-spacing — 45.9 — dB Interferer is filtered reference signal4 at ±2 channel-spacing — 56.8 — dB Interferer is CW at ±2 channelspacing — 65.5 — dB Image rejection, 1% PER, IR Desired is reference signal at 3dB above reference sensitivity level3 Interferer is CW in image band5 — 49.3 — dB Blocking rejection of all other BLOCK channels. 1% PER, Desired is reference signal at 3dB above reference sensitivity level3. Interferer is reference signal. Interferer frequency < Desired frequency - 3 channel-spacing — 57.2 — dB Interferer frequency > Desired frequency + 3 channel-spacing — 57.9 — dB Blocking rejection of 802.11g BLOCK80211G signal centered at +12MHz or -13MHz Desired is reference signal at 6dB above reference sensitivity level3 — 51.6 — dB Low-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level3 Alternate channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level3 ACR-1 ACR2 silabs.com | Building a more connected world. Rev. 1.1 | 38 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Upper limit of input power RSSIMAX range over which RSSI resolution is maintained 5 — — dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained — — -98 dBm — 0.25 — dB — ±1 — dB RSSI resolution RSSIRES RSSI accuracy in the linear region as defined by 802.15.4-2003 RSSILIN Test Condition over RSSIMIN to RSSIMAX Note: 1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s 2. Receive sensitivity on 802.15.4 channel 14 is -98 dBm 3. Reference sensitivity level is -85 dBm 4. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier. 5. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster. silabs.com | Building a more connected world. Rev. 1.1 | 39 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10 Sub-GHz RF Transceiver Characteristics silabs.com | Building a more connected world. Rev. 1.1 | 40 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.1 Sub-GHz RF Transmitter Characteristics in the 915 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 915 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Table 4.18. Sub-GHz RF Transmitter characteristics for 915 MHz Band Parameter Symbol RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition Min Typ Max Unit 902 — 930 MHz PAVDD connected directly to external 3.3V supply, 20 dBm output power setting 17.7 20.3 24.5 dBm PAVDD connected to DC-DC output, 14 dBm output power setting 10.4 13.8 17.6 dBm — -45.5 — dBm Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — 0.5 — dB Output power variation vs supply at POUTMAX POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, PAVDD connected to external supply — 4.8 — dB 1.8 V < VVREGVDD < 3.3 V, PAVDD connected to DC-DC output — 1.9 — dB -40 to +85C with PAVDD connected to external supply — 0.6 1.3 dB -40 to +85C with PAVDD connected to DC-DC output — 0.7 1.4 dB PAVDD connected to external supply — 0.2 0.6 dB PAVDD connected to DC-DC output — 0.3 0.6 dB Output power variation vs temperature, peak to peak POUTVAR_T Output power variation vs RF POUTVAR_F frequency silabs.com | Building a more connected world. Rev. 1.1 | 41 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Spurious emissions of harmonics in restricted bands, per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz SPURHARM_FCC Conducted measurement, 20dBm match _20 — -64.6 -47 dBm Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz — -64.2 -42 dBc Spurious emissions out-ofSPUROOB_FCC_ band in non-restricted bands, 20 per FCC Part 15.231, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz — -76.2 -66 dBc Spurious emissions out-ofband in restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz — -68.8 -52 dBm Spurious emissions out-ofband in restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz — -67.7 -62 dBm Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz — -69.1 -58 dBm Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz — -54.6 -42.4 dBm silabs.com | Building a more connected world. Rev. 1.1 | 42 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Spurious emissions of harSPURHARM_FCC Conducted measurement, 14dBm monics in restricted bands, match _14 per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 915 MHz — -75.2 -60 dBm Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 915 MHz — -69 -49 dBc Spurious emissions of harSPUROOB_FCC_ monics out-of-band in non14 restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 915 MHz — -87.5 -66 dBc Spurious emissions out-ofband in restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 915 MHz — -74.2 -52 dBm Spurious emissions out-ofband in restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 915 MHz — -73.1 -67 dBm Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 915 MHz — -74.3 -58 dBm Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 915 MHz — -60.2 -49 dBm silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 43 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information silabs.com | Building a more connected world. Rev. 1.1 | 44 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.2 Sub-GHz RF Receiver Characteristics in the 915 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 915 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit. Table 4.19. Sub-GHz RF Receiver Characteristics for 915 MHz Band Parameter Symbol Tuning frequency range FRANGE Test Condition Min Typ Max Unit 902 — 930 MHz Max usable input level, 0.1% SAT BER Desired is reference 500 kbps GFSK signal5 — — 10 dBm Sensitivity Desired is reference 4.8 kbps OOK signal1, 20% PER — -104.7 -100.7 dBm Desired is reference 600 bps GFSK signal2, 0.1% BER — -126.4 — dBm Desired is reference 50 kbps GFSK signal3, 0.1% BER — -107.5 -104.2 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER — -105.1 -101.5 dBm Desired is reference 500 kbps GFSK signal5, 0.1% BER — -97.7 -93.2 dBm Desired is reference 400 kbps GFSK signal6, 1% PER — -90.9 -87.5 dBm CW at 915 MHz — -25.8 — dBm — -50 — dBm Desired is 4.8 kbps OOK signal1 at 3dB above sensitivity level, 20% PER — 43.7 — dB Desired is 600 bps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 65.76 — dB Desired is 50 kbps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 48.24 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 51.1 — dB Desired is 500 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 47 — dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — 35.9 — dB SENS Level above which RFSENSE will trigger7 RFSENSETRIG Level below which RFSENSE will not trigger7 RFSENSETHRES Adjacent channel selectivity, Interferer is CW at ±1 × channel-spacing C/I1 silabs.com | Building a more connected world. Rev. 1.1 | 45 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Desired is 4.8 kbps OOK signal1 at 3dB above sensitivity level, 20% PER — 57.2 — dB Desired is 600 bps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 71.76 — dB Desired is 50 kbps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 53.6 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 56.9 — dB Desired is 500 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 53.6 — dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — 44 — dB Desired is 4.8 kbps OOK signal1 at 3dB above sensitivity level, 20% PER — 41.2 — dB Desired is 50 kbps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 52.4 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 50.35 — dB Desired is 500 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 46.2 — dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — 35.9 — dB Interferer CW at Desired ±1 MHz — 58.7 — dB Interferer CW at Desired ±2 MHz — 60.9 — dB Interferer CW at Desired ±10 MHz — 76.4 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level — 46.1 — dBm Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm 216-960 MHz — -77.7 -49.2 dBm Above 960 MHz — -62.7 -51.7 dBm Alternate channel selectivity, C/I2 Interferer is CW at ±2 × channel-spacing Image rejection, Interferer is CW at image frequency C/IIMAGE Blocking selectivity, 0.1% BER. Desired is 100 kbps GFSK signal at 3dB above sensitivity level C/IBLOCKER Intermod selectivity, 0.1% BER. CW interferers at 400 kHz and 800 kHz offsets C/IIM RSSI resolution RSSIRES Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 46 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Max spurious emissions dur- SPURRX_ARIB ing active receive mode,per ARIB STD-T108 Section 3.3 Test Condition Min Typ Max Unit Below 710 MHz, RBW=100kHz — -77.7 -60 dBm 710-900 MHz, RBW=1MHz — -75.8 -61 dBm 900-915 MHz, RBW=100kHz — -85.4 -61 dBm 915-930 MHz, RBW=100kHz — -85.6 -55 dBm 930-1000 MHz, RBW=100kHz — -85.1 -60 dBm Above 1000 MHz, RBW=1MHz — -57.9 -47 dBm Note: 1. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 315.6 kHz, channel spacing = 500 kHz 2. Definition of reference signal is 600 bps 2GFSK, BT=0.5, Δf = 0.3 kHz, RX channel BW = 1262 Hz, channel spacing = 300 kHz 3. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 120.229 kHz, channel spacing = 200 kHz 4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4kHz, channel spacing = 200 kHz 5. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 175 kHz, RX channel BW = 2524.8 kHz, channel spacing = 1 MHz 6. Definition of reference signal is 400 kbps 4GFSK, BT=0.5, inner deviation = 33.3 kHz, RX channel BW = 336.64 kHz, channel spacing = 600 kHz 7. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.1 | 47 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.3 Sub-GHz RF Transmitter Characteristics in the 868 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 868 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Table 4.20. Sub-GHz RF Transmitter characteristics for 868 MHz Band Parameter Symbol RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition Min Typ Max Unit 863 — 876 MHz PAVDD connected directly to external 3.3V supply, 20 dBm output power setting 16.6 19.6 23 dBm PAVDD connected to DC-DC output, 14 dBm output power setting 10 14.7 17.5 dBm — -43.5 — dBm Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — 0.5 — dB Output power variation vs supply at POUTMAX POUTVAR_V_NO 1.8 V < VVREGVDD < 3.3 V, PAVDD connected to external supply — 5 — dB 1.8 V < VVREGVDD < 3.3 V, PAVDD connected to DC-DC output — 2 — dB -40 to +85C with PAVDD connected to external supply — 0.6 0.9 dB -40 to +85C with PAVDD connected to DC-DC output — 0.5 1.2 dB PAVDD connected to external supply — 0.2 0.6 dB PAVDD connected to DC-DC output — 0.2 0.8 dB SPURHARM_ETSI Conducted measurement, PAVDD connected to DC-DC output — -44 -30 dBm Spurious emissions, 47-74 / SPUROOB_ETSI 87.5-118 / 174-230 / 470-862 MHz and 470-862 MHz, per ETSI EN 300-220, Section 7.8.2.1 — -61.7 -55.7 dBm Spurious emissions, other frequencies below 1 GHz, per ETSI EN 300-220, Section 7.8.2.1 — -64.2 -43.5 dBm Spurious emissions, frequencies above 1 GHz, per ETSI EN 300-220, Section 7.8.2.1 — -59.9 -30 dBm DCDC POUTVAR_V_DC DC Output power variation vs temperature, peak to peak POUTVAR_T Output power variation vs RF POUTVAR_F_NO frequency DCDC POUTVAR_F_DC DC Spurious emissions of harmonics, per ETSI EN 300-220, Section 7.8.2.1 Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information silabs.com | Building a more connected world. Rev. 1.1 | 48 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.4 Sub-GHz RF Receiver Characteristics in the 868 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 868 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit. Table 4.21. Sub-GHz RF Receiver Characteristics for 868 MHz Band Parameter Symbol Tuning frequency range FRANGE Max usable input level, 0.1% SAT BER Sensitivity SENS Level above which RFSENSE will trigger4 RFSENSETRIG Level below which RFSENSE will not trigger4 RFSENSETHRES Adjacent channel selectivity, Interferer is CW at ±1 × channel-spacing C/I1 Alternate channel selectivity, C/I2 Interferer is CW