ON NCV2902DTBR2G Single supply quad operational amplifier Datasheet

LM324, LM324A, LM224,
LM2902, LM2902V, NCV2902
Single Supply Quad
Operational Amplifiers
The LM324 series are low−cost, quad operational amplifiers with
true differential inputs. They have several distinct advantages over
standard operational amplifier types in single supply applications. The
quad amplifier can operate at supply voltages as low as 3.0 V or as
high as 32 V with quiescent currents about one−fifth of those
associated with the MC1741 (on a per amplifier basis). The common
mode input range includes the negative supply, thereby eliminating the
necessity for external biasing components in many applications. The
output voltage range also includes the negative power supply voltage.
http://onsemi.com
PDIP−14
N SUFFIX
CASE 646
14
1
Features
•
•
•
•
•
•
•
•
•
•
•
Short Circuited Protected Outputs
True Differential Input Stage
Single Supply Operation: 3.0 V to 32 V
Low Input Bias Currents: 100 nA Maximum (LM324A)
Four Amplifiers Per Package
Internally Compensated
Common Mode Range Extends to Negative Supply
Industry Standard Pinouts
ESD Clamps on the Inputs Increase Ruggedness without Affecting
Device Operation
NCV Prefix for Automotive and Other Applications Requiring Site
and Control Changes
Pb−Free Packages are Available
SOIC−14
D SUFFIX
CASE 751A
14
1
TSSOP−14
DTB SUFFIX
CASE 948G
14
1
PIN CONNECTIONS
Out 1
1
14
2
13
Inputs 1
3
VCC
4
*
)
4
5
Inputs 2
6
Out 2
*
1
)
Inputs 4
12
11
)
2
*
3
7
)
*
Out 4
VEE, GND
10
Inputs 3
9
8
Out 3
(Top View)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 12 of this data sheet.
© Semiconductor Components Industries, LLC, 2006
October, 2006 − Rev. 20
1
Publication Order Number:
LM324/D
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
MAXIMUM RATINGS (TA = + 25°C, unless otherwise noted.)
Rating
Symbol
Value
VCC
VCC, VEE
32
±16
Input Differential Voltage Range (Note 1)
VIDR
±32
Vdc
Input Common Mode Voltage Range
VICR
−0.3 to 32
Vdc
tSC
Continuous
Power Supply Voltages
Single Supply
Split Supplies
Unit
Vdc
Output Short Circuit Duration
Junction Temperature (Note 2)
TJ
150
°C
RJA
118
156
190
°C/W
Storage Temperature Range
Tstg
−65 to +150
°C
ESD Protection at any Pin
Human Body Model
Machine Model
Vesd
Thermal Resistance, Junction−to−Air (Note 3)
Case 646
Case 751A
Case 948G
V
2000
200
Operating Ambient Temperature Range
LM224
LM324, 324A
LM2902
LM2902V, NCV2902 (Note 4)
TA
°C
−25 to +85
0 to +70
−40 to +105
−40 to +125
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Split Power Supplies.
