LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Single Supply Quad Operational Amplifiers The LM324 series are low−cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one−fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. http://onsemi.com PDIP−14 N SUFFIX CASE 646 14 1 Features • • • • • • • • • • • Short Circuited Protected Outputs True Differential Input Stage Single Supply Operation: 3.0 V to 32 V Low Input Bias Currents: 100 nA Maximum (LM324A) Four Amplifiers Per Package Internally Compensated Common Mode Range Extends to Negative Supply Industry Standard Pinouts ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes Pb−Free Packages are Available SOIC−14 D SUFFIX CASE 751A 14 1 TSSOP−14 DTB SUFFIX CASE 948G 14 1 PIN CONNECTIONS Out 1 1 14 2 13 Inputs 1 3 VCC 4 * ) 4 5 Inputs 2 6 Out 2 * 1 ) Inputs 4 12 11 ) 2 * 3 7 ) * Out 4 VEE, GND 10 Inputs 3 9 8 Out 3 (Top View) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 12 of this data sheet. © Semiconductor Components Industries, LLC, 2006 October, 2006 − Rev. 20 1 Publication Order Number: LM324/D LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 MAXIMUM RATINGS (TA = + 25°C, unless otherwise noted.) Rating Symbol Value VCC VCC, VEE 32 ±16 Input Differential Voltage Range (Note 1) VIDR ±32 Vdc Input Common Mode Voltage Range VICR −0.3 to 32 Vdc tSC Continuous Power Supply Voltages Single Supply Split Supplies Unit Vdc Output Short Circuit Duration Junction Temperature (Note 2) TJ 150 °C RJA 118 156 190 °C/W Storage Temperature Range Tstg −65 to +150 °C ESD Protection at any Pin Human Body Model Machine Model Vesd Thermal Resistance, Junction−to−Air (Note 3) Case 646 Case 751A Case 948G V 2000 200 Operating Ambient Temperature Range LM224 LM324, 324A LM2902 LM2902V, NCV2902 (Note 4) TA °C −25 to +85 0 to +70 −40 to +105 −40 to +125 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Split Power Supplies. 2. For supply voltages less than 32 V, the absolute maximum input voltage is equal to the supply voltage. 3. All RJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 4. NCV2902 is qualified for automitive use. http://onsemi.com 2 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM224 Characteristics Symbol Input Offset Voltage VCC = 5.0 V to 30 V VICR = 0 V to VCC −1.7 V, VO = 1.4 V, RS = 0 VIO Min Typ LM324A Max Min Typ LM324 Max Min Typ LM2902 Max Min Typ LM2902V/NCV2902 Max Min Typ Max Unit mV TA = 25°C − 2.0 5.0 − 2.0 3.0 − 2.0 7.0 − 2.0 7.0 − 2.0 7.0 TA = Thigh (Note 5) − − 7.0 − − 5.0 − − 9.0 − − 10 − − 13 TA = Tlow (Note 5) − − 7.0 − − 5.0 − − 9.0 − − 10 − − 10 VIO/T − 7.0 − − 7.0 30 − 7.0 − − 7.0 − − 7.0 − V/°C Input Offset Current TA = Thigh to Tlow (Note 5) IIO − − 3.0 − 30 100 − − 5.0 − 30 75 − − 5.0 − 50 150 − − 5.0 − 50 200 − − 5.0 − 50 200 nA Average Temperature Coefficient of Input Offset Current IIO/T − 10 − − 10 300 − 10 − − 10 − − 10 − pA/°C IIB − − −90 − −150 −300 − − −45 − −100 −200 − − −90 − −250 −500 − − −90 − −250 −500 − − −90 − −250 −500 nA Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Notes 5 and 7) TA = Thigh to Tlow (Notes 5 and 7) Input Bias Current TA = Thigh to Tlow (Note 5) Input Common Mode Voltage Range (Note 6) VICR V VCC = 30 V TA = +25°C 0 − 28.3 0 − 28.3 0 − 28.3 0 − 24.3 0 − 24.3 TA = Thigh to Tlow (Note 5) 0 − 28 0 − 28 0 − 28 0 − 24 0 − 24 − − VCC − − VCC − − VCC − − VCC − − VCC Differential Input Voltage Range VIDR Large Signal Open Loop Voltage Gain AVOL V V/mV RL = 2.0 k, VCC = 15 V, for Large VO Swing 50 100 − 25 100 − 25 100 − 25 100 − 25 100 − TA = Thigh to Tlow (Note 5) 25 − − 15 − − 15 − − 15 − − 15 − − CS − −120 − − −120 − − −120 − − −120 − − −120 − dB Common Mode Rejection, RS ≤ 10 k CMR 70 85 − 65 70 − 65 70 − 50 70 − 50 70 − dB Power Supply Rejection PSR 65 100 − 65 100 − 65 100 − 50 100 − 50 100 − dB Channel Separation 10 kHz ≤ f ≤ 20 kHz, Input Referenced 5. LM224: Tlow = −25°C, Thigh = +85°C LM324/LM324A: Tlow = 0°C, Thigh = +70°C LM2902: Tlow = −40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. 7. Guaranteed by design. http://onsemi.com 3 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM224 Characteristics Output Voltage − High Limit (TA = Thigh to Tlow) (Note 8) Symbol Min Typ LM324A Max Min Typ LM324 Max Min Typ LM2902 Max Min Typ LM2902V/NCV2902 Max Min Typ Max VOH V VCC = 5.0 V, RL = 2.0 k, TA = 25°C 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − VCC = 30 V RL = 2.0 k 26 − − 26 − − 26 − − 22 − − 22 − − VCC = 30 V RL = 10 k 27 28 − 27 28 − 27 28 − 23 24 − 23 24 − − 5.0 20 − 5.0 20 − 5.0 20 − 5.0 100 − 5.0 100 Output Voltage − Low Limit, VCC = 5.0 V, RL = 10 k, TA = Thigh to Tlow (Note 8) VOL Output Source Current (VID = +1.0 V, VCC = 15 V) IO + Unit mV mA TA = 25°C 20 40 − 20 40 − 20 40 − 20 40 − 20 40 − TA = Thigh to Tlow (Note 8) 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − TA = Thigh to Tlow (Note 8) 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − (VID = −1.0 V, VO = 200 mV, TA = 25°C) 12 50 − 12 50 − 12 50 − − − − − − − A − 40 60 − 40 60 − 40 60 − 40 60 − 40 60 mA Output Sink Current (VID = −1.0 V, VCC = 15 V) TA = 25°C IO − Output Short Circuit to Ground (Note 9) ISC Power Supply Current (TA = Thigh to Tlow) (Note 8) ICC mA mA VCC = 30 V VO = 0 V, RL = ∞ − − 3.0 − 1.4 3.0 − − 3.0 − − 3.0 − − 3.0 VCC = 5.0 V, VO = 0 V, RL = ∞ − − 1.2 − 0.7 1.2 − − 1.2 − − 1.2 − − 1.2 8. LM224: Tlow = −25°C, Thigh = +85°C LM324/LM324A: Tlow = 0°C, Thigh = +70°C LM2902: Tlow = −40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. http://onsemi.com 4 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Output Bias Circuitry Common to Four Amplifiers VCC Q15 Q16 Q22 Q14 Q13 40 k Q19 5.0 pF Q12 Q24 25 Q23 + Q20 Q18 Inputs Q11 Q9 − Q21 Q17 Q6 Q2 Q25 Q7 Q5 Q1 Q8 Q3 Q4 2.4 k Q10 Q26 2.0 k VEE/GND Figure 1. Representative Circuit Diagram (One−Fourth of Circuit Shown) http://onsemi.com 5 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 CIRCUIT DESCRIPTION The LM324 series is made using four internally compensated, two−stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single−ended converter. The second stage consists of a standard current source load amplifier stage. 3.0 V to VCC(max) 1.0 V/DIV VCC = 15 Vdc RL = 2.0 k TA = 25°C 5.0 s/DIV Figure 2. Large Signal Voltage Follower Response Each amplifier is biased from an internal−voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. VCC VCC 1 1 1.5 V to VCC(max) 2 2 3 3 1.5 V to VEE(max) 4 4 VEE Single Supply Split Supplies VEE/GND Figure 3. 