Holtek HT7718S 100ma pfm synchronous step-up dc/dc converter Datasheet

HT77xxS
100mA PFM Synchronous
Step-up DC/DC Converter
Features
General Description
• Low start-up voltage: 0.7V (Typ.)
The HT77xxS devices are a high efficiency PFM synchronous step-up DC-DC converter series which are
designed to operate with both wire wound chip power
inductors and also with multi-layered chip power
inductors. The device series have the advantages of
extremely low start-up voltage as well as high output
voltage accuracy. Being manufactured using CMOS
technology ensures ultra low supply current. Because
of their higher operating frequency, up to 500 kHz,
the devices have the benefits of requiring smaller outline type lower value external inductors and capacitors. The higher operating frequency also offers the
advantages of much reduced audio frequency noise.
The devices require only three external components
to provide a fixed output voltage of 1.8V, 2.2V, 2.7V,
3.0V, 3.3V, 3.7V or 5.0V.
• High efficiency: 1.8V ≤ VOUT ≤ 2.2V upper 80%,
2.7V ≤ VOUT ≤ 5.0V upper 85% (Typ.)
• High output voltage accuracy: ±2.5%
• Output voltage: 1.8V, 2.2V, 2.7V, 3.0V, 3.3V, 3.7V,
5.0V
• Output current up to 100mA
• Ultra low supply current IDD: 4μA (Typ.)
• Low ripple and low noise
• Low shutdown current: 0.1μA (Typ.)
• TO92, SOT89, SOT23 and SOT23-5 package
Applications
• Palmtops/PDAs
The HT77xxS devices include an internal oscillator,
PFM control circuit, driver transistor, reference voltage unit and a high speed comparator. They employ
pulse frequency modulation techniques, to obtain
minimum supply current and ripple at light output
loading. These devices are available in space saving
TO92, SOT89, SOT23 and SOT23-5 packages. For
SOT23-5 package types, they also include an internal
chip enable function to reduce power consumption
when in the shutdown mode.
• Portable communicators/Smartphones
• Cameras/Camcorders
• Battery-powered equipment
Selection Table
Part No.
Output Voltage
HT7718S
1.8V
HT7722S
2.2V
HT7727S
2.7V
HT7730S
3.0V
HT7733S
3.3V
HT7737S
3.7V
HT7750S
5.0V
Package
TO92
SOT89
SOT23
SOT23-5
Marking
HT77xxS
(for TO92)
HT77xxS (for SOT89)
7xxS
(for SOT23)
7xxS (for SOT23-5)
Note: ″xx″ stands for output voltages.
Rev. 1.50
1
June 25, 2016
HT77xxS
Block Diagram
V re f
V O U T
P F M
V O U T
C o n tro l
B u ffe r
L X
O S C
C h ip E n a b le
G N D
C E
Pin Assignment
V O U T
3
F r o n t V ie w
1
2
L X
5
G N D
4
3
T o p V ie w
T o p V ie w
G N D V O U T L X
B o tto m
1
2
3
G N D
V O U T
L X
G N D
V O U T
L X
1
2
1
2
3
G N D
L X
C E
V O U T
N C
G N D
L X
C E
V O U T
N C
V ie w
Pin Description
Pin No.
Pin Name
TO92
SOT89
SOT23
—
—
—
1
CE
2
2
3
2
VOUT
—
—
—
3
NC
1
1
1
4
GND
3
3
2
5
LX
Rev. 1.50
SOT23-5
2
Description
Chip enable pin, high active
DC/DC converter output monitoring pin
No connection
Ground pin
Switching pin
June 25, 2016
HT77xxS
Absolute Maximum Ratings
Maximum Input Supply Voltage........................... 6.5V
Storage Temperature ........................... -50°C to 125°C
Ambient Temperature Range ................ -40°C to 85°C
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings"
may cause substantial damage to the device. Functional operation of this device at other conditions beyond
those listed in the specification is not implied and prolonged exposure to extreme conditions may affect
device reliability.
Thermal Information
Symbol
θJA
PD
Parameter
Thermal Resistance (Junction to Ambient)
(Assume no ambient airflow, no heat sink)
Power Dissipation
Package
Max.
Unit
SOT89
300
°C/W
TO92
300
°C/W
SOT23
330
°C/W
SOT23-5
320
°C/W
SOT89
0.33
W
TO92
0.33
W
SOT23
0.30
W
SOT23-5
0.31
W
Note: PD is measured at Ta=25°C
Electrical Characteristics
Symbol
Parameter
Min.