at ±2 × channel-spacing Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level . C/IIMAGE C/IBLOCKER silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 863 — 876 MHz Desired is reference 2.4 kbps GFSK signal1 — — 10 dBm Desired is reference 38.4 kbps GFSK signal2 — — 10 dBm Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — -121.4 -116.5 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER — -109.2 -105.4 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER — -95.1 — dBm CW at 868 MHz — -25.8 — dBm — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 48.5 57.7 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 36.4 44.9 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 59.1 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 47.7 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 47.5 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 47.2 — dB Interferer CW at Desired ±1 MHz — 71.9 — dB Interferer CW at Desired ±2 MHz — 77.9 — dB Interferer CW at Desired ±10 MHz — 90.9 — dB Rev. 1.1 | 49 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Min Typ Max Unit Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm 30 MHz to 1 GHz — -77.1 -69 dBm 1 GHz to 12 GHz — -59.9 -50 dBm RSSI resolution Symbol RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Test Condition Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.1 | 50 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.5 Sub-GHz RF Transmitter Characteristics in the 490 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Table 4.22. Sub-GHz RF Transmitter characteristics for 490 MHz Band Parameter Symbol Test Condition Min Typ Max Unit RF tuning frequency range FRANGE 470 — 510 MHz Maximum TX Power1 POUTMAX 18.5 21.1 23 dBm Minimum active TX Power POUTMIN -44.9 — dBm Output power step size POUTSTEP output power > 0 dBm — 0.5 — dB Output power variation vs supply, peak to peak POUTVAR_V at 20 dBm;1.8 V < VVREGVDD < 3.3 V, PAVDD connected directly to external supply — 4.3 — dB Output power variation vs temperature, peak to peak POUTVAR_T -40 to +85C at 20 dBm — 0.2 0.9 dB — 0.2 0.4 dB — -41.3 -34.9 dBm — -47.2 -36 dBm — -57.5 — dBm Spurious emissions, other frequencies below 1GHz, per China SRW Requirement, Section 2.1 — -58.5 — dBm Spurious emissions, frequencies above 1GHz, per China SRW Requirement, Section 2.1 — -47.9 — dBm PAVDD connected directly to external 3.3V supply Output power variation vs RF POUTVAR_F frequency Harmonic emissions, frequencies below 1GHz, per China SRW Requirement, Section 2.1 SPURHARM_CN Harmonic emissions, frequencies above 1GHz, per China SRW Requirement, Section 2.1 Spurious emissions, 48.5-72.5MHz, 76-108MHz, 167-223MHz, 470-556MHz, 606-798MHz, per China SRW Requirement, Section 3 SPUROOB_CN 20 dBm output power setting, 490MHz Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information silabs.com | Building a more connected world. Rev. 1.1 | 51 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.6 Sub-GHz RF Receiver Characteristics in the 490 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 490 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit. Table 4.23. Sub-GHz RF Receiver Characteristics for 490 MHz Band Parameter Symbol Tuning frequency range FRANGE Max usable input level, 0.1% SAT BER Sensitivity SENS Level above which RFSENSE will trigger5 RFSENSETRIG Level below which RFSENSE will not trigger5 RFSENSETHRES Adjacent channel selectivity, Interferer is CW at ±1 × channel-spacing C/I1 Alternate channel selectivity, C/I2 Interferer is CW at ±2 × channel-spacing Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level . C/IIMAGE C/IBLOCKER silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 470 — 510 dBm Desired is reference 2.4 kbps GFSK signal1 — — 10 dBm Desired is reference 38.4 kbps GFSK signal2 — — 10 dBm Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — -122.2 — dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER — -111.7 -108.9 dBm Desired is reference 10 kbps GFSK signal3, 0.1% BER — -117.5 -114.8 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER — -107.6 -104.7 dBm CW at 490 MHz — -25.8 — dBm — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 48 58.4 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 40 47.5 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 60.8 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51.7 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 60.9 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 53 — dB Interferer CW at Desired ±1 MHz — 71.9 — dB Interferer CW at Desired ±2 MHz — 74.1 — dB Interferer CW at Desired ±10 MHz — 87.9 — dB Rev. 1.1 | 52 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Min Typ Max Unit Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm 30 MHz to 1 GHz — -84.7 -54 dBm 1 GHz to 12 GHz — -66.8 -54 dBm RSSI resolution Symbol RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Test Condition Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz 3. Definition of reference signal is 10 kbps 2GFSK, BT=0.5, Δf = 5 kHz, RX channel BW = 21.04 kHz 4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz 5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.1 | 53 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.7 Sub-GHz RF Transmitter Characteristics in the 433 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Table 4.24. Sub-GHz RF Transmitter characteristics for 433 MHz Band Parameter Symbol RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition PAVDD connected to DCDC output Min Typ Max Unit 426 — 445 MHz 11 14.3 18 dBm 7 10.7 14 dBm — -42 — dBm Minimum active TX Power POTMIN Output power step size POUTSTEP output power > 0 dBm — 0.5 — dB Output power variation vs supply, peak to peak Pout = 10dBm POUTVAR_V at 10 dBm;1.8 V < VVREGVDD < 3.3 V, PAVDD = DC-DC output — 1.7 — dB Output power variation vs temperature, peak to peak Pout= 10dBm POUTVAR_T -40 to +85C at 10dBm — 0.5 1.2 dB — 0.2 0.6 dB Output power variation vs RF POUTVAR_F frequency Pout = 10dBm silabs.com | Building a more connected world. Rev. 1.1 | 54 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Spurious emissions of harSPURHARM_FCC Conducted measurement using monics in restricted bands, rms detector, Pout=+14dBm per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 434 MHz — -61.2 -47 dBm Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 434 MHz — -68.5 -26 dBc — -86.2 -26 dBc Conducted measurement using peak detector, Pout=+14dBm Spurious emissions of harSPUROOB_FCC monics out-of-band in nonrestricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 434 MHz Spurious emissions out-ofband in restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 434 MHz Conducted measurement using peak , 434MHz — -71.9 -52 dBm Spurious emissions out-ofband in restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 434 MHz Conducted measurement using peak detector, Pout=+14dBm — -70.2 -62 dBm — -60.5 -54.5 dBm — -57.7 -46 dBm Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 434 MHz Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 434 MHz silabs.com | Building a more connected world. Conducted measurement using rms detector, Pout=+14dBm Rev. 1.1 | 55 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Spurious emissions of harSPURHRM_ETSI monics, frequencies below 1Ghz, per ETSI EN 300-220, Section 7.8.2.1, 434MHz Test Condition Conducted measurement using peak detector, PAVDD connected to DC-DC output Spurious emissions of harmonics, frequencies above 1GHz, per ETSI EN 300-220, Section 7.8.2.1, 434MHz Spurious emissions, 47-74 / SPUROOB_ETSI 87.5-118 / 174-230 / 470-862 MHz and 470-862 MHz, per ETSI EN 300-220, Section 7.8.2.1, 434MHz Conducted measurement using rms detector, PAVDD connected to DC-DC output Spurious emissions, other frequencies below 1 GHz, per ETSI EN 300-220, Section 7.8.2.1, 434MHz Spurious emissions, frequencies above 1 GHz, per ETSI EN 300-220, Section 7.8.2.1, 434MHz Conducted measurement using peak detector, PAVDD connected to DC-DC output Min Typ Max Unit — -57.3 -36 dBm — -84.5 -36 dBm — -65.1 -60 dBm — -63.9 -42 dBm — -56.8 -36 dBm Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information silabs.com | Building a more connected world. Rev. 1.1 | 56 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.8 Sub-GHz RF Receiver Characteristics in the 433 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit. Table 4.25. Sub-GHz RF Receiver Characteristics for 433 MHz Band Parameter Symbol Tuning frequency range FRANGE Max usable input level, 0.1% SAT BER Sensitivity SENS Level above which RFSENSE will trigger6 RFSENSETRIG Level below which RFSENSE will not trigger6 RFSENSETHRES Adjacent channel selectivity, Interferer is CW at ±1 × channel-spacing C/I1 Test Condition Min Typ Max Unit 426 — 445 MHz Desired is reference 2.4 kbps GFSK signal4 — — 10 dBm Desired is reference 50 kbps GFSK signal3 — — 10 dBm Desired is reference 4.8 kbps OOK signal1, 20% PER — -107 — dBm Desired is reference 100 kbps GFSK signal2, 0.1% BER — -107.5 -105 dBm Desired is reference 50 kbps GFSK signal3, 0.1% BER — -110 -107.2 dBm Desired is reference 2.4 kbps GFSK signal4, 0.1% BER — -122.3 — dBm Desired is reference 9.6 kbps GFSK signal5, 1% PER — -109.4 -106.2 dBm CW at 433 MHz — -25.8 — dBm — -50 — dBm — 46 — dB Desired is 100 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 24.8 33.4 — dB Desired is 2.4 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER 47 59.1 — dB Desired is 50 kbps GFSK signal3 at 3dB above sensitivity level, 0.1% BER 45.6 50.7 — dB — 31.2 — dB Desired is 4.8 kbps OOK signal1 at 3dB above sensitivity level, 20% PER Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER silabs.com | Building a more connected world. Rev. 1.1 | 57 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Desired is 4.8 kbps OOK signal1 at 3dB above sensitivity level, 20% PER — 56.8 — dB Desired is 100 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 56.2 — dB Desired is 2.4 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 62.2 — dB Desired is 50 kbps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 57.4 — dB Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER — 47.8 — dB Desired is 4.8 kbps OOK signal1 at 3dB above sensitivity level>, 20% PER — 42.2 — dB Desired is 100 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 50 — dB Desired is 2.4 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 52.3 — dB Desired is 50 kbps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 53 — dB Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER — 45 — dB Interferer CW at Desired ±1 MHz — 73.8 — dB Interferer CW at Desired ±2 MHz — 75.7 — dB Interferer CW at Desired ±10 MHz — 89.9 — dB Desired is 2.4 kbps GFSK signal4 at 3dB above sensitivity level — 59.1 — dBm Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216-960 MHz — -83.5 -57 dBm Above 960 MHz — -62.5 -52 dBm Max spurious emissions dur- SPURRX_ETSI ing active receive mode, per ETSI 300-220 Section 8.6 below 1000 MHz — -84.6 -57 dBm Above 1000 MHz — -59.7 -52 dBm Alternate channel selectivity, C/I2 Interferer is CW at ±2 × channel-spacing Image rejection, Interferer is CW at image frequency C/IIMAGE Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal4 at 3dB above sensitivity level C/IBLOCKER Intermod selectivity, 0.1% BER. CW interferers at 12.5 kHz and 25 kHz offsets C/IIM RSSI resolution RSSIRES silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 58 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Max spurious emissions dur- SPURRX_ARIB ing active receive mode, per ARIB STD T67 Section 3.3(5) Test Condition Below 710 MHz, RBW=100kHz Min Typ Max Unit — -83.6 -57 dBm Note: 1. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 315.6 kHz, channel spacing = 500 kHz 2. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz, channel spacing = 200 kHz 3. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 120.229 kHz, channel spacing = 200 kHz 4. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz 5. Definition of reference signal is 9.6 kbps 4GFSK, BT=0.5, inner deviation = 0.8 kHz, RX channel BW = 9.989 kHz, channel spacing = 12.5 kHz 6. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.1 | 59 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.9 Sub-GHz RF Transmitter Characteristics in the 315 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 315 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Table 4.26. Sub-GHz RF Transmitter characteristics for 315 MHz Band Parameter Symbol Min Typ Max Unit RF tuning frequency range FRANGE 195 — 358 MHz Maximum TX Power1 POUTMAX 10.8 15.3 17 dBm Minimum active TX Power POUTMIN -43.9 — dBm Output power step size POUTSTEP output power > 0 dBm — 0.5 — dB Output power variation vs supply POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, PAVDD = DC-DC output — 1.8 — dB Output power variation vs temperature POUTVAR_T — 0.5 1.2 dB Output power variation vs RF POUTVAR_F frequency — 0.1 0.7 dB silabs.com | Building a more connected world. Test Condition PAVDD connected to DC-DC output Rev. 1.1 | 60 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Spurious emissions of harSPURHARM_FCC Conducted measurement using monics in restricted bands, averaging detector, Pout=+14dBm per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 315 MHz — -53.8 -47 dBm Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 315 MHz — -63.4 -26 dBc Spurious emissions of harSPUROOB_FCC monics out-of-band in nonrestricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 315 MHz — -76.6 -26 dBc Spurious emissions out-ofband in restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 315 MHz — -71.8 -51 dBm Spurious emissions out-ofband in restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 315 MHz — -70.2 -61 dBm Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 315 MHz — -68.2 -57 dBm Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 315 MHz — -57.5 -46 dBm silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 61 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information silabs.com | Building a more connected world. Rev. 1.1 | 62 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.10 Sub-GHz RF Receiver Characteristics in the 315 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 315 MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit. Table 4.27. Sub-GHz RF Receiver Characteristics for 315 MHz Band Parameter Symbol Tuning frequency range FRANGE Max usable input level, 0.1% SAT BER Sensitivity SENS Level above which RFSENSE will trigger4 RFSENSETRIG Level below which RFSENSE will not trigger4 RFSENSETHRES Adjacent channel selectivity, Interferer is CW at ±1 × channel-spacing C/I1 Alternate channel selectivity, C/I2 Interferer is CW at ±2 × channel-spacing Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level . C/IIMAGE C/IBLOCKER silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 195 — 358 dBm Desired is reference 2.4 kbps GFSK signal1 — — 10 dBm Desired is reference 38.4 kbps GFSK signal2 — — 10 dBm Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — -123.5 -120.7 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER — -111.4 -108.6 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER — -97.2 -94.6 dBm CW at 315 MHz — -25.8 — dBm — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 54.1 64.2 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 46 50 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 66 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level2, 0.1% BER — 54 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 54.4 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51.9 — dB Interferer CW at Desired ±1 MHz — 74.9 — dB Interferer CW at Desired ±2 MHz — 76.7 — dB Interferer CW at Desired ±10 MHz 72.6 93.1 — dB Rev. 1.1 | 63 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Min Typ Max Unit Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm FCC 216 to 960 MHz — -87.4 -55 dBm FCC >960MHz — -76.7 -47 dBm RSSI resolution Symbol RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Test Condition Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.1 | 64 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.11 Sub-GHz RF Transmitter Characteristics in the 169 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 169.5MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Table 4.28. Sub-GHz RF Transmitter characteristics for 169 MHz Band Parameter Symbol Test Condition Min Typ Max Unit RF tuning frequency range FRANGE 169 — 170 MHz Maximum TX Power1 POUTMAX 18.4 20.4 23.3 dBm Minimum active TX Power POUTMIN -42.6 — dBm Output power step size POUTSTEP output power > 0 dBm — 0.5 — dB Output power variation vs supply, peak to peak POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, PAVDD connected to external supply — 4.8 — dB Output power variation vs temperature, peak to peak POUTVAR_T -40 to +85C at 10dBm — 0.6 1.2 dB Harmonic emissions above 1 SPURHARM_ETSI Conducted measurement, Pout= GHz, per ETSI EN 300-220, +20dBm Section 7.8.2.1 — -49.3 -36 dBm Harmonic emissions, 47-74 MHz, 87.5-118 MHz, 174-230 MHz and 470-862 MHz, per ETSI EN 300-220, Section 7.8.2.1 — -58.2 -53 dBm Harmonic emissions, other frequencies below 1 GHz, per ETSI EN 300-220, Section 7.8.2.1 — -38.9 -25.4 dBm Spurious emissions (exclud- SPUROOB_ETSI ing harmonics) above 1 GHz, per ETSI EN 300-220, Section 7.8.2.1 — -61.8 -36 dBm Spurious emissions (excluding harmonics), 47-74 MHz, 87.5-118 MHz, 174-230 MHz and 470-862 MHz, per ETSI EN 300-220, Section 7.8.2.1 — -62 -54 dBm Spurious emissions (excluding harmonics), other frequencies below 1 GHz, per ETSI EN 300-220, Section 7.8.2.1 — -47.6 -41.1 dBm PAVDD connected to external 3.3 V supply Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information silabs.com | Building a more connected world. Rev. 1.1 | 65 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.10.12 Sub-GHz RF Receiver Characteristics in the 169 MHz Band Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 169.5MHz. Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit. Table 4.29. Sub-GHz RF Receiver Characteristics for 169 MHz Band Parameter Symbol Tuning frequency range FRANGE Max usable input level, 0.1% SAT BER Sensitivity SENS Level above which RFSENSE will trigger4 RFSENSETRIG Level below which RFSENSE will not trigger4 RFSENSETHRES Adjacent channel selectivity, Interferer is CW at ±1 × channel-spacing C/I1 Alternate channel selectivity, C/I2 Interferer is CW at ±2 × channel-spacing Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level . C/IIMAGE C/IBLOCKER silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 169 — 170 dBm Desired is reference 2.4 kbps GFSK signal1 — — 10 dBm Desired is reference 38.4 kbps GFSK signal2 — — 10 dBm Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — -124 — dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER — -111.9 -108 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER — -97.7 -94.6 dBm CW at 169 MHz — -25.8 — dBm — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 65 — dB Desired is 38.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 43.3 50.4 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 67.9 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 55.5 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 54.6 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51 — dB Interferer CW at Desired ±1 MHz — 74.2 — dB Interferer CW at Desired ±2 MHz 68.7 76 — dB Interferer CW at Desired ±10 MHz 80 90.6 — dB Rev. 1.1 | 66 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Min Typ Max Unit Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm 30 MHz to 1 GHz — -83.7 -63 dBm 1 GHz to 12 GHz — -58.8 -50 dBm RSSI resolution Symbol RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Test Condition Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. 4.1.11 Modem Features Table 4.30. Modem Features Parameter Symbol Test Condition Min Typ Max Unit Receive Bandwidth RXBandwidth Configurable range with 38.4 MHz crystal 0.1 — 2530 kHz IF Frequency IFFreq Configurable range with 38.4 MHz crystal. Selected steps available. 150 — 1371 kHz DSSS symbol length DSSSRange Configurable in steps of 1 chip 2 — 32 chips DSSS Bits per symbol DSSSBitPerSym Configurable 1 — 4 bits/ symbol silabs.com | Building a more connected world. Rev. 1.1 | 67 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.12 Oscillators 4.1.12.1 LFXO Table 4.31. LFXO Parameter Symbol Crystal frequency Test Condition Min Typ Max Unit fLFXO — 32.768 — kHz Supported crystal equivalent series resistance (ESR) ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kΩ, CL = 7 pF, GAIN4 = 3, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR=70 kΩ, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register 4. In CMU_LFXOCTRL register silabs.com | Building a more connected world. Rev. 1.1 | 68 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.12.2 HFXO Table 4.32. HFXO Parameter Symbol Test Condition Min Typ Max Unit Crystal Frequency fHFXO 38.4 MHz required for radio transciever operation. 38 38.4 40 MHz Supported crystal equivalent series resistance (ESR) ESRHFXO Crystal frequency 38.4 MHz — — 60 Ω Supported range of crystal load capacitance 1 CHFXO_CL 6 — 12 pF On-chip tuning cap range 2 CHFXO_T 9 20 25 pF On-chip tuning capacitance step SSHFXO — 0.04 — pF Startup time tHFXO 38.4 MHz, ESR = 50 Ω, CL = 10 pF — 300 — μs Frequency Tolerance for the crystal FTHFXO 38.4 MHz, ESR = 50 Ω, CL = 10 pF -40 — 40 ppm On each of HFXTAL_N and HFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal 2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 4.1.12.3 LFRCO Table 4.33. LFRCO Parameter Symbol Test Condition Oscillation frequency fLFRCO Startup time tLFRCO Current consumption 1 ILFRCO Min Typ Max Unit ENVREF = 1 in CMU_LFRCOCTRL 30.474 32.768 34.243 kHz ENVREF = 0 in CMU_LFRCOCTRL 30.474 32.768 33.915 kHz — 500 — μs ENVREF = 1 in CMU_LFRCOCTRL — 342 — nA ENVREF = 0 in CMU_LFRCOCTRL — 494 — nA Note: 1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register silabs.com | Building a more connected world. Rev. 1.1 | 69 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.12.4 HFRCO and AUXHFRCO Table 4.34. HFRCO and AUXHFRCO Parameter Symbol Test Condition Min Typ Max Unit Frequency Accuracy fHFRCO_ACC Any frequency band, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — μs fHFRCO ≤ 4 MHz — 2.5 — μs fHFRCO = 38 MHz — 204 228 μA fHFRCO = 32 MHz — 171 190 μA fHFRCO = 26 MHz — 147 164 μA fHFRCO = 19 MHz — 126 138 μA fHFRCO = 16 MHz — 110 120 μA fHFRCO = 13 MHz — 100 110 μA fHFRCO = 7 MHz — 81 91 μA fHFRCO = 4 MHz — 33 35 μA fHFRCO = 2 MHz — 31 35 μA fHFRCO = 1 MHz — 30 35 μA Coarse (% of period) — 0.8 — % Fine (% of period) — 0.1 — % — 0.2 — % RMS Min Typ Max Unit 0.95 1 1.07 kHz Current consumption on all supplies Step size Period Jitter IHFRCO SSHFRCO PJHFRCO 4.1.12.5 ULFRCO Table 4.35. ULFRCO Parameter Symbol Oscillation frequency fULFRCO silabs.com | Building a more connected world. Test Condition Rev. 1.1 | 70 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.13 Flash Memory Characteristics Table 4.36. Flash Memory Characteristics1 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention Min Typ Max Unit 10000 — — cycles RETFLASH 10 — — years Word (32-bit) programming time tW_PROG 20 26 40 μs Page erase time tPERASE 20 27 40 ms Mass erase time tMERASE 20 27 40 ms Device erase time2 tDERASE — 60 74 ms Page erase current3 IERASE — — 3 mA — — 5 mA — — 3 mA Mass or Device erase current3 Write current3 IWRITE Test Condition Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW) 