2. For supply voltages less than 32 V, the absolute maximum input voltage is equal to the supply voltage.
3. All RJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.
4. NCV2902 is qualified for automitive use.
http://onsemi.com
2
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)
LM224
Characteristics
Symbol
Input Offset Voltage
VCC = 5.0 V to 30 V
VICR = 0 V to
VCC −1.7 V,
VO = 1.4 V, RS = 0 VIO
Min
Typ
LM324A
Max
Min
Typ
LM324
Max
Min
Typ
LM2902
Max
Min
Typ
LM2902V/NCV2902
Max
Min
Typ
Max
Unit
mV
TA = 25°C
−
2.0
5.0
−
2.0
3.0
−
2.0
7.0
−
2.0
7.0
−
2.0
7.0
TA = Thigh (Note 5)
−
−
7.0
−
−
5.0
−
−
9.0
−
−
10
−
−
13
TA = Tlow (Note 5)
−
−
7.0
−
−
5.0
−
−
9.0
−
−
10
−
−
10
VIO/T
−
7.0
−
−
7.0
30
−
7.0
−
−
7.0
−
−
7.0
−
V/°C
Input Offset Current
TA = Thigh to Tlow
(Note 5)
IIO
−
−
3.0
−
30
100
−
−
5.0
−
30
75
−
−
5.0
−
50
150
−
−
5.0
−
50
200
−
−
5.0
−
50
200
nA
Average Temperature
Coefficient of Input
Offset Current
IIO/T
−
10
−
−
10
300
−
10
−
−
10
−
−
10
−
pA/°C
IIB
−
−
−90
−
−150
−300
−
−
−45
−
−100
−200
−
−
−90
−
−250
−500
−
−
−90
−
−250
−500
−
−
−90
−
−250
−500
nA
Average Temperature
Coefficient of Input
Offset Voltage
TA = Thigh to Tlow
(Notes 5 and 7)
TA = Thigh to Tlow
(Notes 5 and 7)
Input Bias Current
TA = Thigh to Tlow
(Note 5)
Input Common Mode
Voltage Range
(Note 6)
VICR
V
VCC = 30 V
TA = +25°C
0
−
28.3
0
−
28.3
0
−
28.3
0
−
24.3
0
−
24.3
TA = Thigh to Tlow
(Note 5)
0
−
28
0
−
28
0
−
28
0
−
24
0
−
24
−
−
VCC
−
−
VCC
−
−
VCC
−
−
VCC
−
−
VCC
Differential Input
Voltage Range
VIDR
Large Signal Open
Loop Voltage Gain
AVOL
V
V/mV
RL = 2.0 k,
VCC = 15 V,
for Large VO Swing
50
100
−
25
100
−
25
100
−
25
100
−
25
100
−
TA = Thigh to Tlow
(Note 5)
25
−
−
15
−
−
15
−
−
15
−
−
15
−
−
CS
−
−120
−
−
−120
−
−
−120
−
−
−120
−
−
−120
−
dB
Common Mode
Rejection,
RS ≤ 10 k
CMR
70
85
−
65
70
−
65
70
−
50
70
−
50
70
−
dB
Power Supply
Rejection
PSR
65
100
−
65
100
−
65
100
−
50
100
−
50
100
−
dB
Channel Separation
10 kHz ≤ f ≤ 20 kHz,
Input Referenced
5. LM224: Tlow = −25°C, Thigh = +85°C
LM324/LM324A: Tlow = 0°C, Thigh = +70°C
LM2902: Tlow = −40°C, Thigh = +105°C
LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C
NCV2902 is qualified for automotive use.
6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude
of VCC.
7. Guaranteed by design.
http://onsemi.com
3
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)
LM224
Characteristics
Output Voltage −
High Limit
(TA = Thigh to Tlow)
(Note 8)
Symbol
Min
Typ
LM324A
Max
Min
Typ
LM324
Max
Min
Typ
LM2902
Max
Min
Typ
LM2902V/NCV2902
Max
Min
Typ
Max
VOH
V
VCC = 5.0 V, RL =
2.0 k, TA = 25°C
3.3
3.5
−
3.3
3.5
−
3.3
3.5
−
3.3
3.5
−
3.3
3.5
−
VCC = 30 V
RL = 2.0 k
26
−
−
26
−
−
26
−
−
22
−
−
22
−
−
VCC = 30 V
RL = 10 k
27
28
−
27
28
−
27
28
−
23
24
−
23
24
−
−
5.0
20
−
5.0
20
−
5.0
20
−
5.0
100
−
5.0
100
Output Voltage −
Low Limit,
VCC = 5.0 V,
RL = 10 k,
TA = Thigh to Tlow
(Note 8)
VOL
Output Source Current
(VID = +1.0 V,
VCC = 15 V)
IO +
Unit
mV
mA
TA = 25°C
20
40
−
20
40
−
20
40
−
20
40
−
20
40
−
TA = Thigh to Tlow
(Note 8)
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
TA = Thigh to Tlow
(Note 8)
5.0
8.0
−
5.0
8.0
−
5.0
8.0
−
5.0
8.0
−
5.0
8.0
−
(VID = −1.0 V,
VO = 200 mV,
TA = 25°C)
12
50
−
12
50
−
12
50
−
−
−
−
−
−
−
A
−
40
60
−
40
60
−
40
60
−
40
60
−
40
60
mA
Output Sink Current
(VID = −1.0 V,
VCC = 15 V)
TA = 25°C
IO −
Output Short Circuit
to Ground
(Note 9)
ISC
Power Supply Current
(TA = Thigh to Tlow)
(Note 8)
ICC
mA
mA
VCC = 30 V
VO = 0 V, RL = ∞
−
−
3.0
−
1.4
3.0
−
−
3.0
−
−
3.0
−
−
3.0
VCC = 5.0 V,
VO = 0 V, RL = ∞
−
−
1.2
−
0.7
1.2
−
−
1.2
−
−
1.2
−
−
1.2
8. LM224: Tlow = −25°C, Thigh = +85°C
LM324/LM324A: Tlow = 0°C, Thigh = +70°C
LM2902: Tlow = −40°C, Thigh = +105°C
LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C
NCV2902 is qualified for automotive use.
