ADC1610S125 Single 16-bit ADC 125 Msps CMOS or LVDS DDR digital outputs Rev. 01 — 28 May 2009 Objective data sheet 1. General description The ADC1610S is a single channel 16-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performances and low power consumption at a sample rate of 125 Msps. Pipelined architecture and output error correction ensure the ADC1610S is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a single 3 V source, it can handle output logic levels from 1.8 V to 3.3 V in CMOS mode, because of a separate digital output supply. It supports the Low Voltage Differential Signalling (LVDS) Double Data Rate (DDR) output standard. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADC. The device also includes a programmable gain amplifier with a flexible input voltage range. With excellent dynamic performance from the baseband to input frequencies of 170 MHz or more, the ADC1610S is ideal for use in communications, imaging and medical applications. 2. Features n n n n n n SNR, 73 dB SFDR, 90 dBc Sample rate, 125 Msps 16-bit pipelined ADC core Single 3 V supply Flexible input voltage range: 1 V to 2 V (p-p) with 6 dB programmable fine gain n CMOS or LVDS DDR digital outputs n INL ±4 LSB, DNL ±0.95 LSB (typical) n n n n n n Input bandwidth, 600 MHz Power dissipation, 570 mW SPI Interface Duty cycle stabilizer Fast OuT-of-Range (OTR) detection Offset binary, 2’s complement, gray code n Power-down and Sleep modes n HVQFN40 package 3. Applications n Wireless and wired broadband communications n Spectral analysis n Portable instrumentation n Ultrasound equipment n Imaging systems ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 4. Ordering information Table 1. Ordering information Type number fs (Msps) Package Name ADC1610S125HN/C1 125 Description Version HVQFN40 plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 × 6 × 0.85 mm SOT618-1 CS SDIO/ODS SCLK/DFS 5. Block diagram ADC1610S ERROR CORRECTION AND DIGITAL PROCESSING SPI INTERFACE OTR PGA CMOS: DAV or LVDS/DDR: DAVP DAVM INP T/H INPUT STAGE ADC CORE 16-BIT PIPELINED OUTPUT DRIVERS INM PWD/OE REFT REFB SENSE VCM SYSTEM REFERENCE AND POWER MANAGEMENT VREF CLKP CLKM VDDO VDDA AGND CLOCK INPUT STAGE AND DUTY CYCLE CONTROL CMOS: D15 to D0 or LVDS/DDR: D15P, D15M to D0P, D0M 005aaa104 Fig 1. Block diagram ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 2 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 6. Pinning information 31 D0_D1_M 32 D0_D1_P 33 VDDO 34 DAVM 35 DAVP 36 SCLK/DFS 37 SDIO/DCS 38 CS 39 SENSE 40 VREF terminal 1 index area 31 D1 32 D0 33 VDDO 34 n.c. 35 DAV 36 SCLK/DFS 37 SDIO/DCS 38 CS terminal 1 index area 39 SENSE 40 VREF 6.1 Pinning REFB 1 30 D2_D3_P REFB 1 30 D2 REFT 2 29 D2_D3_M REFT 2 29 D3 AGND 3 28 D4_D5_P AGND 3 28 D4 VCM 4 27 D4_D5_M VCM 4 27 D5 VDDA 5 VDDA 5 26 D6 AGND 6 AGND 6 25 D7 INM 7 24 D8_D9_P INM 7 24 D8 INP 8 23 D8_D9_M INP 8 23 D9 AGND 9 22 D10_D11_P AGND 9 22 D10 VDDA 10 21 D10_D11_M VDDA 10 21 D11 Transparent top view Fig 2. D12_D13_P 20 D12_D13_M 19 25 D6_D7_M D14_D15_P 18 D14_D15_M 17 OTR 16 PWD/OE 15 DEC 14 CLKM 13 005aaa105 CLKP 12 VDDA 11 D12 20 D13 19 D14 18 D15 17 OTR 16 PWD/OE 15 DEC 14 CLKM 13 CLKP 12 VDDA 11 ADC1610S HVQFN40 26 D6_D7_P ADC1610S HVQFN40 005aaa106 Transparent top view Pin configuration with CMOS digital outputs selected Fig 3. Pin configuration with LVDS/DDR digital outputs selected 6.2 Pin description Table 2. Pin description (CMOS digital outputs) Symbol Pin Type [1] Description REFB 1 O bottom reference REFT 2 O top reference AGND 3 G analog ground VCM 4 O common-mode output voltage VDDA 5 P analog power supply AGND 6 G analog ground INM 7 I complementary analog input INP 8 I analog input AGND 9 G analog ground VDDA 10 P analog power supply VDDA 11 P analog power supply CLKP 12 I clock input CLKM 13 I complementary clock input DEC 14 O regulator decoupling node PWD/OE 15 I power-down, active HIGH; output enable, active LOW OTR 16 O out-of-range ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 3 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 2. Pin description (CMOS digital outputs) Symbol Pin Type [1] Description D15 17 O data output bit 15 (MSB) D14 18 O data output bit 14 D13 19 O data output bit 13 D12 20 O data output bit 12 D11 21 O data output bit 11 D10 22 O data output bit10 D9 23 O data output bit 9 D8 24 O data output bit 8 D7 25 O data output bit 7 D6 26 O data output bit 6 D5 27 O data output bit 5 D4 28 O data output bit 4 D3 29 O data output bit 3 D2 30 O data output bit 2 D1 31 O data output bit 1 D0 32 O data output bit 0 (LSB) VDDO 33 P output power supply n.c. 34 - not connected DAV 35 O data valid output clock SCLK/DFS 36 I SPI clock / data format select SDIO/ODS 37 I/O SPI data IO / output data standard CS 38 I SPI chip select SENSE 39 I reference programming pin VREF 40 I/O voltage reference input/output [1] P: power supply; G: ground; I: input; O: output; I/O: input/output. Table 3. Pin description (LVDS/DDR) digital outputs) Symbol Pin [1] Type [2] Description D14_D15_M 17 O differential output data D14 and D15 multiplexed, complement D14_D15_P 18 O differential output data D14 and D15 multiplexed, true D12_D13_M 19 O differential output data D12 and D13 multiplexed, complement D12_D13_P 20 O differential output data