Typ.
Max.
Unit
—
—
6.0
V
-2.5
—
+2.5
%
VIN: 0 to 2V, IOUT= 1mA
—
0.7
0.9
V
VIN: 2 to 0V, IOUT= 1mA
—
0.7
—
V
Supply Current
Measured at VOUT pin when VOUT+0.5V
—
4
7
μA
CE= GND
VIN
Input Voltage
ΔVOUT
Output Voltage Tolerance
VSTART
Starting Voltage
VHOLD
Voltage Hold
IDD
ISHDN
Shutdown Current
VIH
CE High Threshold
VIL
CE Low Threshold
ILEAK
LX Leakage Current
FOSC
Oscillator Frequency
DOSC
Oscillator Duty Cycle
η
Ta= 25°C; VIN= VOUT×0.6; IOUT= 10mA; unless otherwise specified
Efficiency
Test Conditions
—
—
Add 5.5V at VOUT pin, 4V at LX pin.
Measured at LX pin.
Measured at LX pin when VOUT×0.95
—
0.1
1.0
μA
1.5
—
—
V
—
—
0.4
V
—
0.05
1
μA
—
500
—
kHz
70
80
—
%
1.8V≤ VOUT≤ 2.2V
—
80
—
%
2.7V≤ VOUT≤ 5.0V
—
85
—
%
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating
Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific
performance limits. The guaranteed specifications apply only for the test conditions listed.
Rev. 1.50
3
June 25, 2016
HT77xxS
Application Circuits
Without CE Pin
L
VIN
10μH
LX
VOUT
VOUT
HT77xxS
CIN
10μF
COUT
10μF
GND
With CE Pin
L
VIN
10μH
CIN
10μF
VOUT
LX
VOUT
HT77xxS
CE
COUT
10μF
GND
L
VIN
10μH
LX
VOUT
VOUT
HT77xxS
CE
CIN
10μF
VOUT
GND
COUT
10μF
List of Components
Component
Reference
Part Number
Manufacturer
CIN, COUT
GJ831CR61E106KE83L
Murata
Value
10μF, 25V. X5R Ceramic
L
SR0302100MLB
ABC Taiwan Electronics Corp.
10μH, RDC= 0.25Ω.
Wire Wound Chip Power Inductor
L
LBC3225T100MR
TAIYO YUDEN
10μH, RDC= 0.133Ω.
Multi-layered Chip Power Inductor
Rev. 1.50
4
June 25, 2016
HT77xxS
Functional Description
Application Information
The HT77xxS is a constant on time synchronous step-up
converter, which uses a pulse frequency modulation
(PFM) controller scheme. The PFM control scheme is
inherently stable. The required input/output capacitor
and inductor selections will not create situations of
instability.
Inductor Selection
Selecting a suitable inductor is an important consideration as it is usually a compromise situation between
the output current requirements, the inductor saturation
limit and the acceptable output voltage ripple. Lower
values of inductor values can provide higher output
currents but will suffer from higher ripple voltages
and reduced efficiencies. Higher inductor values can
provide reduced output ripple voltages and better efficiencies, but will be limited in their output current
capabilities. For all inductors it must be noted however
that lower core losses and lower DC resistance values
will always provide higher efficiencies.
The device includes a fully integrated synchronous
rectifier which reduces costs (includes reduce L and C
sizes, eliminates Schottky diode cost etc.) and board
area.
Low Voltage Start-up
The devices have a very low start up voltage down to
0.7V. When power is first applied, the synchronous
switch will be initially off but energy will be transferred to the load through its intrinsic body diode.
The peak inductor current can be calculated using the
following equation:
IL ( PEAK ) =
Shutdown
During normal device operation, the CE pin should
be either high or connected to the VOUT pin or the
VIN power source. When the device is in the shutdown
mode, that is when the CE pin is pulled low, the internal circuitry will be switched off. During shutdown,
the PMOS power transistor will be switched off.
Where
VIN = Input Voltage
VOUT = Output Voltage
IOUT = Output Current
η = Efficiency
L = Inductor
Synchronous Rectification
Capacitor Selection
A dead time exists between the N channel and P channel MOSFET switching operations. In synchronous
rectification, the P channel is replaced by a Schottky
diode. Here the P channel switch must be completely
off before the N channel switch is switched on. After
each cycle, a 30ns delay time is inserted to ensure the
N channel switch is completely off before the P channel
switch is switched on to maintain a high efficiency
over a wide input voltage and output power range.