9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude
of VCC.
http://onsemi.com
4
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
Output
Bias Circuitry
Common to Four
Amplifiers
VCC
Q15
Q16
Q22
Q14
Q13
40 k
Q19
5.0 pF
Q12
Q24
25
Q23
+
Q20
Q18
Inputs
Q11
Q9
−
Q21
Q17
Q6
Q2
Q25
Q7
Q5
Q1
Q8
Q3
Q4
2.4 k
Q10
Q26
2.0 k
VEE/GND
Figure 1. Representative Circuit Diagram
(One−Fourth of Circuit Shown)
http://onsemi.com
5
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
CIRCUIT DESCRIPTION
The LM324 series is made using four internally
compensated, two−stage operational amplifiers. The first
stage of each consists of differential input devices Q20 and
Q18 with input buffer transistors Q21 and Q17 and the
differential to single ended converter Q3 and Q4. The first
stage performs not only the first stage gain function but also
performs the level shifting and transconductance reduction
functions. By reducing the transconductance, a smaller
compensation capacitor (only 5.0 pF) can be employed, thus
saving chip area. The transconductance reduction is
accomplished by splitting the collectors of Q20 and Q18.
Another feature of this input stage is that the input common
mode range can include the negative supply or ground, in
single supply operation, without saturating either the input
devices or the differential to single−ended converter. The
second stage consists of a standard current source load
amplifier stage.
3.0 V to VCC(max)
1.0 V/DIV
VCC = 15 Vdc
RL = 2.0 k
TA = 25°C
5.0 s/DIV
Figure 2. Large Signal Voltage Follower Response
Each amplifier is biased from an internal−voltage
regulator which has a low temperature coefficient thus
giving each amplifier good temperature characteristics as
well as excellent power supply rejection.
VCC
VCC
1
1
1.5 V to VCC(max)
2
2
3
3
1.5 V to VEE(max)
4
4
VEE
Single Supply
Split Supplies
VEE/GND
Figure 3.
70
70
Phase Margin
60
50
50
40
40
30
30
Gain Margin
20
20
10
0
10
1.0
10
100
1000
LOAD CAPACITANCE (pF)
Figure 4. Gain and Phase Margin
http://onsemi.com
6
0
10000
PHASE MARGIN (°)
GAIN MARGIN (dB)
60
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
20
120
A VOL, LARGE−SIGNAL
OPEN LOOP VOLTAGE GAIN (dB)
± V , INPUT VOLTAGE (V)
I
18
16
14
12
10
Negative
8.0
Positive
6.0
4.0
2.0
0
80
60
40
20
0
−20
0
2.0
4.0
6.0
8.0
10
12
14
16
18
20
1.0
10
100
1.0 k
10 k
1.0 M
100 k
± VCC/VEE, POWER SUPPLY VOLTAGES (V)
f, FREQUENCY (Hz)
Figure 5. Input Voltage Range
Figure 6. Open Loop Frequency
14
550
RL = 2.0 k
VCC = 15 V
VEE = GND
Gain = −100
RI = 1.0 k
RF = 100 k
12
10
8.0
VO , OUTPUT VOLTAGE (mV)