70 70 Phase Margin 60 50 50 40 40 30 30 Gain Margin 20 20 10 0 10 1.0 10 100 1000 LOAD CAPACITANCE (pF) Figure 4. Gain and Phase Margin http://onsemi.com 6 0 10000 PHASE MARGIN (°) GAIN MARGIN (dB) 60 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 20 120 A VOL, LARGE−SIGNAL OPEN LOOP VOLTAGE GAIN (dB) ± V , INPUT VOLTAGE (V) I 18 16 14 12 10 Negative 8.0 Positive 6.0 4.0 2.0 0 80 60 40 20 0 −20 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 1.0 10 100 1.0 k 10 k 1.0 M 100 k ± VCC/VEE, POWER SUPPLY VOLTAGES (V) f, FREQUENCY (Hz) Figure 5. Input Voltage Range Figure 6. Open Loop Frequency 14 550 RL = 2.0 k VCC = 15 V VEE = GND Gain = −100 RI = 1.0 k RF = 100 k 12 10 8.0 VO , OUTPUT VOLTAGE (mV) VOR, OUTPUT VOLTAGE RANGE (Vpp ) VCC = 15 V VEE = GND TA = 25°C 100 6.0 4.0 2.0 500 Input 450 Output 400 350 300 250 VCC = 30 V VEE = GND TA = 25°C CL = 50 pF 200 0 1.0 10 100 f, FREQUENCY (kHz) 0 1000 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 t, TIME (s) Figure 7. Large−Signal Frequency Response Figure 8. Small−Signal Voltage Follower Pulse Response (Noninverting) TA = 25°C RL = R 2.1 I IB, INPUT BIAS CURRENT (nA) I CC , POWER SUPPLY CURRENT (mA) 2.4 1.8 1.5 1.2 0.9 0.6 0.3 0 0 5.0 10 15 20 25 VCC, POWER SUPPLY VOLTAGE (V) 30 90 80 70 35 0 Figure 9. Power Supply Current versus Power Supply Voltage 2.0 4.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (V) Figure 10. Input Bias Current versus Power Supply Voltage http://onsemi.com 7 18 20 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 50 k R1 5.0 k VCC VCC R2 10 k 1/4 MC1403 2.5 V Vref = C R − a R1 Hysteresis 1/4 LM324 + eo VO Vref + Vin LM324 − 1/4 1 CR 1/4 VinH = R Figure 13. High Impedance Differential Amplifier VinL 100 k C C R 1/4 − LM324 + 100 k 1/4 1/4 LM324 + Vref Bandpass Output R3 Vref R1 − 8 Vref = 1 V 2 CC C1 = 10C For:fo=1.0 kHz For:Q= 10 For:TBP= 1 For:TN= 1 Notch Output Where:T BP=Center Frequency Gain Where:TN=Passband Notch Gain Figure 15. Bi−Quad Filter http://onsemi.com R1 = QR R1 R2 = TBP C1 1/4 LM324 + Vref 1 fo =2 RC R3 = TN R2 − LM324 + Vref Vref Figure 14. Comparator with Hysteresis R − VinH R1 (VOH − VOL) R1 + R2 R R2 VOL R1 (VOH − Vref) + Vref R1 + R2 H= eo = C (1 + a + b) (e2 − e1) R2 VO R1 (V − V ) + Vref VinL = R1 + R2 OL ref LM324 + C1 For: fo = 1.0 kHz R = 16 k C = 0.01 F VOH − Vin C Figure 12. Wien Bridge Oscillator R1 b R1 e2 R R R1 R2 LM324 − R1 1 fo = 2 RC R2 1 CR 1/4 VO 1 V 2 CC Figure 11. Voltage Reference + VCC 1/4 LM324 + VO LM324 + VO = 2.5 V 1 + e1 − Vref − R C R1 R2 R3 = 160 k = 0.001 F = 1.6 M = 1.6 M = 1.6 M LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Vref = Vref 1 V 2 CC Triangle Wave Output + R2 300 k R3 1/4 LM324 − VCC + 1/4 75 k LM324 − R1 100 k Vref C C Square Wave Output R1 R1 + RC 4 CRf R1 − Vin Vref R2 R1 R2 + R1 Figure 16. Function Generator VO LM324 + R2 if R3 = CO 1/4 Rf f = C R3 CO = 10 C 1 Vref = 2 VCC Figure 17. Multiple Feedback Bandpass Filter Given:fo=center frequency A(fo)=gain at center frequency Choose value fo, C Then: R3 = Q fo C R1 = R3 2 A(fo) R2 = R1 R3 4Q2 R1 − R3 For less than 10% error from operational amplifier, Qo fo BW where fo and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. http://onsemi.com 9 < 0.1 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ORDERING INFORMATION Device Operating Temperature Range Package LM224D SOIC−14 LM224DG SOIC−14 (Pb−Free) LM224DR2 SOIC−14 LM224DR2G SOIC−14 (Pb−Free) LM224DTB −25°C to +85°C TSSOP−14* LM224DTBG TSSOP−14* LM224DTBR2 TSSOP−14* LM224DTBR2G TSSOP−14* LM224N