Rev. 1.50
VOUT × IOUT
V × ( VOUT − VIN )
+ IN
2 × VOUT × L × f OSC
VIN × η
As the output capacitor selected affects both efficiency and output ripple voltage, it must be chosen with
care to achieve best results from the converter. Output
voltage ripple is the product of the peak inductor current
and the output capacitor equivalent series resistance
or ESR for short. It is important that low ESR value
capacitors are used to achieve optimum performance.
One method to achieve low ESR values is to connect
two or more filter capacitors in parallel. The capacitors
values and rated voltages are only suggested values.
5
June 25, 2016
HT77xxS
Layout Considerations
Circuit board layout is a very important consideration for switching regulators if they are to function properly.
Poor circuit layout may result in related noise problems. In order to minimise EMI and switching noise, note the
following guidelines:
• All tracks should be as wide as possible.
• The input and output capacitors should be placed as close as possible to the VIN, VOUT and GND pins.
• A full ground plane is always helpful for better EMI performance.
Rev. 1.50
Top Layer
Bottom Layer
Top Layer
Bottom Layer
Top Layer
Bottom Layer
Top Layer
Bottom Layer
6
June 25, 2016
HT77xxS
Typical Performance Characteristics
(L use wire wound chip power inductor)
6
100%
80%
Efficiency (%)
Output Voltage (V)
5.2
4.4
3.6
VIN=3.0V
60%
40%
VIN=3.0V
VIN=2.0V
VIN=2.0V
VIN=1.5V
2.8
20%
VIN=1.2V
VIN=1.5V
VIN=1.2V
0%
2
0
50
100
150
200
Output Current (mA)
250
0
300
Fig 1. HT7750S Output Voltage vs. Output Current
100
150
200
Output Current (mA)
250
300
Fig 2. HT7750S Efficiency vs. Output Current
1.2
250
200
Ripple Voltage (mV)
0.9
Input Voltage (V)
50
Start-up
Hold-on
0.6
0.3
150
VIN=3.0V
VIN=2.0V
100
VIN=1.5V
VIN=1.2V
50
0
0
0
5
10
15
0
20
50
100
150
200
250
300
Output Current (mA)
Output Current (mA)
Fig 3. HT7750S Start-up & Hold-on Voltage
Fig 4. HT7750S Ripple Voltage vs. Output Current
Fig 5. HT7750S Load Transient Response
Fig 6. HT7750S Line Transient Response
(L= 10μH, CIN= COUT= 10μF, VIN= 3.0V)
(L= 10μH, CIN= COUT= 10μF, VIN= 3.0V)
Rev. 1.50
7
June 25, 2016
HT77xxS
82
81
1.1
Oscillator Duty Cycle (%)
Output Voltage Tolerance (%)
2
HT7750S NO.1
0.2
HT7750S NO.2
-0.7
-1.6
80
79
78
HT7750S NO.1
HT7750S NO.2
77
76
-2.5
-40
-15
10
35
60
-40
85
-15
10
35
60
85
Temperature (℃)
Temperature (℃)
Fig 7. HT7750S Output Voltage Tolerance vs.
Fig 8. HT7750S Oscillator Duty Cycle vs.
Temperature
Temperature
Oscillator Frequency (KHz)
750
675
600
HT7750S NO.1
HT7750S NO.2
525
450
375
300
-40
-15
10
35
60
85
Temperature (℃)
Fig 9. HT7750S Oscillator Frequency vs.
Fig 10. HT7750S LX Leakage Current vs.