D12 and D13 multiplexed, true D10_D11_M 21 O differential output data D10 and D11multiplexed, complement D10_D11_P 22 O differential output data D10 and D11 multiplexed, true D8_D9_M 23 O differential output data D8 and D9 multiplexed, complement D8_D9_P 24 O differential output data D8 and D9 multiplexed, true D6_D7_M 25 O differential output data D6 and D7 multiplexed, complement D6_D7_P 26 O differential output data D6 and D7 multiplexed, true D4_D5_M 27 O differential output data D4 and D5 multiplexed, complement D4_D5_P 28 O differential output data D4 and D5 multiplexed, true D2_D3_M 29 O differential output data D2 and D3 multiplexed, complement D2_D3_P 30 O differential output data D2 and D3 multiplexed, true D0_D1_M 31 O differential output data D0 and D1 multiplexed, complement ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 4 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 3. Pin description …continued (LVDS/DDR) digital outputs) Symbol Pin [1] Type [2] Description D0_D1_P 32 O differential output data D0 and D1 multiplexed, true DAVM 34 O data valid output clock, complement DAVP 35 O data valid output clock, true [1] Pins 1 to 16 and pins 36 to 40 are the same for both CMOS and LVDS DDR outputs (see Table 2) [2] P: power supply; G: ground; I: input; O: output; I/O: input/output. 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions VDDA analog supply voltage VDDO output supply voltage ∆VCC supply voltage difference Tstg Min Max Unit <tbd> <tbd> V <tbd> <tbd> V <tbd> <tbd> V storage temperature −55 +125 °C Tamb ambient temperature −40 +85 °C Tj junction temperature - <tbd> °C VDDA − VDDO 8. Thermal characteristics Table 5. Symbol Rth(j-a) Rth(j-c) [1] Thermal characteristics Parameter Conditions Typ Unit thermal resistance from junction to ambient [1] <tbd> K/W thermal resistance from junction to case [1] <tbd> K/W In compliance with JEDEC test board, in free air. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 5 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 9. Static characteristics Table 6. Static characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit 2.85 3.0 3.4 V 1.65 1.8 3.6 V Supplies VDDA analog supply voltage VDDO output supply voltage LVDS DDR mode 2.85 3.0 3.6 V IDDA analog supply current fclk = 125 Msps; fi =70 MHz - 185 - mA IDDO output supply current CMOS mode; fclk = 125 Msps; fi =70 MHz - 20 - mA LVDS DDR mode: fclk = 125 Msps; fi =70 MHz - 45 - mA - 570 - mW Power-down mode - 2 - mW Sleep mode - 40 - mW peak-to-peak 0.2 0.8 <tbd> V 0.3VDDA - 0.7VDDA V - 0 - LOW-medium level - 0.3VDDA - medium-HIGH level - 0.6VDDA - P CMOS mode power dissipation Clock inputs: pins CLKP and CLKM AC coupled; LVPECL, LVDS and sine wave Vi(clk)dif differential clock input voltage LVCMOS VI input voltage Logic Inputs: pin PWD/OE VIL LOW-level input voltage V VIH HIGH-level input voltage - VDDA - V IIL LOW-level input current <tbd> - <tbd> µA IIH HIGH-level input current −10 - +10 µA Serial Peripheral Interface: pins CS, SDIO/ODS, SCLK/DFS VIL LOW-level input voltage 0 - 0.3VDDA V VIH HIGH-level input voltage 0.7VDDA - VDDA V IIL LOW-level input current −10 - +10 µA IIH HIGH-level input current −50 - +50 µA CI input capacitance - 4 - pF Digital Outputs: CMOS mode - pins D13 to D0, OTR, DAV Output levels, VDDO = 3V VOL LOW-level output voltage IOL = <tbd> AGND - 0.2VDDO V VOH HIGH-level output voltage IOH = <tbd> 0.8VDDO - VDDO V IOL LOW-level output current 3-state; output level = 0 V - <tbd> - µA IOH HIGH-level output current 3-state; output level = VDDA - <tbd> - µA CO output capacitance high impedance; OE = HIGH - 3 - pF ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 6 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 6. Static characteristics …continued Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Output levels, VDDO = 1.8 V VOL LOW-level output voltage IOL = <tbd> AGND - 0.2VDDO V VOH HIGH-level output voltage IOH = <tbd> 0.8VDDO - VDDO V Digital Outputs, LVDS mode - pins D13P, D13M to D0P, D0M, DAVP and DAVM Output levels, VDDO = 3 V only, Rload = 100 Ω VO(offset) output offset voltage output buffer current set to 3.5 mA - 1.2 - V VO(dif) differential output voltage output buffer current set to 3.5 mA - 350 - mV CO output capacitance - <tbd> - pF µA Analog inputs: pins INP and INM II Input current −5 - +5 RI input resistance - <tbd> - Ω CI input capacitance - 5 - pF VI(cm) common-mode input voltage 0.9 1.5 2 V Bi input bandwidth - 600 - MHz VI(dif) differential input voltage 1 - 2 V VINP = VINM peak-to-peak Common mode output voltage: pin VCM VO(cm) common-mode output voltage - 0.5VDDA - V IO(cm) common-mode output current - <tbd> - µA output - 0.5 to 1 - V input 0.5 - 1 V - ±4 - LSB guaranteed no missing codes - ±0.95 - LSB I/O reference voltage: pin VREF VVREF voltage on pin VREF Accuracy INL integral non-linearity DNL differential non-linearity Eoffset offset error - ±2 - mV EG gain error - ±0.5 - %FS - 35 - dBc Supply PSRR power supply rejection ratio 100 mV (p-p) on VDDA ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 7 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 10. Dynamic characteristics 10.1 Dynamic characteristics Table 7. Dynamic characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit fi = 3 MHz - 95 - dBc fi = 30 MHz - 92 - dBc fi = 70 MHz - 89 - dBc fi = 170 MHz - 88 - dBc fi = 3 MHz - 90 - dBc fi = 30 MHz - 89 - dBc fi = 70 MHz - 88 - dBc fi = 170 MHz - 87 - dBc fi = 3 MHz - 87 - dBc fi = 30 MHz - 86 - dBc fi = 70 MHz - 83 - dBc fi = 170 MHz - 79 - dBc fi = 3 MHz - 11.8 - bits fi = 30 MHz - 11.7 - bits fi = 70 MHz - 11.6 - bits fi = 170 MHz - 11.5 - bits fi = 3 MHz - 73 - dBFS fi = 30 MHz - 72.2 - dBFS fi = 70 MHz - 71.6 - dBFS fi = 170 MHz - 71 - dBFS fi = 3 MHz - 74 - dBFS fi = 30 MHz - 73.5 - dBFS fi = 70 MHz - 73.4 - dBFS fi = 170 MHz - 73.3 - dBFS Analog signal processing α2H α3H THD ENOB SNR second harmonic level third harmonic level total harmonic distortion effective number of bits signal-to-noise ratio at −20 dBFS SFDR IMD spurious-free dynamic range Intermodulation distortion fi = 3 MHz - 90 - dBc fi = 30 MHz - 89 - dBc fi = 70 MHz - 88 - dBc fi = 170 MHz - 87 - dBc fi = 3 MHz - 93 - dBc fi = 30 MHz - 92 - dBc fi = 70 MHz - 91 - dBc fi = 170 MHz - 90 - dBc ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 8 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 10.2 Clock and digital output timing Table 8. Dynamic characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Clock timing input: pins CLKP and CLKM fclk clock frequency 60 - 125 MHz tlat(data) data latency time - 14 - clk/cy δclk clock duty cycle 30 50 70 % 45 50 55 % td(s) sampling delay time - 0.8 - ns twake wake-up time - <tbd> - ns DATA - 3.9 - ns DAV - 4.2 - ns - 4.3 - ns - 3.5 - ns 0.5 - 2.4 ns 0.5 - 2.4 ns 0.5 - 2.4 ns DATA - 3.9 - ns DAV - 4.2 - ns DCS_EN = 1 DCS_EN = 0 CMOS mode timing output: pins D13 to D0 and DAV propagation delay tPD tsu set-up time th hold time rise time tr [1] DATA DAV fall time tf [1] DATA LVDS DDR mode timing output: pins D13P, D13M to D0P, D0M, DAVP and DAVM propagation delay tPD [1] Measured between 20 % to 80 % of VDDO; rise time measured from −50 mV to +50 mV; fall time measured from +50mV to −50mV. 10.3 SPI timings Table 9. Characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF. Min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3V, VDDO = 1.8 V Symbol Parameter Conditions Min Typ Max Unit SPI timings tw(SCLK) SCLK pulse width 40 - - ns tw(SCLKH) SCLK HIGH pulse width 16 - - ns tw(SCLKL) SCLK LOW pulse width 16 - - ns tsu set-up time th fclk(max) hold time data to SCLKH 5 - - ns CS to SCLKH 5 - - ns data to SCLKH 2 - - ns CS to SCLKH 2 - - ns - - 25 MHz maximum clock frequency ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 9 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11. Application information 11.1 Device control The ADC1610S can be controlled via the SPI (SPI control mode) or directly via the I/O pins (PIN control mode). 11.1.1 SPI and PIN control modes The device enters PIN control mode at power-up, and remains in this mode as long as pin CS is held HIGH. In PIN control mode, the SPI pins SDIO, CS and SCLK are used as static control pins. SPI settings are ignored. SPI control mode is enabled by forcing pin CS LOW. It is not possible to toggle between PIN control and SPI control modes. Once SPI control mode has been enabled, the device will remain in this mode until it is powered down. The transition from PIN control mode to SPI control mode is illustrated in Figure 4. CS SCLK/DFS SDIO/ODS PIN control mode Data Format 2's complement SPI control mode Data Format offset binary LVDS DDR R/W CMOS W1 W0 A12 005aaa039 Fig 4. Control mode selection. When the device enters SPI control mode, the output data standard (CMOS or LVD DDR) is not determined by the state of the relevant SPI control bit (LVDS/CMOS; see Table 21), but by the level on pin SDIO at the instant a transition is triggered by a falling edge on CS (SDIO = LOW = CMOS). 11.1.2 Operating mode selection The active ADC1610S operating mode (Power-up, Power-down or Sleep) can be selected via the SPI interface (see Table 18) or using pins PWD and OE in PIN control mode, as described in Table 10. Table 10. Operating mode selection via pin PWD/OE PWD/OE Operating mode Output high-Z 0 Power-down yes 1/3VDDA Sleep yes 2/3VDDA Power-up yes VDDA Power-up no 11.1.3 Selecting the output data standard The output data standard (CMOS or LVDS DDR) can be selected via the SPI interface (see Table 21) or using pin ODS in PIN control mode. LVDS DDR is selected when ODS is HIGH, otherwise CMOS is selected. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 10 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.1.4 Selecting the output data format The output data format can be selected via the SPI interface (offset binary, 2’s complement or gray code; see Table 21) or using pin DFS in PIN control mode (offset binary or 2’s complement). Offset binary is selected when DFS is LOW. When DFS is HIGH, 2’s complement is selected. 11.2 Analog inputs 11.2.1 Input stage The analog input of the ADC1610S supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage (VI(cm)) on pins INP and INM set to 0.5VDDA. The full scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p) via a programmable internal reference (see Section 11.3 and Table 20 further details). The equivalent circuit of the sample and hold input stage, including ESD protection and circuit and package parasitics, is shown in Figure 5. Package ESD Parasitics Switch INP Ron = 14 Ω 8 internal clock 4 pF Sampling Capacitor Switch INM Ron = 14 Ω 7 internal clock 4 pF Sampling Capacitor 005aaa043 Fig 5. Input sampling circuit The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core. 11.2.2 Anti-kickback circuitry Anti-kickback circuitry (R-C filter in Figure 6 is needed to counteract the effects of charge injection generated by the sampling capacitance. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 11 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively. R INP C R INM 005aaa073 Fig 6. Anti-kickback circuit The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth. Table 11. RC coupling versus input frequency - recommended values Input frequency R C 3 MHz 25 ohms 12 pF 70 MHz 12 ohms 8 pF 170 MHz 12 ohms 8 pF 11.2.3 Transformer The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 7 would be suitable for a baseband application. ADT1-1WT 100 nF Analog lnput 25 Ω 100 nF INP 25 Ω 12 pF 100 nF 100 nF 25 Ω 25 Ω INM VCM 100 nF 100 nF 005aaa044 Fig 7. Single transformer configuration suitable for baseband applications The configuration shown in Figure 8 is recommended for high frequency applications. In both cases, the choice of transformer will be a compromise between cost and performance. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 12 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps ADT1-1WT Analog lnput ADT1-1WT 100 nF 12 Ω 50 Ω 50 Ω 50 Ω 50 Ω INP 8.2 pF 12 Ω 100 nF INM VCM 100 nF 100 nF 005aaa045 Fig 8. Dual transformer configuration suitable for high frequency application 11.3 System reference and power management 11.3.1 Internal/external references The ADC1610S has a stable and accurate built-in internal reference voltage. This reference voltage can be set internally, externally or via the SPI (programmable in 1 dB steps between 0 dB and −6 dB via control bits INTREF when bit INTREF_EN = 1; see Table 20). The equivalent reference circuit is shown in Figure 9. REFT REFERENCE AMP VREF BUFFER REFB BANDGAP REFERENCE ADC CORE SENSE SELECTION LOGIC 005aaa046 Fig 9. Single transformer configuration suitable for baseband applications If bit INTREF_EN is set to 0, the reference voltage will be determined either internally or externally as detailed in Table 12. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 13 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 12. Reference selection Selection SPI bit INTREF_EN SENSE pin VREF pin full scale (p-p) internal 0 AGND 330 pF capacitor to AGND 2V internal 0 pin VREF connected to pin SENSE and via a 330 pF capacitor to AGND external 0 VDDA external voltage between 0.5 V and 1 V[1] 1 V to 2 V internal via SPI 1 pin VREF connected to pin SENSE and via 330 pF capacitor to AGND 1 V to 2 V [1] 1V The voltage on pin VREF is doubled internally to generate the internal reference voltage. Figure 10 to Figure 13 illustrate how to connect the SENSE and VREF pins to select the required reference voltage source. VREF REFT VREF REFT SENSE REFB 330 pF 330 pF REFB SENSE 005aaa048 005aaa047 Fig 10. Internal reference, 2 V (p-p) full scale VREF Fig 11. Internal reference, 1 V (p-p) full scale REFT VREF 0.1 µF V 330 pF SPI SETTINGS INTREF_EN = 1, active INTREF = XXX REFB SENSE Fig 12. Internal reference via SPI, 1 V to 2 V (p-p) full scale 005aaa050 Fig 13. External reference, 1 V to 2 V (p-p) full scale ADC1610S125_1 Objective data sheet REFB SENSE VDDA 005aaa049 REFT © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 14 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.3.2 Gain control The gain is programmable between 0 dB to −6 dB in 1 dB steps via the SPI (see Table 20). This makes it possible to improve the Spurious-Free Dynamic Range (SFDR) of the ADC1610S. The corresponding full scale input voltage range varies between 2 V (p-p) and 1 V (p-p), as shown in Table 13: Table 13. Reference SPI Gain Control INTREF Gain full scale (p-p) 000 0 dB 2V 001 −1 dB 1.78 V 010 −2 dB 1.59 V 011 −3 dB 1.42 V 100 −4 dB 1.26 V 101 −5 dB 1.12 V 110 −6 dB 1V 111 reserved x 11.3.3 Common-mode output voltage (VO(cm)) A 0.1 µF filter capacitor should be connected between pin VCM and ground to ensure a low-noise common-mode output voltage. When AC-coupled, pin VCM can then be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point. PACKAGE ESD PARASITICS COMMON MODE REFERENCE 1.5 V VCM 0.1 µF ADC CORE 005aaa051 Fig 14. Equivalent schematic of the common-mode reference circuit 11.3.4 Biasing The common-mode input voltage (VI(cm)) on pins INP and INM should be set externally to 0.5VDDA for optimal performance and should always be between 0.9 V and 2 V. The graph in Figure 15 illustrates how the SFDR and SNR characteristics vary with changes in the common-mode input voltage. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 15 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps dB SFDR (x MHz) SNR (x MHz) 2V 0.9 V VI(cm) 005aaa052 Fig 15. SFDR and SNR performances versus VI(cm) 11.4 Clock input 11.4.1 Drive modes The ADC1610S can be driven differentially (SINE, LVPECL or LVDS) without the performance being affected by the choice of configuration. It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor) or CLKM (CLKP should be connected to ground via a capacitor). LVCMOS Clock lnput CLKP CLKP CLKM LVCMOS Clock lnput CLKM 005aaa053 Fig 16. LVCMOS Single-ended clock input CLKP Sine Clock lnput Sine Clock lnput CLKM CLKP CLKM 005aaa054 Fig 17. Sine differential clock input ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 16 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps CLKP LVDS Clock lnput CLKM 005aaa055 Fig 18. LVDS differential clock input 11.4.2 Equivalent input circuit The equivalent circuit of the input clock buffer is shown in Figure 19. The common-mode voltage of the differential input stage is set via internal 5 kΩ resistors. PACKAGE ESD PARASITICS CLKP Vcm(clk) SE_SEL SE_SEL 5k 5k CLKM 005aaa056 Fig 19. Equivalent input circuit Single-ended or differential clock inputs can be selected via the SPI interface (see Table 19). If single-ended is enabled, the input pin (CLKM or CLKP) is selected via control bit SE_SEL. If single-ended is implemented without setting SE_SEL to the appropriate value, the unused pin should be connected to ground via a capacitor. 11.4.3 Duty cycle stabilizer The duty cycle stabilizer can improve the overall performances of the ADC by compensating the duty cycle of the input clock signal. When the duty cycle stabilizer is active (bit DCS_EN = 1; see Table 19), the circuit can handle signals with duty cycles of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS_EN = 0), the input clock signal should have a duty cycle of between 45 % and 55 %. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 17 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.4.4 Clock input divider The ADC1610S contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV = 1; see Table 19). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed. 11.5 Digital outputs 11.5.1 Digital output buffers: CMOS mode The digital output buffers can be configured as CMOS by setting bit LVDS/CMOS to 0 (see Table 21). Each digital output has a dedicated output buffer. The equivalent circuit of the CMOS digital output buffer is shown in Figure 20. The buffer is powered by a separate AGND/VDDO to ensure 1.8 V to 3.4 V compatibility and is isolated from the ADC core. Each buffer can be loaded by a maximum of 10 pF. VDDO PARASITICS LOGIC DRIVER ESD PACKAGE 50 Ω Dx AGND 005aaa112 Fig 20. CMOS digital output buffer The output resistance is 50 Ω and is the combination of the an internal resistor and the equivalent output resistance of the buffer. There is no need for an external damping resistor. The drive strength of both data and DAV buffers can be programmed via the SPI in order to adjust the rise and fall times of the output digital signals (see Table 28): 11.5.2 Digital output buffers: LVDS DDR mode The digital output buffers can be configured as LVDS DDR by setting bit LVDS/CMOS to 1 (see Table 21). ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 18 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps VCCO 3.5 mA typ − + DnP/Dn + 1P DnM/Dn + 1M 100 Ω RECEIVER − + AGND 005aaa123 Fig 21. LVDS DDR digital output buffer - externally terminated Each output should be terminated externally with a 100 Ω resistor (typical) at the receiver side (Figure 21) or internally via SPI control bits LVDS_INTTER (see Figure 22 and Table 30). VCCO 3.5 mA typ − + DxP/Dx + 1P 100 Ω + DxM/Dx + 1M RECEIVER − AGND 005aaa124 Fig 22. LVDS DDR digital output buffer - internally terminated The default LVDS DDR output buffer current is set to 3.5 mA. It can be programmed via the SPI (bits DAVI and DATAI; see Table 29) in order to adjust the output logic voltage levels. 11.5.3 DAta Valid (DAV) output clock A DSV output clock signal is provided that can be used to capture the data delivered by the ADC1610S. Detailed timing diagrams for CMOS and LVDS DDR modes are provided in Figure 23 and Figure 24 respectively. 11.5.4 Out-of-Range (OTR) An out-of-range signal is provided on pin OTR. By default, pin OTR goes HIGH fourteen clock cycles after an OTR event has occurred. The OTR response can be speeded up by enabling Fast OTR (bit FASTOTR = 1; see Table 27). When Fast OTR is enabled, OTR goes HIGH four clock cycles after the OTR event. The Fast OTR detection threshold (below full scale) can be programmed via bits FASTOTR_DET. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 19 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.5.5 Digital offset By default, the ADC1610S delivers output code that corresponds to the analog input. However it is possible to add a digital offset to the output code via the SPI (bits DIG_OFFSET; see Table 23). 11.5.6 Test patterns For test purposes, the ADC1610S can be configured to transmit one of a number of predefined test patterns (via bits TESTPAT_SEL; see Table 24). A custom test pattern can be defined by the user (TESTPAT_USER; see Table 25 and Table 26) and is selected when TESTPAT_SEL = 101. The selected test pattern will be transmitted regardless of the analog input. 11.5.7 Output codes versus input voltage Table 14. Output codes VINP − VINM Offset binary 2’s complement OTR pin < −1 0000 0000 0000 0000 1000 0000 0000 0000 1 −1 0000 0000 0000 0000 1000 0000 0000 0000 0 −0.99996948 0000 0000 0000 0001 1000 0000 0000 0001 0 −0.99993896 0000 0000 0000 0010 1000 0000 0000 0010 0 −0.99990845 0000 0000 0000 0011 1000 0000 0000 0011 0 −0.99987793 0000 0000 0000 0100 1000 0000 0000 0100 0 .... .... .... 