3. Measured at 25°C silabs.com | Building a more connected world. Rev. 1.1 | 71 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.14 GPIO Table 4.37. GPIO Parameter Symbol Input low voltage Test Condition Min Typ Max Unit VIOIL — — IOVDD*0.3 V Input high voltage VIOIH IOVDD*0.7 — — V Output high voltage relative to IOVDD VIOOH IOVDD*0.8 — — V IOVDD*0.6 — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD — 0.1 30 nA LFXO Pins, GPIO ≤ IOVDD — 0.1 50 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 μA Sourcing 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Output low voltage relative to VIOOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Input leakage current IIOLEAK Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK I/O pin pull-up resistor RPU 30 43 65 kΩ I/O pin pull-down resistor RPD 30 43 65 kΩ 20 25 35 ns Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.1 | 72 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns — 2.2 — ns — 7.4 — ns Min Typ Max Unit DRIVESTRENGTH1 = STRONG, SLEWRATE1 = 0x6 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Note: 1. In GPIO_Pn_CTRL register 4.1.15 VMON Table 4.38. VMON Parameter Symbol Test Condition VMON Supply Current IVMON In EM0 or EM1, 1 supply monitored — 5.8 8.26 μA In EM0 or EM1, 4 supplies monitored — 11.8 16.8 μA In EM2, EM3 or EM4, 1 supply monitored — 62 — nA In EM2, EM3 or EM4, 4 supplies monitored — 99 — nA In EM0 or EM1 — 2 — μA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/μs rate — 460 — ns — 26 — mV VMON Loading of Monitored ISENSE Supply Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Rev. 1.1 | 73 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.16 ADC Table 4.39. ADC Parameter Symbol Resolution VRESOLUTION Input voltage range VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits 0 — 2*VREF V -VREF — VREF V 1 — VAVDD V Power supply rejection1 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, — 301 350 μA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3 — 149 — μA 62.5 ksps / 1 MHz ADCCLK, — 91 — μA — 51 — μA — 9 — μA — 117 — μA — 79 — μA — 345 — μA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3 — 191 — μA 62.5 ksps / 1 MHz ADCCLK, — 132 — μA Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP Continous operation. WARMUPMODE2 = KEEPADCWARM BIASPROG = 0, GPBIASACC = 1 3 BIASPROG = 15, GPBIASACC = 13 Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, ing internal reference buffer. BIASPROG = 0, GPBIASACC = 1 Duty-cycled operation. WAR3 2 MUPMODE = NORMAL 5 ksps / 16 MHz ADCCLK BIASPROG = 0, GPBIASACC = 1 3 Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP Continous operation. WARMUPMODE2 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 BIASPROG = 15, GPBIASACC = 03 silabs.com | Building a more connected world. Rev. 1.1 | 74 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, ing internal reference buffer. BIASPROG = 0, GPBIASACC = 0 Duty-cycled operation. WAR3 2 MUPMODE = NORMAL 5 ksps / 16 MHz ADCCLK Min Typ Max Unit — 102 — μA — 17 — μA — 162 — μA — 123 — μA — 140 — μA BIASPROG = 0, GPBIASACC = 0 3 Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 Current from HFPERCLK IADC_CLK ADC Clock Frequency fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time4 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE2 = NORMAL — — 5 μs WARMUPMODE2 = KEEPINSTANDBY — — 2 μs WARMUPMODE2 = KEEPINSLOWACC — — 1 μs Internal reference, 2.5 V full-scale, differential (-1.25, 1.25) 58 67 — dB vrefp_in = 1.25 V direct mode with 2.5 V full-scale, differential — 68 — dB Startup time of reference generator and ADC core SNDR at 1Msps and fin = 10kHz tADCSTART SNDRADC HFPERCLK = 16 MHz Spurious-Free Dynamic Range (SFDR) SFDRADC 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Input referred ADC noise, rms VREF_NOISE Including quantization noise and distortion — 380 — μV Offset Error VADCOFFSETERR -3 0.25 3 LSB Gain error in ADC VADC_GAIN Using internal reference — -0.2 5 % Using external reference — -1 — % Differential non-linearity (DNL) DNLADC 12 bit resolution, No Missing Codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Temperature Sensor Slope VTS_SLOPE — -1.84 — mV/°C silabs.com | Building a more connected world. Rev. 1.1 | 75 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL 2. In ADCn_CNTL register 3. In ADCn_BIASPROG register 4. Derived from ADCCLK silabs.com | Building a more connected world. Rev. 1.1 | 76 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.17 IDAC Table 4.40. IDAC Parameter Symbol Number of Ranges NIDAC_RANGES Output Current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Total Accuracy, STEPSEL1 = ACCIDAC 0x10 Start up time tIDAC_SU silabs.com | Building a more connected world. Test Condition Min Typ Max Unit — 4 — - RANGSEL1 = RANGE0 0.05 — 1.6 μA RANGSEL1 = RANGE1 1.6 — 4.7 μA RANGSEL1 = RANGE2 0.5 — 16 μA RANGSEL1 = RANGE3 2 — 64 μA — 32 — RANGSEL1 = RANGE0 — 50 — nA RANGSEL1 = RANGE1 — 100 — nA RANGSEL1 = RANGE2 — 500 — nA RANGSEL1 = RANGE3 — 2 — μA EM0 or EM1, AVDD=3.3 V, T = 25 °C -2 — 2 % EM0 or EM1 -18 — 22 % EM2 or EM3, Source mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.7 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.8 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -0.7 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -0.6 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % Output within 1% of steady state value — 5 — μs Rev. 1.1 | 77 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Settling time, (output settled tIDAC_SETTLE within 1% of steady state value) Range setting is changed — 5 — μs Step value is changed — 1 — μs Current consumption in EM0 IIDAC or EM1 2 Source mode, excluding output current — 8.9 13 μA Sink mode, excluding output current — 12 16 μA Source mode, excluding output current, duty cycle mode, T = 25 °C — 1.04 — μA Sink mode, excluding output current, duty cycle mode, T = 25 °C — 1.08 — μA Source mode, excluding output current, duty cycle mode, T ≥ 85 °C — 8.9 — μA Sink mode, excluding output current, duty cycle mode, T ≥ 85 °C — 12 — μA RANGESEL1=0, output voltage = min(VIOVDD, VAVDD2-100 mv) — 0.04 — % RANGESEL1=1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.02 — % RANGESEL1=2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.02 — % RANGESEL1=3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.02 — % RANGESEL1=0, output voltage = 100 mV — 0.18 — % RANGESEL1=1, output voltage = 100 mV — 0.12 — % RANGESEL1=2, output voltage = 150 mV — 0.08 — % RANGESEL1=3, output voltage = 250 mV — 0.02 — % Current consumption in EM2 or EM32 Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD Note: 1. In IDAC_CURPROG register 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.1 | 78 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.18 Analog Comparator (ACMP) Table 4.41. ACMP Parameter Symbol Test Condition Input voltage range VACMPIN ACMPVDD = ACMPn_CTRL_PWRSEL 1 Supply Voltage VACMPVDD Active current not including voltage reference IACMP Current consumption of inter- IACMPREF nal voltage reference Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) VACMPHYST silabs.com | Building a more connected world. Min Typ Max Unit 0 — VACMPVDD V BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.85 — VVREGVDD_ V 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 1, FULLBIAS2 = 0 — 50 — nA BIASPROG2 = 0x10, FULLBIAS2 =0 — 306 — nA BIASPROG2 = 0x20, FULLBIAS2 =1 — 74 95 μA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — μA VADIV selected as input using VDD/1 — 2.4 — μA HYSTSEL3 = HYST0 -1.75 0 1.75 mV HYSTSEL3 = HYST1 10 18 26 mV HYSTSEL3 = HYST2 21 32 46 mV HYSTSEL3 = HYST3 27 44 63 mV HYSTSEL3 = HYST4 32 55 80 mV HYSTSEL3 = HYST5 38 65 100 mV HYSTSEL3 = HYST6 43 77 121 mV HYSTSEL3 = HYST7 47 86 148 mV HYSTSEL3 = HYST8 -4 0 4 mV HYSTSEL3 = HYST9 -27 -18 -10 mV HYSTSEL3 = HYST10 -47 -32 -18 mV HYSTSEL3 = HYST11 -64 -43 -27 mV HYSTSEL3 = HYST12 -78 -54 -32 mV HYSTSEL3 = HYST13 -93 -64 -37 mV HYSTSEL3 = HYST14 -113 -74 -42 mV HYSTSEL3 = HYST15 -135 -85 -47 mV MAX — VVREGVDD_ V MAX Rev. 1.1 | 79 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Comparator delay4 tACMPDELAY BIASPROG2 = 1, FULLBIAS2 = 0 — 30 — μs BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 — μs BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG2 =0x10, FULLBIAS2 =1 Reference Voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 2 2.5 2.8 V CSRESSEL5 = 0 — inf — kΩ CSRESSEL5 = 1 — 15 — kΩ CSRESSEL5 = 2 — 27 — kΩ CSRESSEL5 = 3 — 39 — kΩ CSRESSEL5 = 4 — 51 — kΩ CSRESSEL5 = 5 — 102 — kΩ CSRESSEL5 = 6 — 164 — kΩ CSRESSEL5 = 7 — 239 — kΩ Capacitive Sense Internal Resistance RCSRES Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD 2. In ACMPn_CTRL register 3. In ACMPn_HYSTERESIS register 4. ±100 mV differential drive 5. In ACMPn_INPUTSEL register The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as: IACMPTOTAL = IACMP + IACMPREF IACMPREF is zero if an external voltage reference is used. silabs.com | Building a more connected world. Rev. 1.1 | 80 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.19 I2C I2C Standard-mode (Sm) Table 4.42. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — μs SCL clock high time tHIGH 4 — — μs SDA set-up time tSU,DAT 250 — — ns SDA hold time3 tHD,DAT 100 — 3450 ns Repeated START condition set-up time tSU,STA 4.7 — — μs (Repeated) START condition tHD,STA hold time 4 — — μs STOP condition set-up time tSU,STO 4 — — μs Bus free time between a STOP and START condition tBUF 4.7 — — μs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW) silabs.com | Building a more connected world. Rev. 1.1 | 81 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications I2C Fast-mode (Fm) Table 4.43. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — μs SCL clock high time tHIGH 0.6 — — μs SDA set-up time tSU,DAT 100 — — ns SDA hold time3 tHD,DAT 100 — 900 ns Repeated START condition set-up time tSU,STA 0.6 — — μs (Repeated) START condition tHD,STA hold time 0.6 — — μs STOP condition set-up time tSU,STO 0.6 — — μs Bus free time between a STOP and START condition tBUF 1.3 — — μs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW) silabs.com | Building a more connected world. Rev. 1.1 | 82 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications I2C Fast-mode Plus (Fm+) Table 4.44. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — μs SCL clock high time tHIGH 0.26 — — μs SDA set-up time tSU,DAT 50 — — ns SDA hold time tHD,DAT 100 — — ns Repeated START condition set-up time tSU,STA 0.26 — — μs (Repeated) START condition tHD,STA hold time 0.26 — — μs STOP condition set-up time tSU,STO 0.26 — — μs Bus free time between a STOP and START condition tBUF 0.5 — — μs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual silabs.com | Building a more connected world. Rev. 1.1 | 83 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.1.20 USART SPI SPI Master Timing Table 4.45. SPI Master Timing Parameter Symbol SCLK period 1 2 tSCLK CS to MOSI 1 2 Test Condition Min Typ Max Unit 2* tHFPERCLK — — ns tCS_MO 0 — 8 ns SCLK to MOSI 1 2 tSCLK_MO 3 — 20 ns MISO setup time 1 2 tSU_MI IOVDD = 1.62 V 56 — — ns IOVDD = 3.0 V 37 — — ns 6 — — ns tH_MI MISO hold time 1 2 Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD) CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram silabs.com | Building a more connected world. Rev. 1.1 | 84 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.46. SPI Slave Timing Parameter Symbol SCKL period 1 2 Test Condition Min Typ Max Unit tSCLK_sl 2* tHFPERCLK — — ns SCLK high period1 2 tSCLK_hi 3* tHFPERCLK — — ns SCLK low period 1 2 tSCLK_lo 3* tHFPERCLK — — ns CS active to MISO 1 2 tCS_ACT_MI 4 — 50 ns CS disable to MISO 1 2 tCS_DIS_MI 4 — 50 ns MOSI setup time 1 2 tSU_MO 4 — — ns MOSI hold time 1 2 tH_MO 3+2* tHFPERCLK — — ns SCLK to MISO 1 2 tSCLK_MI 16 + tHFPERCLK — 66 + 2 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD) CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.2. SPI Slave Timing Diagram 4.2 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.1 | 85 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.2.1 Supply Current Figure 4.3. EM0 Active Mode Typical Supply Current Figure 4.4. EM1 Sleep Mode Typical Supply Current Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.1 | 86 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current silabs.com | Building a more connected world. Rev. 1.1 | 87 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.6. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.1 | 88 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) DVDD DVDD 60mV/div offset:1.8V 50mV/div offset:1.8V 100mA VSW ILOAD 2V/div offset:1.8V 1mA 100μs/div 10μs/div Figure 4.7. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.1 | 89 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.2.3 Internal Oscillators Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 32 MHz silabs.com | Building a more connected world. Rev. 1.1 | 90 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 26 MHz Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 19 MHz silabs.com | Building a more connected world. Rev. 1.1 | 91 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz silabs.com | Building a more connected world. Rev. 1.1 | 92 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 7 MHz Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 4 MHz silabs.com | Building a more connected world. Rev. 1.1 | 93 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 2 MHz Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 1 MHz silabs.com | Building a more connected world. Rev. 1.1 | 94 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.18. LFRCO Typical Performance at 32.768 kHz Figure 4.19. ULFRCO Typical Performance at 1 kHz silabs.com | Building a more connected world. Rev. 1.1 | 95 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications 4.2.4 2.4 GHz Radio Figure 4.20. 2.4 GHz RF Transmitter Output Power silabs.com | Building a more connected world. Rev. 1.1 | 96 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Electrical Specifications Figure 4.21. 2.4 GHz RF Receiver Sensitivity silabs.com | Building a more connected world. Rev. 1.1 | 97 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Typical Connection Diagrams 5. Typical Connection Diagrams 5.1 Power Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure. VDD Main Supply + – VREGVDD AVDD VREGSW IOVDD HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE RFVDD PAVDD Figure 5.1. EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm. VDD Main Supply + – VREGVDD VDCDC AVDD VREGSW IOVDD HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE RFVDD PAVDD Figure 5.2. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) silabs.com | Building a more connected world. Rev. 1.1 | 98 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Typical Connection Diagrams VDD Main Supply + – VREGVDD VDCDC AVDD VREGSW IOVDD HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE RFVDD PAVDD Figure 5.3. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD) silabs.com | Building a more connected world. Rev. 1.1 | 99 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Typical Connection Diagrams 5.2 RF Matching Networks Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100 for applications in the 2.4GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm). Typical RF matching network circuit diagrams are shown in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm). 4-Element Match for 2.4GHz Band 2-Element Match for 2.4GHz Band PAVDD PAVDD PAVDD L0 2G4RF_IOP 2G4RF_ION PAVDD 50Ω C0 L0 L1 2G4RF_IOP 2G4RF_ION 50Ω C0 C1 Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits silabs.com | Building a more connected world. Rev. 1.1 | 100 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Typical Connection Diagrams Sub-GHz Match Topology I (169-450 MHz) PAVDD L1 L2 C0 L3 C5 L5 L6 L7 SUBGRF_IN 50Ω C2 C7 C4 L0 C8 C9 C10 C3 SUBGRF_IP C1 L4 C6 BAL1 SUBGRF_ON SUBGRF_OP Sub-GHz Match Topology 2 (450-915 MHz) C0 L3 PAVDD L5 L6 50Ω SUBGRF_IN L0 C4 C7 C8 C9 SUBGRF_IP C1 L4 BAL1 SUBGRF_ON SUBGRF_OP Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits 5.3 Other Connections Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes). silabs.com | Building a more connected world. Rev. 1.1 | 101 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6. Pin Definitions 6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout Figure 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout silabs.com | Building a more connected world. Rev. 1.1 | 102 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Table 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout Pin Pin Alternate Functionality / Description Pin # Pin Name 0 VSS 1 2 3 PF0 PF1 PF2 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22 MODEM_ANT0 #21 MODEM_ANT1 #20 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BUSAY BUSBX TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23 MODEM_ANT0 #22 MODEM_ANT1 #21 PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24 MODEM_ANT0 #23 MODEM_ANT1 #22 CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0 Ground silabs.com | Building a more connected world. Rev. 1.1 | 103 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 4 5 6 Pin Alternate Functionality / Description Pin Name PF3 PF4 PF5 Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25 MODEM_ANT0 #24 MODEM_ANT1 #23 CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI BUSBY BUSAX TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 FRC_DCLK #28 FRC_DOUT #27 FRC_DFRAME #26 MODEM_DCLK #28 MODEM_DIN #27 MODEM_DOUT #26 MODEM_ANT0 #25 MODEM_ANT1 #24 PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28 BUSAY BUSBX TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 FRC_DCLK #29 FRC_DOUT #28 FRC_DFRAME #27 MODEM_DCLK #29 MODEM_DIN #28 MODEM_DOUT #27 MODEM_ANT0 #26 MODEM_ANT1 #25 PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29 silabs.com | Building a more connected world. Rev. 1.1 | 104 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 7 Pin Alternate Functionality / Description Pin Name PF6 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 FRC_DCLK #30 FRC_DOUT #29 FRC_DFRAME #28 MODEM_DCLK #30 MODEM_DIN #29 MODEM_DOUT #28 MODEM_ANT0 #27 MODEM_ANT1 #26 CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_RTS #26 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 FRC_DCLK #31 FRC_DOUT #30 FRC_DFRAME #29 MODEM_DCLK #31 MODEM_DIN #30 MODEM_DOUT #29 MODEM_ANT0 #28 MODEM_ANT1 #27 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1 8 PF7 BUSAY BUSBX 9 RFVDD Radio power supply 10 HFXTAL_N High Frequency Crystal input pin. 11 HFXTAL_P High Frequency Crystal output pin. 12 RESETn 13 SUBGRF_OP Sub GHz Differential RF output, positive path. 14 SUBGRF_ON Sub GHz Differential RF output, negative path. 15 SUBGRF_IP Sub GHz Differential RF input, positive path. 16 SUBGRF_IN Sub GHz Differential RF input, negative path. 17 RFVSS Radio Ground 18 PAVSS Power Amplifier (PA) voltage regulator VSS 19 2G4RF_ION 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 20 2G4RF_IOP 2.4 GHz Differential RF input/output, positive path. 21 PAVDD Power Amplifier (PA) voltage regulator VDD input Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. silabs.com | Building a more connected world. Rev. 1.1 | 105 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 22 23 24 Pin Name PD13 PD14 PD15 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19 MODEM_ANT0 #18 MODEM_ANT1 #17 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 BUSDY BUSCX TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20 MODEM_ANT0 #19 MODEM_ANT1 #18 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4 BUSCY BUSDX TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21 MODEM_ANT0 #20 MODEM_ANT1 #19 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2 silabs.com | Building a more connected world. Rev. 1.1 | 106 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 25 26 27 Pin Name PA0 PA1 PA2 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30 MODEM_ANT0 #29 MODEM_ANT1 #28 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 BUSCY BUSDX ADC0_EXTP TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31 MODEM_ANT0 #30 MODEM_ANT1 #29 CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 BUSDY BUSCX TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 FRC_DCLK #2 FRC_DOUT #1 FRC_DFRAME #0 MODEM_DCLK #2 MODEM_DIN #1 MODEM_DOUT #0 MODEM_ANT0 #31 MODEM_ANT1 #30 PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 silabs.com | Building a more connected world. Rev. 1.1 | 107 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 28 29 30 Pin Name PA3 PA4 PA5 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 FRC_DCLK #3 FRC_DOUT #2 FRC_DFRAME #1 MODEM_DCLK #3 MODEM_DIN #2 MODEM_DOUT #1 MODEM_ANT0 #0 MODEM_ANT1 #31 PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 GPIO_EM4WU8 BUSDY BUSCX TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CS #1 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 FRC_DCLK #4 FRC_DOUT #3 FRC_DFRAME #2 MODEM_DCLK #4 MODEM_DIN #3 MODEM_DOUT #2 MODEM_ANT0 #1 MODEM_ANT1 #0 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 BUSCY BUSDX TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CS #2 US1_CTS #1 US1_RTS #0 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 FRC_DCLK #5 FRC_DOUT #4 FRC_DFRAME #3 MODEM_DCLK #5 MODEM_DIN #4 MODEM_DOUT #3 MODEM_ANT0 #2 MODEM_ANT1 #1 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 silabs.com | Building a more connected world. Rev. 1.1 | 108 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 31 32 Pin Name PB11 PB12 33 PB13 34 AVDD Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4 MODEM_ANT0 #3 MODEM_ANT1 #2 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 BUSDY BUSCX TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 FRC_DCLK #7 FRC_DOUT #6 FRC_DFRAME #5 MODEM_DCLK #7 MODEM_DIN #6 MODEM_DOUT #5 MODEM_ANT0 #4 MODEM_ANT1 #3 PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7 BUSCY BUSDX TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6 MODEM_ANT0 #5 MODEM_ANT1 #4 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 Analog power supply . silabs.com | Building a more connected world. Rev. 1.1 | 109 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 35 Pin Name PB14 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX LFXTAL_N TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 FRC_DCLK #9 FRC_DOUT #8 FRC_DFRAME #7 MODEM_DCLK #9 MODEM_DIN #8 MODEM_DOUT #7 MODEM_ANT0 #6 MODEM_ANT1 #5 CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9 BUSCY BUSDX LFXTAL_P TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 FRC_DCLK #10 FRC_DOUT #9 FRC_DFRAME #8 MODEM_DCLK #10 MODEM_DIN #9 MODEM_DOUT #8 MODEM_ANT0 #7 MODEM_ANT1 #6 CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10 36 PB15 37 VREGVSS Voltage regulator VSS 38 VREGSW DCDC regulator switching node 39 VREGVDD Voltage regulator VDD input 40 DVDD 41 DECOUPLE 42 IOVDD 43 PC6 Digital power supply . Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. Digital IO power supply . BUSBY BUSAX silabs.com | Building a more connected world. TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CS #8 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10 FRC_DCLK #11 FRC_DOUT #10 FRC_DFRAME #9 MODEM_DCLK #11 MODEM_DIN #10 MODEM_DOUT #9 MODEM_ANT0 #8 MODEM_ANT1 #7 CMU_CLK0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11 Rev. 1.1 | 110 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 44 45 46 Pin Name PC7 PC8 PC9 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 FRC_DCLK #12 FRC_DOUT #11 FRC_DFRAME #10 MODEM_DCLK #12 MODEM_DIN #11 MODEM_DOUT #10 MODEM_ANT0 #9 MODEM_ANT1 #8 CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12 BUSBY BUSAX TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 FRC_DCLK #13 FRC_DOUT #12 FRC_DFRAME #11 MODEM_DCLK #13 MODEM_DIN #12 MODEM_DOUT #11 MODEM_ANT0 #10 MODEM_ANT1 #9 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 BUSAY BUSBX TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 FRC_DCLK #14 FRC_DOUT #13 FRC_DFRAME #12 MODEM_DCLK #14 MODEM_DIN #13 MODEM_DOUT #12 MODEM_ANT0 #11 MODEM_ANT1 #10 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 silabs.com | Building a more connected world. Rev. 1.1 | 111 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 47 48 Pin Name PC10 PC11 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13 MODEM_ANT0 #12 MODEM_ANT1 #11 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 BUSAY BUSBX TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 FRC_DCLK #16 FRC_DOUT #15 FRC_DFRAME #14 MODEM_DCLK #16 MODEM_DIN #15 MODEM_DOUT #14 MODEM_ANT0 #13 MODEM_ANT1 #12 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 silabs.com | Building a more connected world. Rev. 1.1 | 112 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6.1.1 QFN48 2.4 GHz and Sub-GHz GPIO Overview The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0. Table 6.2. QFN48 2.4 GHz and Sub-GHz GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - PA5 (5V) PA4 (5V) PA3 (5V) PA2 (5V) PA1 PA0 - - - - - - - - - - - PC9 (5V) PC8 (5V) PC7 (5V) PC6 (5V) - - - - - - Port B Port C Port D Port F PB15 PB14 PB13 PB12 PB11 (5V) (5V) (5V) - - - PD15 PD14 PD13 (5V) (5V) (5V) - - - - PC11 PC10 (5V) (5V) Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 - - - - - - - - - - - - - - - - - - PF7 (5V) PF6 (5V) PF5 (5V) PF4 (5V) PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.1 | 113 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6.2 QFN48 2.4 GHz Device Pinout Figure 6.2. QFN48 2.4 GHz Device Pinout silabs.com | Building a more connected world. Rev. 1.1 | 114 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Table 6.3. QFN48 2.4 GHz Device Pinout Pin Pin Alternate Functionality / Description Pin # Pin Name 0 VSS 1 2 3 PF0 PF1 PF2 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22 MODEM_ANT0 #21 MODEM_ANT1 #20 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BUSAY BUSBX TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23 MODEM_ANT0 #22 MODEM_ANT1 #21 PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24 MODEM_ANT0 #23 MODEM_ANT1 #22 CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0 Ground silabs.com | Building a more connected world. Rev. 1.1 | 115 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 4 5 6 Pin Alternate Functionality / Description Pin Name PF3 PF4 PF5 Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25 MODEM_ANT0 #24 MODEM_ANT1 #23 CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI BUSBY BUSAX TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 FRC_DCLK #28 FRC_DOUT #27 FRC_DFRAME #26 MODEM_DCLK #28 MODEM_DIN #27 MODEM_DOUT #26 MODEM_ANT0 #25 MODEM_ANT1 #24 PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28 BUSAY BUSBX TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 FRC_DCLK #29 FRC_DOUT #28 FRC_DFRAME #27 MODEM_DCLK #29 MODEM_DIN #28 MODEM_DOUT #27 MODEM_ANT0 #26 MODEM_ANT1 #25 PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29 silabs.com | Building a more connected world. Rev. 1.1 | 116 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 7 Pin Alternate Functionality / Description Pin Name PF6 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 FRC_DCLK #30 FRC_DOUT #29 FRC_DFRAME #28 MODEM_DCLK #30 MODEM_DIN #29 MODEM_DOUT #28 MODEM_ANT0 #27 MODEM_ANT1 #26 CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_RTS #26 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 FRC_DCLK #31 FRC_DOUT #30 FRC_DFRAME #29 MODEM_DCLK #31 MODEM_DIN #30 MODEM_DOUT #29 MODEM_ANT0 #28 MODEM_ANT1 #27 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1 8 PF7 BUSAY BUSBX 9 RFVDD Radio power supply 10 HFXTAL_N High Frequency Crystal input pin. 11 HFXTAL_P High Frequency Crystal output pin. 12 RESETn 13 NC 14 RFVSS Radio Ground 15 PAVSS Power Amplifier (PA) voltage regulator VSS 16 2G4RF_ION 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 17 2G4RF_IOP 2.4 GHz Differential RF input/output, positive path. 18 PAVDD Power Amplifier (PA) voltage regulator VDD input Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. No Connect. silabs.com | Building a more connected world. Rev. 1.1 | 117 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 19 20 21 Pin Name PD10 PD11 PD12 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS #14 US0_RTS #13 US1_TX #18 US1_RX #17 US1_CLK #16 US1_CS #15 US1_CTS #14 US1_RTS #13 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 FRC_DCLK #18 FRC_DOUT #17 FRC_DFRAME #16 MODEM_DCLK #18 MODEM_DIN #17 MODEM_DOUT #16 MODEM_ANT0 #15 MODEM_ANT1 #14 CMU_CLK1 #4 PRS_CH3 #9 PRS_CH4 #1 PRS_CH5 #0 PRS_CH6 #12 ACMP0_O #18 ACMP1_O #18 BUSCY BUSDX TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 US1_CLK #17 US1_CS #16 US1_CTS #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 FRC_DCLK #19 FRC_DOUT #18 FRC_DFRAME #17 MODEM_DCLK #19 MODEM_DIN #18 MODEM_DOUT #17 MODEM_ANT0 #16 MODEM_ANT1 #15 PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_O #19 ACMP1_O #19 BUSDY BUSCX TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 FRC_DCLK #20 FRC_DOUT #19 FRC_DFRAME #18 MODEM_DCLK #20 MODEM_DIN #19 MODEM_DOUT #18 MODEM_ANT0 #17 MODEM_ANT1 #16 PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 silabs.com | Building a more connected world. Rev. 1.1 | 118 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 22 23 24 Pin Name PD13 PD14 PD15 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19 MODEM_ANT0 #18 MODEM_ANT1 #17 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 BUSDY BUSCX TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20 MODEM_ANT0 #19 MODEM_ANT1 #18 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4 BUSCY BUSDX TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21 MODEM_ANT0 #20 MODEM_ANT1 #19 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2 silabs.com | Building a more connected world. Rev. 1.1 | 119 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 25 26 27 Pin Name PA0 PA1 PA2 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30 MODEM_ANT0 #29 MODEM_ANT1 #28 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 BUSCY BUSDX ADC0_EXTP TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31 MODEM_ANT0 #30 MODEM_ANT1 #29 CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 BUSDY BUSCX TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 FRC_DCLK #2 FRC_DOUT #1 FRC_DFRAME #0 MODEM_DCLK #2 MODEM_DIN #1 MODEM_DOUT #0 MODEM_ANT0 #31 MODEM_ANT1 #30 PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 silabs.com | Building a more connected world. Rev. 1.1 | 120 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 28 29 30 Pin Name PA3 PA4 PA5 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 FRC_DCLK #3 FRC_DOUT #2 FRC_DFRAME #1 MODEM_DCLK #3 MODEM_DIN #2 MODEM_DOUT #1 MODEM_ANT0 #0 MODEM_ANT1 #31 PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 GPIO_EM4WU8 BUSDY BUSCX TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CS #1 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 FRC_DCLK #4 FRC_DOUT #3 FRC_DFRAME #2 MODEM_DCLK #4 MODEM_DIN #3 MODEM_DOUT #2 MODEM_ANT0 #1 MODEM_ANT1 #0 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 BUSCY BUSDX TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CS #2 US1_CTS #1 US1_RTS #0 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 FRC_DCLK #5 FRC_DOUT #4 FRC_DFRAME #3 MODEM_DCLK #5 MODEM_DIN #4 MODEM_DOUT #3 MODEM_ANT0 #2 MODEM_ANT1 #1 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 silabs.com | Building a more connected world. Rev. 1.1 | 121 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 31 32 Pin Name PB11 PB12 33 PB13 34 AVDD Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4 MODEM_ANT0 #3 MODEM_ANT1 #2 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 BUSDY BUSCX TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 FRC_DCLK #7 FRC_DOUT #6 FRC_DFRAME #5 MODEM_DCLK #7 MODEM_DIN #6 MODEM_DOUT #5 MODEM_ANT0 #4 MODEM_ANT1 #3 PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7 BUSCY BUSDX TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6 MODEM_ANT0 #5 MODEM_ANT1 #4 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 Analog power supply . silabs.com | Building a more connected world. Rev. 1.1 | 122 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 35 Pin Name PB14 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX LFXTAL_N TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 FRC_DCLK #9 FRC_DOUT #8 FRC_DFRAME #7 MODEM_DCLK #9 MODEM_DIN #8 MODEM_DOUT #7 MODEM_ANT0 #6 MODEM_ANT1 #5 CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9 BUSCY BUSDX LFXTAL_P TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 FRC_DCLK #10 FRC_DOUT #9 FRC_DFRAME #8 MODEM_DCLK #10 MODEM_DIN #9 MODEM_DOUT #8 MODEM_ANT0 #7 MODEM_ANT1 #6 CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10 36 PB15 37 VREGVSS Voltage regulator VSS 38 VREGSW DCDC regulator switching node 39 VREGVDD Voltage regulator VDD input 40 DVDD 41 DECOUPLE 42 IOVDD 43 PC6 Digital power supply . Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. Digital IO power supply . BUSBY BUSAX silabs.com | Building a more connected world. TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CS #8 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10 FRC_DCLK #11 FRC_DOUT #10 FRC_DFRAME #9 MODEM_DCLK #11 MODEM_DIN #10 MODEM_DOUT #9 MODEM_ANT0 #8 MODEM_ANT1 #7 CMU_CLK0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11 Rev. 1.1 | 123 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 44 45 46 Pin Name PC7 PC8 PC9 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 FRC_DCLK #12 FRC_DOUT #11 FRC_DFRAME #10 MODEM_DCLK #12 MODEM_DIN #11 MODEM_DOUT #10 MODEM_ANT0 #9 MODEM_ANT1 #8 CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12 BUSBY BUSAX TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 FRC_DCLK #13 FRC_DOUT #12 FRC_DFRAME #11 MODEM_DCLK #13 MODEM_DIN #12 MODEM_DOUT #11 MODEM_ANT0 #10 MODEM_ANT1 #9 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 BUSAY BUSBX TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 FRC_DCLK #14 FRC_DOUT #13 FRC_DFRAME #12 MODEM_DCLK #14 MODEM_DIN #13 MODEM_DOUT #12 MODEM_ANT0 #11 MODEM_ANT1 #10 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 silabs.com | Building a more connected world. Rev. 1.1 | 124 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 47 48 Pin Name PC10 PC11 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13 MODEM_ANT0 #12 MODEM_ANT1 #11 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 BUSAY BUSBX TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 FRC_DCLK #16 FRC_DOUT #15 FRC_DFRAME #14 MODEM_DCLK #16 MODEM_DIN #15 MODEM_DOUT #14 MODEM_ANT0 #13 MODEM_ANT1 #12 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 silabs.com | Building a more connected world. Rev. 1.1 | 125 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6.2.1 QFN48 2.4 GHz GPIO Overview The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0. Table 6.4. QFN48 2.4 GHz GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - PA5 (5V) PA4 (5V) PA3 (5V) PA2 (5V) PA1 PA0 - - - - - - - - - - - PC9 (5V) PC8 (5V) PC7 (5V) PC6 (5V) - - - - - - - - - - - - - - - - - - PF7 (5V) PF6 (5V) PF5 (5V) PF4 (5V) PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Port B Port C Port D Port F PB15 PB14 PB13 PB12 PB11 (5V) (5V) (5V) - - - - PC11 PC10 (5V) (5V) PD15 PD14 PD13 PD12 PD11 PD10 (5V) (5V) (5V) (5V) (5V) (5V) - - - - - - Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.1 | 126 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6.3 QFN32 2.4 GHz Device Pinout Figure 6.3. QFN32 2.4 GHz Device Pinout silabs.com | Building a more connected world. Rev. 1.1 | 127 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Table 6.5. QFN32 2.4 GHz Device Pinout Pin Pin Alternate Functionality / Description Pin # Pin Name 0 VSS 1 2 3 PF0 PF1 PF2 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22 MODEM_ANT0 #21 MODEM_ANT1 #20 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BUSAY BUSBX TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23 MODEM_ANT0 #22 MODEM_ANT1 #21 PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24 MODEM_ANT0 #23 MODEM_ANT1 #22 CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0 Ground silabs.com | Building a more connected world. Rev. 1.1 | 128 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # Pin Alternate Functionality / Description Pin Name Analog Timers Communication Radio Other TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25 MODEM_ANT0 #24 MODEM_ANT1 #23 CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI 4 PF3 BUSAY BUSBX 5 RFVDD Radio power supply 6 HFXTAL_N High Frequency Crystal input pin. 7 HFXTAL_P High Frequency Crystal output pin. 8 RESETn Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. 