VOR, OUTPUT VOLTAGE RANGE (Vpp )
VCC = 15 V
VEE = GND
TA = 25°C
100
6.0
4.0
2.0
500
Input
450
Output
400
350
300
250
VCC = 30 V
VEE = GND
TA = 25°C
CL = 50 pF
200
0
1.0
10
100
f, FREQUENCY (kHz)
0
1000
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
t, TIME (s)
Figure 7. Large−Signal Frequency Response
Figure 8. Small−Signal Voltage Follower
Pulse Response (Noninverting)
TA = 25°C
RL = R
2.1
I IB, INPUT BIAS CURRENT (nA)
I CC , POWER SUPPLY CURRENT (mA)
2.4
1.8
1.5
1.2
0.9
0.6
0.3
0
0
5.0
10
15
20
25
VCC, POWER SUPPLY VOLTAGE (V)
30
90
80
70
35
0
Figure 9. Power Supply Current versus
Power Supply Voltage
2.0
4.0 6.0 8.0
10
12
14 16
VCC, POWER SUPPLY VOLTAGE (V)
Figure 10. Input Bias Current versus
Power Supply Voltage
http://onsemi.com
7
18
20
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
50 k
R1
5.0 k
VCC
VCC
R2
10 k
1/4
MC1403
2.5 V
Vref =
C
R
−
a R1
Hysteresis
1/4
LM324
+
eo
VO
Vref
+
Vin
LM324
−
1/4
1
CR
1/4
VinH =
R
Figure 13. High Impedance Differential Amplifier
VinL
100 k
C
C
R
1/4
−
LM324
+
100 k
1/4
1/4
LM324
+
Vref
Bandpass
Output
R3
Vref
R1
−
8
Vref =
1
V
2 CC
C1 = 10C
For:fo=1.0 kHz
For:Q= 10
For:TBP= 1
For:TN= 1
Notch Output
Where:T BP=Center Frequency Gain
Where:TN=Passband Notch Gain
Figure 15. Bi−Quad Filter
http://onsemi.com
R1 = QR
R1
R2 =
TBP
C1
1/4
LM324
+
Vref
1
fo =2 RC
R3 = TN R2
−
LM324
+
Vref
Vref
Figure 14. Comparator with Hysteresis
R
−
VinH
R1
(VOH − VOL)
R1 + R2
R
R2
VOL
R1
(VOH − Vref) + Vref
R1 + R2
H=
eo = C (1 + a + b) (e2 − e1)
R2
VO
R1
(V − V ) + Vref
VinL =
R1 + R2 OL ref
LM324
+
C1
For: fo = 1.0 kHz
R = 16 k
C = 0.01 F
VOH
−
Vin
C
Figure 12. Wien Bridge Oscillator
R1
b R1
e2
R
R
R1
R2
LM324
−
R1
1
fo = 2 RC
R2
1
CR
1/4
VO
1
V
2 CC
Figure 11. Voltage Reference
+
VCC
1/4
LM324
+
VO
LM324
+
VO = 2.5 V 1 +
e1
−
Vref
−
R
C
R1
R2
R3
= 160 k
= 0.001 F
= 1.6 M
= 1.6 M
= 1.6 M
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
Vref =
Vref
1
V
2 CC
Triangle Wave
Output
+
R2
300 k
R3
1/4
LM324
−
VCC
+
1/4
75 k
LM324
−
R1
100 k
Vref
C
C
Square
Wave
Output
R1
R1 + RC
4 CRf R1
−
Vin
Vref
R2 R1
R2 + R1
Figure 16. Function Generator
VO
LM324
+
R2
if R3 =
CO
1/4
Rf
f =
C
R3
CO = 10 C
1
Vref = 2 VCC
Figure 17. Multiple Feedback Bandpass Filter
Given:fo=center frequency
A(fo)=gain at center frequency
Choose value fo, C
Then:
R3 =
Q
fo C
R1 =
R3
2 A(fo)
R2 =
R1 R3
4Q2 R1 − R3
For less than 10% error from operational amplifier,
Qo fo
BW
where fo and BW are expressed in Hz.
If source impedance varies, filter may be preceded with
voltage follower buffer to stabilize filter parameters.