Temperature
Temperature
Rev. 1.50
8
June 25, 2016
4
100%
3.7
80%
Efficiency (%)
Output Voltage (V)
HT77xxS
3.4
3.1
60%
40%
VIN=2.0V
VIN=2.0V
VIN=1.8V
2.8
VIN=1.8V
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2.5
0
50
100
150
0
200
50
Output Current (mA)
150
200
Fig 12. HT7737S Efficiency vs. Output Current
Fig 11. HT7737S Output Voltage vs. Output Current
200
1.2
150
Ripple Voltage (mV)
0.9
Input Voltage (V)
100
Output Current (mA)
Start-up
Hold-on
0.6
100
VIN=2.0V
50
0.3
VIN=1.8V
VIN=1.5V
VIN=1.2V
0
0
0
5
10
15
0
20
50
100
150
200
Output Current (mA)
Output Current (mA)
Fig 13. HT7737S Start-up & Hold-on Voltage
Fig 14. HT7737S Ripple Voltage vs. Output Current
Fig 15. HT7737S Load Transient Response
Fig 16. HT7737S Line Transient Response
(L= 10μH, CIN= COUT= 10μF, VIN= 2.22V)
(L= 10μH, CIN= COUT= 10μF, VIN= 2.22V)
Rev. 1.50
9
June 25, 2016
HT77xxS
100%
3.5
80%
Efficiency (%)
Output Voltage (V)
3.3
3.1
60%
40%
VIN=2.0V
VIN=2.0V
2.9
VIN=1.8V
VIN=1.8V
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
2.7
0%
0
50
100
150
200
0
50
100
150
200
Output Current (mA)
Output Current (mA)
Fig 17. HT7733S Output Voltage vs. Output Current
Fig 18. HT7733S Efficiency vs. Output Current
600
1.2
500
Ripple Voltage (mV)
Input Voltage (V)
0.9
Start-up
Hold-on
0.6
400
300
200
VIN=2.0V
VIN=1.8V
0.3
100
VIN=1.5V
VIN=1.2V
0
0
0
5
10
15
0
20
50
100
150
200
Output Current (mA)
Output Current (mA)
Fig 19. HT7733S Start-up & Hold-on Voltage
Fig 20. HT7733S Ripple Voltage vs. Output Current
Fig 21. HT7733S Load Transient Response
Fig 22. HT7733S Line Transient Response
(L=10μH, CIN=COUT=10μF, VIN=1.98V)
(L=10μH, CIN=COUT=10μF, VIN=1.98V)
Rev. 1.50
10
June 25, 2016
HT77xxS
100%
3.3
80%
Efficiency (%)
Output Voltage (V)
3.1
2.9
60%
40%
VIN=2.0V
VIN=2.0V
2.7
VIN=1.8V
VIN=1.8V
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2.5
0
50
100
150
200
0
250
50
100
150
200
250
Output Current (mA)
Output Current (mA)
Fig 23. HT7730S Output Voltage vs. Output Current
Fig 24. HT7730S Efficiency vs. Output Current
1.2
600
500
Ripple Voltage (mV)
Input Voltage (V)
0.9
Start-up
Hold-on
0.6
400
300
200
VIN=2.0V
0.3
VIN=1.8V
100
VIN=1.5V
VIN=1.2V
0
0
0
5
10
15
0
20
50
100
150
200
250
Output Current (mA)
Output Current (mA)
Fig 25. HT7730S Start-up & Hold-on Voltage
Fig 26. HT7730S Ripple Voltage vs. Output Current
Fig 27. HT7730S Load Transient Response
Fig 28. HT7730S Line Transient Response
(L=10μH, CIN=COUT=10μF, VIN=1.8V)
(L=10μH, CIN=COUT=10μF, VIN=1.8V)
Rev. 1.50
11
June 25, 2016
3
100%
2.8
80%
Efficiency (%)
Output Voltage (V)
HT77xxS
2.6
2.4
60%
40%
VIN=2.0V
VIN=2.0V
VIN=1.8V
VIN=1.8V
2.2
20%
VIN=1.6V
VIN=1.6V
VIN=1.2V
VIN=1.2V
0%
2
0
50
100
150
0
200
50
Output Current (mA)
Fig 29. HT7727S Output Voltage vs. Output Current
150
200
Fig 30. HT7727S Efficiency vs. Output Current
1.2
200
0.9
150
Ripple Voltage (mV)
Input Voltage (V)
100
Output Current (mA)
Start-up
Hold-on
0.6
0.3
100
VIN=2.0V
VIN=1.8V
50
VIN=1.6V
VIN=1.2V
0
0
0
5
10
15
20
0
Output Current (mA)
50
100
Output Current (mA)
150
200
Fig 31. HT7727S Start-up & Hold-on Voltage
Fig 32. HT7727S Ripple Voltage vs. Output Current
Fig 33. HT7727S Load Transient Response
Fig 34. HT7727SLine Transient Response
(L= 10μH, CIN= COUT= 10μF, VIN= 1.62V)
(L= 10μH, CIN= COUT= 10μF, VIN= 1.62V)
Rev. 1.50
12
June 25, 2016
HT77xxS
82
81
HT7727S NO.1
1.1
HT7727S NO.2
Oscillator Duty Cycle (%)
Output Voltage Tolerance (%)
2
0.2
-0.7
-1.6
HT7727S NO.1
80
HT7727S NO.2
79
78
77
76
-2.5
-40
-15
10
35
60
-40
85
-15
10
35
60
85
Temperature (℃)
Temperature (℃)
Fig 35. HT7727S Output Voltage Tolerance vs.