9 RFVSS Radio Ground 10 PAVSS Power Amplifier (PA) voltage regulator VSS 11 2G4RF_ION 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 12 2G4RF_IOP 2.4 GHz Differential RF input/output, positive path. 13 PAVDD Power Amplifier (PA) voltage regulator VDD input 14 PD13 BUSCY BUSDX silabs.com | Building a more connected world. TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19 MODEM_ANT0 #18 MODEM_ANT1 #17 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 Rev. 1.1 | 129 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 15 16 17 Pin Name PD14 PD15 PA0 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20 MODEM_ANT0 #19 MODEM_ANT1 #18 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4 BUSCY BUSDX TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21 MODEM_ANT0 #20 MODEM_ANT1 #19 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2 BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30 MODEM_ANT0 #29 MODEM_ANT1 #28 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 silabs.com | Building a more connected world. Rev. 1.1 | 130 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 18 19 20 Pin Name PA1 PB11 PB12 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX ADC0_EXTP TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31 MODEM_ANT0 #30 MODEM_ANT1 #29 CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 BUSCY BUSDX TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4 MODEM_ANT0 #3 MODEM_ANT1 #2 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 BUSDY BUSCX TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 FRC_DCLK #7 FRC_DOUT #6 FRC_DFRAME #5 MODEM_DCLK #7 MODEM_DIN #6 MODEM_DOUT #5 MODEM_ANT0 #4 MODEM_ANT1 #3 PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7 silabs.com | Building a more connected world. Rev. 1.1 | 131 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # Pin Name 21 PB13 22 AVDD 23 PB14 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6 MODEM_ANT0 #5 MODEM_ANT1 #4 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 BUSDY BUSCX LFXTAL_N TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 FRC_DCLK #9 FRC_DOUT #8 FRC_DFRAME #7 MODEM_DCLK #9 MODEM_DIN #8 MODEM_DOUT #7 MODEM_ANT0 #6 MODEM_ANT1 #5 CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9 BUSCY BUSDX LFXTAL_P TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 FRC_DCLK #10 FRC_DOUT #9 FRC_DFRAME #8 MODEM_DCLK #10 MODEM_DIN #9 MODEM_DOUT #8 MODEM_ANT0 #7 MODEM_ANT1 #6 CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10 Analog power supply . 24 PB15 25 VREGVSS Voltage regulator VSS 26 VREGSW DCDC regulator switching node 27 VREGVDD Voltage regulator VDD input 28 DVDD 29 DECOUPLE 30 IOVDD Digital power supply . Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. Digital IO power supply . silabs.com | Building a more connected world. Rev. 1.1 | 132 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Pin Pin # 31 32 Pin Name PC10 PC11 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13 MODEM_ANT0 #12 MODEM_ANT1 #11 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 BUSAY BUSBX TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 FRC_DCLK #16 FRC_DOUT #15 FRC_DFRAME #14 MODEM_DCLK #16 MODEM_DIN #15 MODEM_DOUT #14 MODEM_ANT0 #13 MODEM_ANT1 #12 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 silabs.com | Building a more connected world. Rev. 1.1 | 133 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6.3.1 QFN32 2.4 GHz GPIO Overview The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0. Table 6.6. QFN32 2.4 GHz GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - - - - - PA1 PA0 - - - - - - - - - - - - - - - - - - - - - Port B Port C Port D Port F PB15 PB14 PB13 PB12 PB11 (5V) (5V) (5V) - - - PD15 PD14 PD13 (5V) (5V) (5V) - - - - PC11 PC10 (5V) (5V) Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 - - - - - - - - - - - - - - - - - - - - - - PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.1 | 134 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions 6.4 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 6.7. Alternate Functionality Overview Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 ACMP0_O 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP0, digital output. ACMP1_O 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP1, digital output. 18: PD10 19: PD11 18: PD10 19: PD11 24 - 27 28 - 31 Description 0: PA0 Analog to digital converter ADC0 external reference input negative pin 0: PA1 Analog to digital converter ADC0 external reference input positive pin ADC0_EXTN ADC0_EXTP CMU_CLK0 0: PA1 1: PB15 2: PC6 3: PC11 5: PD14 6: PF2 7: PF7 CMU_CLK1 0: PA0 1: PB14 2: PC7 3: PC10 4: PD10 5: PD15 6: PF3 7: PF6 0: PF0 DBG_SWCLKTCK Clock Management Unit, clock output number 0. Clock Management Unit, clock output number 1. Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down. 0: PF1 DBG_SWDIOTMS silabs.com | Building a more connected world. Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. Rev. 1.1 | 135 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description 0: PF2 1: PB13 2: PD15 3: PC11 Debug-interface Serial Wire viewer Output. 0: PF3 Debug-interface JTAG Test Data In. Note that this function is not enabled after reset, and must be enabled by software to be used. DBG_SWO Note that this function is enabled to pin out of reset, and has a built-in pull up. DBG_TDI 0: PF2 Debug-interface JTAG Test Data Out. DBG_TDO Note that this function is enabled to pin out of reset. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 FRC_DCLK 0: PA0 1: PA1 2: PA2 3: PA3 FRC_DFRAME 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 FRC_DOUT 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 0: PF2 GPIO_EM4WU0 0: PF7 GPIO_EM4WU1 0: PD14 GPIO_EM4WU4 0: PA3 GPIO_EM4WU8 silabs.com | Building a more connected world. 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Frame Controller, Data Sniffer Clock. 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Frame Controller, Data Sniffer Frame active 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Frame Controller, Data Sniffer Output. Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Rev. 1.1 | 136 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PB13 Pin can be used to wake the system up from EM4 GPIO_EM4WU9 0: PC10 Pin can be used to wake the system up from EM4 GPIO_EM4WU12 I2C0_SCL 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 I2C0_SDA 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 LETIM0_OUT0 0: PA0 1: PA1 2: PA2 3: PA3 LETIM0_OUT1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 LEU0_RX 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 LEU0_TX 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 I2C0 Serial Clock Line input / output. 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 I2C0 Serial Data input / output. 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Low Energy Timer LETIM0, output channel 0. 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Low Energy Timer LETIM0, output channel 1. 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 LEUART0 Receive input. 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 17: PD10 18: PD11 19: PD12 18: PD10 19: PD11 16: PC11 18: PD10 19: PD11 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. 0: PB15 Low Frequency Crystal (typically 32.768 kHz) positive pin. LFXTAL_P MODEM_ANT1 LEUART0 Transmit output. Also used as receive input in half duplex communication. 0: PB14 LFXTAL_N MODEM_ANT0 Description 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 silabs.com | Building a more connected world. 15: PD10 14: PD10 15: PD11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 MODEM antenna control output 0, used for antenna diversity. 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 MODEM antenna control output 1, used for antenna diversity. Rev. 1.1 | 137 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 MODEM_DCLK 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 MODEM data clock out. MODEM_DIN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 MODEM data in. MODEM_DOUT 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 MODEM data out. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 PCNT0_S0IN 0: PA0 1: PA1 2: PA2 3: PA3 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Pulse Counter PCNT0 input number 0. PCNT0_S1IN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Pulse Counter PCNT0 input number 1. PRS_CH0 0: PF0 1: PF1 2: PF2 3: PF3 4: PF4 5: PF5 6: PF6 7: PF7 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 PRS_CH1 0: PF1 1: PF2 2: PF3 3: PF4 4: PF5 5: PF6 6: PF7 7: PF0 Peripheral Reflex System PRS, channel 1. PRS_CH2 0: PF2 1: PF3 2: PF4 3: PF5 4: PF6 5: PF7 6: PF0 7: PF1 Peripheral Reflex System PRS, channel 2. PRS_CH3 0: PF3 1: PF4 2: PF5 3: PF6 4: PF7 5: PF0 6: PF1 7: PF2 PRS_CH4 1: PD10 2: PD11 3: PD12 9: PD10 10: PD11 11: PD12 28 - 31 Description Peripheral Reflex System PRS, channel 0. 12: PD13 13: PD14 14: PD15 Peripheral Reflex System PRS, channel 3. 4: PD13 5: PD14 6: PD15 Peripheral Reflex System PRS, channel 4. PRS_CH5 0: PD10 1: PD11 2: PD12 3: PD13 4: PD14 5: PD15 PRS_CH6 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 PRS_CH7 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PA0 silabs.com | Building a more connected world. 24 - 27 Peripheral Reflex System PRS, channel 5. 12: PD10 13: PD11 14: PD12 15: PD13 16: PD14 17: PD15 Peripheral Reflex System PRS, channel 6. Peripheral Reflex System PRS, channel 7. Rev. 1.1 | 138 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 PRS_CH8 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PA0 10: PA1 PRS_CH9 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PA0 9: PA1 10: PA2 11: PC6 PRS_CH10 0: PC6 1: PC7 2: PC8 3: PC9 4: PC10 5: PC11 PRS_CH11 0: PC7 1: PC8 2: PC9 3: PC10 4: PC11 5: PC6 TIM0_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 TIM0_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 TIM0_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 TIM0_CDTI0 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 TIM0_CDTI1 0: PA4 1: PA5 2: PB11 3: PB12 16 - 19 20 - 23 24 - 27 28 - 31 Description Peripheral Reflex System PRS, channel 8. 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 Peripheral Reflex System PRS, channel 9. Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 0 Capture Compare input / output channel 0. 