http://onsemi.com
9
< 0.1
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
ORDERING INFORMATION
Device
Operating Temperature Range
Package
LM224D
SOIC−14
LM224DG
SOIC−14
(Pb−Free)
LM224DR2
SOIC−14
LM224DR2G
SOIC−14
(Pb−Free)
LM224DTB
−25°C to +85°C
TSSOP−14*
LM224DTBG
TSSOP−14*
LM224DTBR2
TSSOP−14*
LM224DTBR2G
TSSOP−14*
LM224N
PDIP−14
LM224NG
PDIP−14
(Pb−Free)
LM324D
SOIC−14
LM324DG
SOIC−14
(Pb−Free)
LM324DR2
SOIC−14
LM324DR2G
SOIC−14
(Pb−Free)
LM324DTB
TSSOP−14*
LM324DTBG
TSSOP−14*
LM324DTBR2
TSSOP−14*
LM324DTBR2G
TSSOP−14*
LM324N
PDIP−14
LM324NG
PDIP−14
(Pb−Free)
LM324AD
0°C to +70°C
Shipping †
55 Units/Rail
2500/Tape & Reel
96 Units/Tube
2500/Tape & Reel
25 Units/Rail
55 Units/Rail
2500/Tape & Reel
96 Units/Tube
2500/Tape & Reel
25 Units/Rail
SOIC−14
LM324ADG
SOIC−14
(Pb−Free)
LM324ADR2
SOIC−14
LM324ADR2G
SOIC−14
(Pb−Free)
LM324ADTB
TSSOP−14*
LM324ADTBG
TSSOP−14*
LM324ADTBR2
TSSOP−14*
LM324ADTBR2G
TSSOP−14*
LM324AN
PDIP−14
LM324ANG
PDIP−14
(Pb−Free)
55 Units/Rail
2500/Tape & Reel
96 Units/Tube
2500/Tape & Reel
25 Units/Rail
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
10
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
ORDERING INFORMATION (continued)
Device
Operating Temperature Range
Package
LM2902D
SOIC−14
LM2902DG
SOIC−14
(Pb−Free)
LM2902DR2
SOIC−14
LM2902DR2G
SOIC−14
(Pb−Free)
LM2902DTB
−40°C to +105°C
TSSOP−14*
LM2902DTBG
TSSOP−14*
LM2902DTBR2
TSSOP−14*
LM2902DTBR2G
TSSOP−14*
LM2902N
PDIP−14
LM2902NG
PDIP−14
(Pb−Free)
LM2902VD
SOIC−14
LM2902VDG
SOIC−14
(Pb−Free)
LM2902VDR2
SOIC−14
LM2902VDR2G
SOIC−14
(Pb−Free)
LM2902VDTB
TSSOP−14*
LM2902VDTBG
TSSOP−14*
LM2902VDTBR2
−40°C to +125°C
LM2902VDTBR2G
TSSOP−14*
TSSOP−14*
LM2902VN
PDIP−14
LM2902VNG
PDIP−14
(Pb−Free)
NCV2902DR2
SOIC−14
NCV2902DR2G
SOIC−14
(Pb−Free)
NCV2902DTBR2G
Shipping †
55 Units/Rail
2500/Tape & Reel
96 Units/Tube
2500/Tape & Reel
25 Units/Rail
55 Units/Rail
2500/Tape & Reel
96 Units/Tube
2500/Tape & Reel
25 Units/Rail
2500/Tape & Reel
TSSOP−14*
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
11
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
MARKING DIAGRAMS
PDIP−14
N SUFFIX
CASE 646
14
14
LM324AN
AWLYYWWG
14
LMx24N
AWLYYWWG
1
14
LM2902N
AWLYYWWG
1
LM2902VN
AWLYYWWG
1
1
SOIC−14
D SUFFIX
CASE 751A
14
14
LM324ADG
AWLYWW
14
14
LMx24DG
AWLYWW
1
LM2902DG
AWLYWW
1
LM2902VDG
AWLYWW
1
1
TSSOP−14
DTB SUFFIX
CASE 948G
1
14
14
14
14
x24
324A
2902
ALYWG
G
ALYWG
G
ALYWG
G
1
1
2902
V
ALYWG
G
1
x
= 2 or 3
A
= Assembly Location
WL, L
= Wafer Lot
YY, Y
= Year
WW, W = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
*This marking diagram also applies to NCV2902.
http://onsemi.com
12
*
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
PACKAGE DIMENSIONS
PDIP−14
CASE 646−06
ISSUE P
14
8
1
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
A
F
L
N
C
−T−
SEATING
PLANE
H
G
D 14 PL
J
K
0.13 (0.005)
M
M
http://onsemi.com
13
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
−−−
10 _
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
−−−
10 _
0.38
1.01
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
PACKAGE DIMENSIONS
SOIC−14
CASE 751A−03
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.127
(0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
−A−
14
8
−B−
P 7 PL
0.25 (0.010)
M
7
1
G
−T−
D 14 PL
0.25 (0.010)
T B
S
A
DIM
A
B
C
D
F
G
J
K
M
P
R
J
M
K
M
F
R X 45 _
C
SEATING
PLANE
B
M
S
SOLDERING FOOTPRINT*
7X
7.04
14X
1.52
1
14X
0.58
1.27
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337 0.344
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0_
7_
0.228 0.244
0.010 0.019
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
PACKAGE DIMENSIONS
TSSOP−14
CASE 948G−01
ISSUE B
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
−U−
L
PIN 1
IDENT.
N
F
7
1
0.15 (0.006) T U
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL
IN EXCESS OF THE K DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
S
S
DETAIL E
K
A
−V−
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
J J1
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
15
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.020 0.024
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
16
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
LM324/D
Similar pages