0 −0.00006104 01 1111 1111 1110 1111 1111 1111 1110 0 −0.00003052 01 1111 1111 1111 1111 1111 1111 1111 0 0 10 0000 0000 0000 0000 0000 0000 0000 0 +0.00003052 10 0000 0000 0001 0000 0000 0000 0001 0 +0.00006104 10 0000 0000 0010 0000 0000 0000 0010 0 .... .... .... 0 +0.99987793 1111 1111 1111 1011 0111 1111 1111 1011 0 +0.99990845 1111 1111 1111 1100 0111 1111 1111 1100 0 +0.99993896 1111 1111 1111 1101 0111 1111 1111 1101 0 +0.99996948 1111 1111 1111 1110 0111 1111 1111 1110 0 +1 1111 1111 1111 1111 0111 1111 1111 1111 0 > +1 1111 1111 1111 1111 0111 1111 1111 1111 1 ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 20 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.6 Timings summary 11.6.1 CMOS mode timings N N+1 td(s) N+2 tclk CLKP CLKM tPD (N − 14) (N − 13) (N − 12) (N − 11) DATA tsu tPD th DAV tclk 005aaa060 Fig 23. CMOS mode timing 11.6.2 LVDS DDR mode timing N N+1 td(s) N+2 tclk CLKP CLKM tPD (N − 14) (N − 13) (N − 12) (N − 11) Dx_Dx + 1_P Dx Dx + 1 Dx Dx + 1 Dx Dx + 1 Dx Dx + 1 Dx Dx + 1 Dx_Dx + 1_M tsu th tsu th tPD DAVP DAVM tclk 005aaa061 Fig 24. LDVS DDR mode timing ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 21 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.7 Serial Peripheral Interface (SPI) 11.7.1 Register description The ADC1610S serial interface is a synchronous serial communications port that allows for easy interfacing with many commonly-used microprocessors. It provides access to the registers that control the operation of the chip. This interface is configured as a 3-wire type (SDIO as bidirectional pin) Pin SCLK is the serial clock input and CS is the chip select pin. Each read/write operation is initiated by a LOW level on CS. A minimum of three bytes will be transmitted (two instruction bytes and at least one data byte). The number of data bytes is determined by the value of bits W1 and W2 (see Table 16). Table 15. Instruction bytes for the SPI MSB LSB Bit 7 6 5 4 3 2 1 0 Description R/W[1] W1[2] W0[2] A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 [1] Bit R/W indicates whether it is a read (1) or a write (0) operation. [2] Bits W1 and W0 indicate the number of bytes to be transferred after the instruction byte (see Table 16). Table 16. Number of data bytes to be transferred after the instruction bytes W1 W0 Number of bytes transmitted 0 0 1 byte 0 1 2 bytes 1 0 3 bytes 1 1 4 bytes or more Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incriminated to access subsequent addresses. The steps involved in a data transfer are as follows: 1. A falling edge on CS in combination with a rising edge on SCLK determine the start of communications. 2. The first phase is the transfer of the 2-byte instruction. 3. The second phase is the transfer of the data which can vary in length but will always be a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes). 4. A rising edge on CS indicates the end on data transmission. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 22 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps CS SCLK SDIO R/W W1 W0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 Instruction bytes A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Register N (data) Register N + 1 (data) 005aaa062 Fig 25. SPI mode timing 11.7.2 Default modes at start-up During circuit initialization, it does not matter which output data standard has been selected. At power-up, the device defaults to PIN control mode. A falling edge on CS will trigger a transition to SPI control mode. When the ADC1610S enters SPI control mode, the output data standard (CMOS/LVDS DDR) is determined by the level on pin SDIO (see Figure 26). Once in SPI control mode, the output data standard can be changed via bit LVDS/CMOS in Table 21. When the ADC1610S enters SPI control mode, the output data format (2’s complement or offset binary) is determined by the level on pin SCLK (grey code can only be selected via the SPI). Once in SPI control mode, the output data format can be changed via bit DATA_FORMAT in Table 21. CS SCLK (Data Format) SDIO (CMOS LVDS DDR) Offset binary, LVDS DDR default mode at startup 005aaa063 Fig 26. Default mode at start-up: SCLK LOW = offset binary; SDIO HIGH = LVDS DDR CS SCLK (Data Format) SDIO (CMOS LVDS DDR) 2's complement, CMOS default mode at startup 005aaa064 Fig 27. Default mode at start-up: SCLK HIGH = 2’s complement; SDIO LOW = CMOS ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 23 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 11.7.3 Register allocation map Table 17. Register allocation map Addr Register name Hex R/W Bit definition 0005 Reset and operating mode Bit 7 Default Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 R/W SW_ RST - - - - - OP_MODE 0006 Clock R/W - - - SE_SEL DIFF/SE - CLKDIV 0008 Internal reference R/W - - - - INTREF_ EN INTREF 0011 Output data standard. R/W - - - LVDS/ CMOS OUTBUF - 0012 Output clock R/W - - - - DAVINV DAVPHASE 0013 Offset R/W - - DIG_OFFSET 0014 Test pattern 1 R/W - - - 0015 Test pattern 2 R/W TESTPAT_USER 0000 0000 0016 Test pattern 2 R/W TESTPAT_USER 0000 0000 0017 Fast OTR R/W - - - - FASTOTR 0020 CMOS output R/W - - - - DAV_DRV 0021 LVDS DDR O/P 1 R/W - - DAVI_ x2_EN DAVI 0022 LVDS DDR O/P 2 R/W - - Table 18. - - - Bit 0 Bin 0000 0000 DCS_EN 0000 0001 