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 0 Capture Compare input / output channel 1. 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 0 Capture Compare input / output channel 2. 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 0 Complimentary Dead Time Insertion channel 0. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 Timer 0 Complimentary Dead Time Insertion channel 1. TIM0_CDTI2 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 Timer 0 Complimentary Dead Time Insertion channel 2. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 TIM1_CC0 0: PA0 1: PA1 2: PA2 3: PA3 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 1 Capture Compare input / output channel 2. silabs.com | Building a more connected world. 15: PD10 16: PC11 Rev. 1.1 | 139 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 1 Capture Compare input / output channel 3. US0_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART0 clock input / output. 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 US0_CS USART0 chip select input / output. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 US0_CTS 0: PA4 1: PA5 2: PB11 3: PB12 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART0 Clear To Send hardware flow control input. US0_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART0 Request To Send hardware flow control output. 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 USART0 Asynchronous Receive. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. TIM1_CC3 US0_RX 15: PD10 15: PD10 16: PC11 18: PD10 19: PD11 24 - 27 28 - 31 US0_TX Description USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART1 clock input / output. US1_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART1 chip select input / output. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 US1_CTS 0: PA4 1: PA5 2: PB11 3: PB12 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART1 Clear To Send hardware flow control input. US1_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART1 Request To Send hardware flow control output. silabs.com | Building a more connected world. 15: PD10 Rev. 1.1 | 140 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Alternate Functionality US1_RX LOCATION 0-3 4-7 8 - 11 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 US1_TX 12 - 15 16 - 19 20 - 23 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 USART1 Asynchronous Receive. 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. 16: PC11 18: PD10 19: PD11 24 - 27 28 - 31 Description USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Synchronous mode Master Output / Slave Input (MOSI). 6.5 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual. Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. silabs.com | Building a more connected world. Rev. 1.1 | 141 silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA5 PA3 PB11 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Table 6.8. ACMP0 Bus and Pin Mapping Rev. 1.1 | 142 silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA5 PA3 PB11 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Table 6.9. ACMP1 Bus and Pin Mapping Rev. 1.1 | 143 silabs.com | Building a more connected world. PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSCY PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT1Y APORT1X Port PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Pin Definitions Table 6.10. ADC0 Bus and Pin Mapping Table 6.11. IDAC0 Bus and Pin Mapping Rev. 1.1 | 144 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN48 Package Specifications 7. QFN48 Package Specifications 7.1 QFN48 Package Dimensions Figure 7.1. QFN48 Package Drawing silabs.com | Building a more connected world. Rev. 1.1 | 145 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN48 Package Specifications Table 7.1. QFN48 Package Dimensions Dimension Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 0.20 REF b 0.18 0.25 0.30 D 6.90 7.00 7.10 E 6.90 7.00 7.10 D2 4.60 4.70 4.80 E2 4.60 4.70 4.80 e 0.50 BSC L 0.30 0.40 0.50 K 0.20 — — R 0.09 — 0.14 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.1 | 146 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN48 Package Specifications 7.2 QFN48 PCB Land Pattern Figure 7.2. QFN48 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.1 | 147 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN48 Package Specifications Table 7.2. QFN48 PCB Land Pattern Dimensions Dimension Typ S1 6.01 S 6.01 L1 4.70 W1 4.70 e 0.50 W 0.26 L 0.86 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.1 | 148 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN48 Package Specifications 7.3 QFN48 Package Marking EFR32 PPPPPPPPP YYWWTTTTTT # Figure 7.3. QFN48 Package Marking The package marking consists of: • PPPPPPPPP – The part number designation. 1. Family Code (B | M | F) 2. G (Gecko) 3. Series (1, 2,...) 4. Performance Grade (P | B | V) 5. Feature Code (1 to 7) 6. TRX Code (3 = TXRX | 2= RX | 1 = TX) 7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band) 8. Flash (E = 1024K | F = 512K | G = 256K | F = 128K | E = 64K | D = 32K) 9. Temperature Grade (G = -40 to 85 | I = -40 to 125) • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • # – Bootloader revision number. silabs.com | Building a more connected world. Rev. 1.1 | 149 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN32 Package Specifications 8. QFN32 Package Specifications 8.1 QFN32 Package Dimensions Figure 8.1. QFN32 Package Drawing silabs.com | Building a more connected world. Rev. 1.1 | 150 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN32 Package Specifications Table 8.1. QFN32 Package Dimensions Dimension Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 0.20 REF b 0.18 0.25 0.30 D/E 4.90 5.00 5.10 D2/E2 3.40 3.50 3.60 E 0.50 BSC L 0.30 0.40 0.50 K 0.20 — — R 0.09 — 0.14 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.1 | 151 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN32 Package Specifications 8.2 QFN32 PCB Land Pattern Figure 8.2. QFN32 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.1 | 152 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN32 Package Specifications Table 8.2. QFN32 PCB Land Pattern Dimensions Dimension Typ S1 4.01 S 4.01 L1 3.50 W1 3.50 e 0.50 W 0.26 L 0.86 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.1 | 153 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet QFN32 Package Specifications 8.3 QFN32 Package Marking EFR32 PPPPPPPPP YYWWTTTTTT Figure 8.3. QFN32 Package Marking The package marking consists of: • PPPPPPPPP – The part number designation. 1. Family Code (B | M | F) 2. G (Gecko) 3. Series (1, 2,...) 4. Performance Grade (P | B | V) 5. Feature Code (1 to 7) 6. TRX Code (3 = TXRX | 2= RX | 1 = TX) 7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band) 8. Flash (G = 256K | F = 128K | E = 64K | D = 32K) 9. Temperature Grade (G = -40 to 85 | I = -40 to 125) • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. silabs.com | Building a more connected world. Rev. 1.1 | 154 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Revision History 9. Revision History 9.1 Revision 1.1 2016-Oct-26 • Ordering Information: Removed Encryption column. All products in family include full encryption capabilites. Previously EFR32MG1V devices listed as "AES only". • System Overview Sections: Minor wording and typographical error fixes. • Electrical Characteristics: Minor wording and typographical error fixes. • "Sub-GHz Receiver Characteristics for 433 MHz Band" table in Electrical Characteristics: Corrected Sensitivity spec error where data for 50 kbps and 2.4 kbps were swapped. • "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC. • Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections. • Updated APORT client map sections. 9.2 Revision 1.0 2016-Jul-22 • Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range. • Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include: • Absolute Maximum Ratings • General Operating Conditions • DC-DC Converter • Current Consumption Using Radio 3.3V with DC-DC • RF Transmitter General Characteristics for 2.4 GHz Band • RF Receiver General Characteristics for 2.4 GHz Band • RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band • RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band • RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band • Sub-GHz RF Transmitter characteristics for 868 MHz Band • Sub-GHz RF Transmitter characteristics for 490 MHz Band • Sub-GHz RF Receiver characteristics for 490 MHz Band • Sub-GHz RF Receiver characteristics for 433 MHz Band • HFRCO and AUXHFRCO • ADC • IDAC • Updated Typical Performance Graphs. • Added external ground note to 2G4RF_ION pin descriptions. • Added note for 5V tolerance to pinout GPIO Overview sections. • Updated OPN decoder with latest revision. • Updated Package Marking text with latest descriptions. 9.3 Revision 0.97 2016-06-06 • Added dual-band and sub-GHz OPNs. 9.4 Revision 0.951 2016-06-03 • Electrical specification tables updated with additional characterization data. silabs.com | Building a more connected world. Rev. 1.1 | 155 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Revision History 9.5 Revision 0.95 2016-04-11 • All OPNs changed to rev C0. Note the following: • All OPNs ending in -B0 are Engineering Samples based on an older revision of silicon and are being removed from the OPN table. These older revisions should be used for evaluation only and will not be supported for production. • OPNs ending in -C0 are the Current Revision of Silicon and are intended for production. • Electrical specification tables updated with latest characterization data and production test limits. 9.6 Revision 0.9 2016-01-12 • Updated electrical specifications with latest characterization data. • Added thermal characteristics table. • Updated OPN decoder figure to include extended family options. 9.7 Revision 0.8 2015-12-01 • Engineering samples note added to ordering information table. • Updated electrcal specifications with latest available data. 9.8 Revision 0.75 2015-11-3 • • • • • • • • • Consolidated individual device datasheets into single-family document. Re-formatted ordering information table and OPN decoder. Updated block diagrams for front page and system overview. Removed extraneous sections from DC-DC and wake-on-radio from system overview. Updated table formatting for electrical specifications to tech pubs standards. Updated electrcal specifications with latest available data. Added I2C and USART SPI timing tables. Moved DC-DC graph to typical performance curves. Updated APORT tables and APORT references to correct nomenclature. silabs.com | Building a more connected world. Rev. 1.1 | 156 EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet Revision History 9.9 Revision 0.7 2015-08-31 Outcome of comprehensive review cycle of EFR32BG Datasheets. Major changes span the following sections • Section 2: Ordering Information • Section 3.3.4: Receiver Architecture • Section 3.3.5: Transmitter Architecture • Section 4: Electrical Characteristics • Section 4.3.1: General Operating Conditions • Section 4.4: DC-DC Converter • Section 4.5: Current Consumption • Section 4.9.1: RF Transmitter Characteristics for 2.4 GHz Band • Section 4.9.2: RF Receiver General Characteristics for 2.4 GHz Band • Section 4.9.3: RF Transmitter Characteristics for Bluetooth Smart in 2.4 GHz Band • Section 4.9.4: RF Receiver Characteristics for Bluetooth Smart in 2.4 GHz Band • Section 4.11.1: LFXO • Section 4.11.2: HFXO • Section 4.12: GPIO • Section 4.13: VMON • Section 4.14: ADC • Section 4.15: IDAC • Section 4.16: Analog Comparator • Section 5: Application Circuits • Section 6.5: QFNxx Package • Section 6.7: QFNxx Package Marking silabs.com | Building a more connected world. Rev. 1.1 | 157 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com