Fig 36. HT7727S Oscillator Duty Cycle vs.
Temperature
Temperature
750
Oscillator Frequency (KHz)
675
HT7727S NO.1
600
HT7727S NO.2
525
450
375
300
-40
-15
10
35
60
85
Temperature (℃)
Fig 37. HT7727S Oscillator Frequency vs.
Fig 38. HT7727S LX Leakage Current vs.
Temperature
Temperature
Rev. 1.50
13
June 25, 2016
2.4
100%
2.32
80%
Efficiency (%)
Output Voltage (V)
HT77xxS
2.24
2.16
60%
40%
VIN=2.0V
VIN=2.0V
2.08
VIN=1.8V
20%
VIN=1.8V
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2
0
0
50
100
150
50
200
100
150
200
Output Current (mA)
Output Current (mA)
Fig 39. HT7722S Output Voltage vs. Output Current
Fig 40. HT7722S Efficiency vs. Output Current
1.2
600
500
Ripple Voltage (mV)
Input Voltage (V)
0.9
Start-up
Hold-on
0.6
400
300
VIN=2.0V
200
VIN=1.8V
0.3
VIN=1.5V
100
VIN=1.2V
0
0
0
5
10
15
0
20
50
100
150
200
Output Current (mA)
Output Current (mA)
Fig 41. HT7722S Start-up & Hold-on Voltage
Fig 42.HT7722S Ripple Voltage vs. Output Current
Fig 43. HT7722S Load Transient Response
Fig 44. HT7722SLine Transient Response
(L= 10μH, CIN= COUT= 10μF, VIN= 1.32V)
Rev. 1.50
(L= 10μH, CIN= COUT= 10μF, VIN= 1.32V)
14
June 25, 2016
1.9
100%
1.85
80%
Efficiency (%)
Output Voltage (V)
HT77xxS
1.8
1.75
60%
40%
VIN=1.6V
VIN=1.6V
VIN=1.4V
1.7
VIN=1.4V
20%
VIN=1.2V
VIN=1.2V
VIN=1.08V
VIN=1.08V
1.65
0%
0
30
60
90
120
150
0
30
Fig 45. HT7718S Output Voltage vs. Output Current
90
120
150
Fig 46. HT7718S Efficiency vs. Output Current
1.2
200
0.9
150
Ripple Voltage (mV)
Input Voltage (V)
60
Output Current (mA)
Output Current (mA)
Start-up
Hold-on
0.6
0.3
100
VIN=1.6V
VIN=1.4V
50
VIN=1.2V
VIN=1.08V
0
0
0
5
10
15
20
0
Output Current (mA)
30
60
90
120
150
Output Current (mA)
Fig 47. HT7718S Start-up & Hold-on Voltage
Fig 48.HT7718S Ripple Voltage vs. Output Current
Fig 49. HT7718S Load Transient Response
Fig 50. HT7718S Line Transient Response
(L= 10μH, CIN= COUT= 10μF, VIN= 1.08V)
(L= 10μH, CIN= COUT= 10μF, VIN= 1.08V)
Rev. 1.50
15
June 25, 2016
HT77xxS
82
81
1.1
Oscillator Duty Cycle (%)
Output Voltage Tolerance (%)
2
HT7718S NO.1
0.2
HT7718S NO.2
-0.7
-1.6
80
79
78
HT7718S NO.1
HT7718S NO.2
77
76
-2.5
-40
-15
10
35
60
-40
85
-15
10
35
60
85
Temperature (℃)
Temperature (℃)
Fig 51. HT7718S Output Voltage Tolerance vs.
Fig 52. HT7718S Oscillator Duty Cycle vs.
Temperature
Temperature
750
Oscillator Frequency (KHz)
675
HT7718S NO.1
600
HT7718S NO.2
525
450
375
300
-40
-15
10
35
60
85
Temperature (℃)
Fig 53. HT7718S Oscillator Frequency vs.
Fig 54. HT7718S LX Leakage Current vs.