PDIP−14 LM224NG PDIP−14 (Pb−Free) LM324D SOIC−14 LM324DG SOIC−14 (Pb−Free) LM324DR2 SOIC−14 LM324DR2G SOIC−14 (Pb−Free) LM324DTB TSSOP−14* LM324DTBG TSSOP−14* LM324DTBR2 TSSOP−14* LM324DTBR2G TSSOP−14* LM324N PDIP−14 LM324NG PDIP−14 (Pb−Free) LM324AD 0°C to +70°C Shipping † 55 Units/Rail 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel 25 Units/Rail 55 Units/Rail 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel 25 Units/Rail SOIC−14 LM324ADG SOIC−14 (Pb−Free) LM324ADR2 SOIC−14 LM324ADR2G SOIC−14 (Pb−Free) LM324ADTB TSSOP−14* LM324ADTBG TSSOP−14* LM324ADTBR2 TSSOP−14* LM324ADTBR2G TSSOP−14* LM324AN PDIP−14 LM324ANG PDIP−14 (Pb−Free) 55 Units/Rail 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel 25 Units/Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 10 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ORDERING INFORMATION (continued) Device Operating Temperature Range Package LM2902D SOIC−14 LM2902DG SOIC−14 (Pb−Free) LM2902DR2 SOIC−14 LM2902DR2G SOIC−14 (Pb−Free) LM2902DTB −40°C to +105°C TSSOP−14* LM2902DTBG TSSOP−14* LM2902DTBR2 TSSOP−14* LM2902DTBR2G TSSOP−14* LM2902N PDIP−14 LM2902NG PDIP−14 (Pb−Free) LM2902VD SOIC−14 LM2902VDG SOIC−14 (Pb−Free) LM2902VDR2 SOIC−14 LM2902VDR2G SOIC−14 (Pb−Free) LM2902VDTB TSSOP−14* LM2902VDTBG TSSOP−14* LM2902VDTBR2 −40°C to +125°C LM2902VDTBR2G TSSOP−14* TSSOP−14* LM2902VN PDIP−14 LM2902VNG PDIP−14 (Pb−Free) NCV2902DR2 SOIC−14 NCV2902DR2G SOIC−14 (Pb−Free) NCV2902DTBR2G Shipping † 55 Units/Rail 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel 25 Units/Rail 55 Units/Rail 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel 25 Units/Rail 2500/Tape & Reel TSSOP−14* †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 11 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 MARKING DIAGRAMS PDIP−14 N SUFFIX CASE 646 14 14 LM324AN AWLYYWWG 14 LMx24N AWLYYWWG 1 14 LM2902N AWLYYWWG 1 LM2902VN AWLYYWWG 1 1 SOIC−14 D SUFFIX CASE 751A 14 14 LM324ADG AWLYWW 14 14 LMx24DG AWLYWW 1 LM2902DG AWLYWW 1 LM2902VDG AWLYWW 1 1 TSSOP−14 DTB SUFFIX CASE 948G 1 14 14 14 14 x24 324A 2902 ALYWG G ALYWG G ALYWG G 1 1 2902 V ALYWG G 1 x = 2 or 3 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) *This marking diagram also applies to NCV2902. http://onsemi.com 12 * LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE P 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F L N C −T− SEATING PLANE H G D 14 PL J K 0.13 (0.005) M M http://onsemi.com 13 DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 −−− 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 −−− 10 _ 0.38 1.01 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 PACKAGE DIMENSIONS SOIC−14 CASE 751A−03 ISSUE H NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 14 8 −B− P 7 PL 0.25 (0.010) M 7 1 G −T− D 14 PL 0.25 (0.010) T B S A DIM A B C D F G J K M P R J M K M F R X 45 _ C SEATING PLANE B M S SOLDERING FOOTPRINT* 7X 7.04 14X 1.52 1 14X 0.58 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 14 MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 PACKAGE DIMENSIONS TSSOP−14 CASE 948G−01 ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S DETAIL E K A −V− ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 15 MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 16 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative LM324/D