0000 0000 DATA_FORMAT 0000 0000 0000 1110 0000 0000 - TESTPAT_SEL 0000 0000 FASTOTR_DET 0000 0000 DATA_DRV 0000 1110 DATAI_x DATAI 2_EN 0000 0000 BIT/BYTE_ LVDS_INTTER WISE 0000 0000 Reset and operating mode control register (address 0005h) bit description Bit Symbol Access 7 SW_RST R/W Value Description reset digital section 0 no reset 1 performs a reset of the digital section 6 to 2 reserved 1 to 0 OP_MODE R/W operating mode 00 Normal (Power-up) 01 Power-down 10 Sleep 11 Normal (Power-up) ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 24 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 19. Bit Clock control register (address 0006h)bit description Symbol Access Value Description R/W single-ended clock input pin select 7 to 5 reserved 4 3 SE_SEL DIFF/SE 2 reserved 1 CLKDIV 0 DCS_EN Table 20. Bit 0 CLKM 1 CLKP R/W differential/single ended clock input select 0 fully differential 1 single-ended R/W clock input divide by 2 0 disabled 1 enabled R/W duty cycle stabilizer 0 disabled 1 enabled Internal reference control register (address 0008h) bit description Symbol Access Value Description 7 to 4 reserved 3 INTREF_EN 2 to 0 INTREF Table 21. Bit R/W programmable internal reference enable 0 disable 1 active R/W programmable internal reference 000 0 dB (FS = 2 V) 001 −1 dB (FS = 1.78 V) 010 −2 dB (FS = 1.59 V) 011 −3 dB (FS = 1.42 V) 100 −4 dB (FS = 1.26 V) 101 −5 dB (FS = 1.12 V) 110 −6 dB (FS = 1 V) 111 reserved Output data standard control register (address 0011h) bit description Symbol Access Value Description 7 to 5 reserved 4 3 2 LVDS/CMOS OUTBUF R/W output data standard: LVDS DDR or CMOS 0 CMOS 1 LVDS DDR R/W output buffers enable 0 output enabled 1 output disabled (high Z) reserved ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 25 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 21. Bit Output data standard control register (address 0011h) bit description …continued Symbol 1 to 0 DATA_FORMAT Table 22. Bit Access Value Description R/W output data format 00 offset binary 01 2’s complement 10 gray code 11 offset binary Output clock register (address 0012h) bit description Symbol Access Value Description 7 to 4 reserved 3 DAVINV 2 to 0 DAVPHASE Table 23. Bit R/W output clock data valid (DAV) polarity 0 normal 1 inverted R/W DAV phase select 000 output clock shifted (ahead) by 3 ns 001 output clock shifted (ahead) by 2.5 ns 010 output clock shifted (ahead) by 2 ns 011 output clock shifted (ahead) by 1.5 ns 100 output clock shifted (ahead) by 1 ns 101 output clock shifted (ahead) by 0.5 ns 110 default value as defined in timing section 111 output clock shifted (delayed) by 0.5 ns Offset register (address 0013h) bit description Symbol Access Value Description 7 to 6 reset 5 to 0 DIG_OFFSET R/W digital offset adjustment 011111 ... ... 000000 0 ... ... 100000 ADC1610S125_1 Objective data sheet +31 LSB −32 LSB © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 26 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 24. Bit Test pattern register 1 (address 0014h) bit description Symbol Access Value Description R/W digital test pattern select 7 to 3 reserved 2 to 0 TESTPAT_SEL Table 25. Bit 7 to 0 TESTPAT_USER Bit 7 to 0 TESTPAT_USER Bit 001 mid scale 010 −FS 011 +FS 100 toggle ‘1111..1111’/’0000..0000’ 101 custom test pattern 110 ‘1010..1010.’ 111 ‘010..1010’ Access Value Description R/W custom digital test pattern (bits 15 to 8) Test pattern register 3 (address 0016h) bit description Symbol Table 27. off Test pattern register 2 (address 0015h) bit description Symbol Table 26. 000 Access Value Description R/W custom digital test pattern (bits 7 to 0) Fast OTR register (address 0017h) bit description Symbol Access Value Description R/W fast Out-of-Range (OTR) detection 7 to 4 reset 3 FASTOTR 0 disabled 1 2 to 0 FASTOTR_DET R/W enabled set fast OTR detect level 000 −20.56 dB 001 −16.12 dB 010 −11.02 dB 011 −7.82 dB 100 −5.49 dB 101 −3.66 dB 110 −2.14 dB 111 −0.86 dB ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 27 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 28. Bit CMOS output register (address 0020h) bit description Symbol Access Value Description 7 to 4 reserved 3 to 2 DAV_DRV R/W drive strength for DAV CMOS output buffer 00 low 01 medium 10 high 11 1 to 0 DATA_DRV Table 29. Bit R/W very high drive strength for DATA CMOS output buffer 00 low 01 medium 10 high 11 very high LVDS DDR output register 1 (address 0021h) bit description Symbol Access DAVI_x2_EN R/W Value Description 7 to 6 5 4 to 3 DAVI double LVDS current for DAV LVDS buffer 0 disabled 1 enabled R/W LVDS current for DAV LVDS buffer 00 3.5 mA 01 4.5 mA 10 1.25 mA 11 2 DATAI_x2_EN 1 to 0 DATAI Table 30. Bit R/W 2.5 mA double LVDS current for DATA LVDS buffer 0 disabled 1 enabled R/W LVDS current for DATA LVDS buffer 00 3.5 mA 01 4.5 mA 10 1.25 mA 11 2.5 mA LVDS DDR output register 2 (address 0022h) bit description Symbol Access Value Description 7 to 4 reserved 3 BIT/BYTE_WISE R/W DDR mode for LVDS output 0 bit wise (even data bits output on DAV rising edge / odd data bits output on DAV falling edge) 1 byte wise (MSB data bits output on DAV rising edge / LSB data bits output on DAV falling edge) ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 28 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps Table 30. Bit LVDS DDR output register 2 (address 0022h) bit description …continued Symbol Access Value Description 2 to 0 LVDS_INTTER R/W internal termination for LVDS buffer (DAV and DATA) 000 no internal termination 001 300 Ω 010 180 Ω 011 110 Ω 100 150 Ω 101 100 Ω 110 81 Ω 111 60 Ω 11.7.4 Serial timing interface SPI timing is shown in Figure 28. tsu tsu th CS tw(SCLKL) th tw(SCLKH) tw(SCLK) SCLK SDIO R/W W1 W0 A12 A11 D2 D1 D0 005aaa065 Fig 28. SPI timing SPI timing characteristics are detailed in Table 9. ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 29 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 12. Package outline HVQFN40: plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 x 6 x 0.85 mm A B D SOT618-1 terminal 1 index area A E A1 c detail X C e1 1/2 e e 20 y y1 C v M C A B w M C b 11 L 21 10 e e2 Eh 1/2 e 1 30 terminal 1 index area 40 31 Dh X 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max. A1 b c D(1) Dh E(1) Eh e e1 e2 L v w y y1 mm 1 0.05 0.00 0.30 0.18 0.2 6.1 5.9 4.25 3.95 6.1 5.9 4.25 3.95 0.5 4.5 4.5 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT618-1 --- MO-220 --- EUROPEAN PROJECTION ISSUE DATE 01-08-08 02-10-22 Fig 29. Package outline SOT618-1 (HVQFN40) ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 30 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 13. Revision history Table 31. Revision history Document ID Release date Data sheet status Change notice Supersedes ADC1610S125_1 20090528 Objective data sheet - - ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 31 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 14. Legal information 14.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 14.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 14.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. 14.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 15. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] ADC1610S125_1 Objective data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 28 May 2009 32 of 33 ADC1610S125 NXP Semiconductors Single 16-bit ADC 125 Msps 16. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 10.1 10.2 10.3 11 11.1 11.1.1 11.1.2 11.1.3 11.1.4 11.2 11.2.1 11.2.2 11.2.3 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.4 11.4.1 11.4.2 11.4.3 11.4.4 11.5 11.5.1 11.5.2 11.5.3 11.5.4 11.5.5 11.5.6 11.5.7 11.6 11.6.1 11.6.2 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5 Thermal characteristics. . . . . . . . . . . . . . . . . . . 5 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8 Clock and digital output timing . . . . . . . . . . . . . 9 SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application information. . . . . . . . . . . . . . . . . . 10 Device control . . . . . . . . . . . . . . . . . . . . . . . . . 10 SPI and PIN control modes . . . . . . . . . . . . . . 10 Operating mode selection. . . . . . . . . . . . . . . . 10 Selecting the output data standard . . . . . . . . . 10 Selecting the output data format. . . . . . . . . . . 11 Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . 11 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Anti-kickback circuitry . . . . . . . . . . . . . . . . . . . 11 Transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 System reference and power management . . 13 Internal/external references . . . . . . . . . . . . . . 13 Gain control . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Common-mode output voltage (VO(cm)) . . . . . 15 Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Drive modes . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Equivalent input circuit . . . . . . . . . . . . . . . . . . 17 Duty cycle stabilizer . . . . . . . . . . . . . . . . . . . . 17 Clock input divider . . . . . . . . . . . . . . . . . . . . . 18 Digital outputs . . . . . . . . . . . . . . . . . . . . . . . . . 18 Digital output buffers: CMOS mode . . . . . . . . 18 Digital output buffers: LVDS DDR mode . . . . . 18 DAta Valid (DAV) output clock. . . . . . . . . . . . . 19 Out-of-Range (OTR) . . . . . . . . . . . . . . . . . . . . 19 Digital offset . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Test patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Output codes versus input voltage . . . . . . . . . 20 Timings summary . . . . . . . . . . . . . . . . . . . . . . 21 CMOS mode timings. . . . . . . . . . . . . . . . . . . . 21 LVDS DDR mode timing . . . . . . . . . . . . . . . . . 21 11.7 11.7.1 11.7.2 11.7.3 11.7.4 12 13 14 14.1 14.2 14.3 14.4 15 16 Serial Peripheral Interface (SPI). . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . Default modes at start-up. . . . . . . . . . . . . . . . Register allocation map . . . . . . . . . . . . . . . . . Serial timing interface. . . . . . . . . . . . . . . . . . . Package outline . . . . . . . . . . . . . . . . . . . . . . . . Revision history . . . . . . . . . . . . . . . . . . . . . . . Legal information . . . . . . . . . . . . . . . . . . . . . . Data sheet status . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . Contact information . . . . . . . . . . . . . . . . . . . . Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 23 24 29 30 31 32 32 32 32 32 32 33 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 28 May 2009 Document identifier: ADC1610S125_1