Temperature
Temperature
Rev. 1.50
16
June 25, 2016
HT77xxS
6
100%
5.2
80%
Efficiency (%)
Output Voltage (V)
Typical Performance Characteristics
(L use multi-layered chip power inductor)
4.4
3.6
VIN=3.0V
40%
VIN=3.0V
VIN=2.0V
VIN=2.0V
VIN=1.5V
2.8
20%
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2
0
50
100
150
200
Output Current (mA)
250
0
300
Fig 55. HT7750S Output Voltage vs. Output Current
50
100
150
200
Output Current (mA)
4
100%
3.7
80%
3.4
3.1
300
60%
40%
VIN=2.0V
VIN=2.0V
VIN=1.8V
VIN=1.8V
2.8
250
Fig 56. HT7750S Efficiency vs. Output Current
Efficiency (%)
Output Voltage (V)
60%
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2.5
0
50
100
150
0
200
50
Output Current (mA)
100
Output Current (mA)
150
200
Fig 58. HT7737S Efficiency vs. Output Current
Fig 57. HT7737S Output Voltage vs. Output Current
100%
3.5
80%
Efficiency (%)
Output Voltage (V)
3.3
3.1
60%
40%
VIN=2.0V
VIN=2.0V
2.9
VIN=1.8V
VIN=1.8V
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2.7
0
50
100
150
0
200
Output Current (mA)
100
Output Current (mA)
150
200
Fig 60. HT7733S Efficiency vs. Output Current
Fig 59. HT7733S Output Voltage vs. Output Current
Rev. 1.50
50
17
June 25, 2016
HT77xxS
100%
3.3
80%
Efficiency (%)
Output Voltage (V)
3.1
2.9
60%
40%
VIN=2.0V
VIN=2.0V
2.7
VIN=1.8V
VIN=1.8V
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
0%
2.5
0
50
100
150
200
250
0
50
100
150
Output Current (mA)
Output Current (mA)
100%
2.8
80%
Efficiency (%)
Output Voltage (V)
3
2.6
2.4
60%
40%
VIN=2.0V
VIN=2.0V
VIN=1.8V
VIN=1.8V
20%
VIN=1.6V
VIN=1.6V
VIN=1.2V
VIN=1.2V
0%
2
0
50
100
150
200
0
50
Output Current (mA)
Fig 63. HT7727S Output Voltage vs. Output Current
100
Output Current (mA)
2.4
100%
2.32
80%
2.24
2.16
40%
VIN=2.0V
VIN=1.8V
VIN=1.8V
20%
VIN=1.5V
VIN=1.5V
VIN=1.2V
VIN=1.2V
2
0
50
100
150
0%
200
0
Output Current (mA)
Fig 65. HT7722S Output Voltage vs. Output Current
Rev. 1.50
200
60%
VIN=2.0V
2.08
150
Fig 64. HT7727S Efficiency vs. Output Current
Efficiency (%)
Output Voltage (V)
250
Fig 62. HT7730S Efficiency vs. Output Current
Fig 61. HT7730S Output Voltage vs. Output Current
2.2
200
50
100
Output Current (mA)
150
200
Fig 66. HT7722S Efficiency vs. Output Current
18
June 25, 2016
HT77xxS
1.9
100%
80%
1.8
Effciency (%)
Output Voltage (V)
1.85
1.75
VIN=1.6V
60%
40%
VIN=1.4V
1.7
IOUT=10mA
VIN=1.2V
IOUT=30mA
20%
IOUT=50mA
VIN=1.08V
1.65
0
30
60
90
120
0%
150
-40
-15
Output Current (mA)
10
35
60
85
Temperature (℃)
Fig 67. HT7718S Output Voltage vs. Output Current
Fig 69. HT7718S Temperature vs. Output Voltage
100%
100%
80%
Effciency (%)
Efficiency (%)
80%
60%
40%
VIN=1.6V
60%
40%
IOUT=10mA
VIN=1.4V
20%
VIN=1.2V
IOUT=30mA
20%
IOUT=50mA
VIN=1.08V
IOUT=100mA
0%
0%
0
30
60
90
Output Current (mA)
120
150
-40
Fig 68. HT7718S Efficiency vs. Output Current
Rev. 1.50
-15
10
35
Temperature (℃)
60
85
Fig 70. HT7733S Temperature vs. Output Voltage
19
June 25, 2016
HT77xxS
Package Information
Note that the package information provided here is for consultation purposes only. As this information may be
updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/
Carton Information.
Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be
transferred to the relevant website page.
• Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
• The Operation Instruction of Packing Materials
• Carton information
Rev. 1.50
20
June 25, 2016
HT77xxS
3-pin SOT23 Outline Dimensions
Symbol
Nom.
Max.
A
—
—
0.057
A1
—
—
0.006
A2
0.035
0.045
0.051
b
0.012
—
0.020
C
0.003
—
0.009
D
—
0.114 BSC
—
E
—
0.063 BSC
—
e
—
0.037 BSC
—
e1
—
0.075 BSC
—
H
—
0.110 BSC
—
L1
—
0.024 BSC
—
θ
0°
—
8°
Symbol
Rev. 1.50
Dimensions in inch
Min.
Dimensions in mm
Min.
Nom.
Max.
A
—
—
1.45
A1
—
—
0.15
A2
0.90
1.15
1.30
b
0.30
—
0.50
C
0.08
—
0.22
D
—
2.90 BSC
—
E
—
1.60 BSC
—
e
—
0.95 BSC
—
e1
—
1.90 BSC
—
H
—
2.80 BSC
—
L1
—
0.60 BSC
—
θ
0°
—
8°
21
June 25, 2016
HT77xxS
5-pin SOT23-5 Outline Dimensions
H
Symbol
A
Min.
Nom.
Max.
—
—
0.057
A1
—
—
0.006
A2
0.035
0.045
0.051
b
0.012
—
0.020
C
0.003
—
0.009
D
—
0.114 BSC
—
E
—
0.063 BSC
—
e
—
0.037 BSC
—
e1
—
0.075 BSC
—
H
—
0.110 BSC
—
L1
—
0.024 BSC
—
θ
0°
—
8°
Symbol
Rev. 1.50
Dimensions in inch
Dimensions in mm
Min.
Nom.
Max.
A
—
—
1.45
A1
—
—
0.15
A2
0.90
1.15
1.30
b
0.30
—
0.50
C
0.08
—
0.22
D
—
2.90 BSC
—
E
—
1.60 BSC
—
e
—
0.95 BSC
—
e1
—
1.90 BSC
—
H
—
2.80 BSC
—
L1
—
0.60 BSC
—
θ
0°
—
8°
22
June 25, 2016
HT77xxS
3-pin SOT89 Outline Dimensions
Symbol
Dimensions in inch
Min.
Nom.
Max.
A
0.173
—
0.181
B
0.053
—
0.072
C
0.090
—
0.102
D
0.035
—
0.047
E
0.155
—
0.167
F
0.014
—
0.019
G
0.017
—
0.022
H
—
0.059 BSC
—
I
0.055
—
0.063
J
0.014
—
0.017
Symbol
Rev. 1.50
Dimensions in mm
Min.
Nom.
Max.
A
4.40
—
4.60
B
1.35
—
1.83
C
2.29
—
2.60
D
0.89
—
1.20
E
3.94
—
4.25
F
0.36
—
0.48
G
0.44
—
0.56
H
—
1.50 BSC
—
I
1.40
—
1.60
J
0.35
—
0.44
23
June 25, 2016
HT77xxS
3-pin TO92 Outline Dimensions
Symbol
Nom.
Max.
A
0.173
0.180
0.205
B
0.170
—
0.210
C
0.500
0.580
—
D
—
0.015 BSC
—
E
—
0.010 BSC
—
F
—
0.050 BSC
—
G
—
0.035 BSC
—
H
0.125
0.142
0.165
Symbol
Rev. 1.50
Dimensions in inch
Min.
Dimensions in mm
Min.
Nom.
Max.
A
4.39
4.57
5.21
B
4.32
—
5.33
C
12.70
14.73
—
D
—
0.38 BSC
—
E
—
2.54 BSC
—
F
—
1.27 BSC
—
G
—
0.89 BSC
—
H
3.18
3.61
4.19
24
June 25, 2016
HT77xxS
Copyright© 2016 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time
of publication. However, Holtek assumes no responsibility arising from the use of
the specifications described. The applications mentioned herein are used solely
for the purpose of illustration and Holtek makes no warranty or representation that
such applications will be suitable without further modification, nor recommends
the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek's products are not authorized for use as critical
components in life support devices or systems. Holtek reserves the right to alter
its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.
Rev. 1.50
25
June 25, 2016
Similar pages