Engineering Prototype Report for EP-93 – 32 W/81 W Peak Supply Using PeakSwitch™ (PKS606Y) Title 90-265 VAC Input, 30 V, 1.07 A (continuous), Specification 2 A (100 ms), 2.7 A (50 ms) Output Application Printers, DVRs, Audio, General Purpose Author Power Integrations Applications Department Document Number EPR-93 Date 22-Jun-2006 Revision 1.4 Summary and Features • • • • • EcoSmart® – meets all existing and proposed harmonized energy efficiency standards including: CECP (China), CEC, EPA, AGO, European Commission • No-load power consumption 200 mW at 265 VAC • 81.8% active-mode efficiency (exceeds requirement of 80.2%) Tight tolerance I2f parameter (-10%/+12%) reduces system cost: • Increases MOSFET and magnetics power delivery • Reduces worst-case overload power, which lowers component costs • Allows small EE25 core size Integrated PeakSwitch safety/reliability features: • Accurate (± 5%), auto-recovering, hysteretic thermal shutdown function maintains safe PCB temperatures under all conditions • Auto-restart protects against output short circuits and open feedback loops • Adaptive current limit reduces output overload power • Programmable smart AC line sensing provides latching shutdown during short circuit, overload and open loop faults and prevents power ON/OFF glitches during power down or brownout Meets EN55022 and CISPR-22 Class B conducted EMI with >14 dBµV margin Meets IEC61000-4-5 Class 3 AC line surge Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply Table Of Contents 1 2 3 4 Introduction .................................................................................................................5 Power Supply Specification ........................................................................................6 Schematic ...................................................................................................................7 Circuit Description.......................................................................................................8 4.1 Input EMI Filtering................................................................................................8 4.2 PeakSwitch Primary.............................................................................................8 4.3 Output Rectification and Filtering.........................................................................9 4.4 Output Feedback .................................................................................................9 4.5 Output Protection.................................................................................................9 5 PCB Layout...............................................................................................................10 6 Bill Of Materials.........................................................................................................11 7 Transformer Specification .........................................................................................13 7.1 Electrical Diagram..............................................................................................13 7.2 Electrical Specifications .....................................................................................13 7.3 Materials ............................................................................................................14 7.4 Transformer Build Diagram................................................................................14 7.5 Transformer Construction ..................................................................................15 8 Transformer Spreadsheet .........................................................................................16 9 Performance Data.....................................................................................................19 9.1 Efficiency ...........................................................................................................19 9.1.1 Active Mode CEC Measurement Data........................................................19 9.2 No-load Input Power ..........................................................................................21 9.3 Available Standby Output Power .......................................................................21 9.4 Regulation .........................................................................................................22 9.4.1 Load Regulation .........................................................................................22 9.4.2 Line Regulation...........................................................................................22 10 Thermal Performance............................................................................................23 11 Waveforms ............................................................................................................24 11.1 Drain Voltage and Current, Normal Operation...................................................24 11.2 Output Voltage Start-up Profile ..........................................................................24 11.3 Drain Voltage and Current Start-up Profile ........................................................25 11.4 Load Transient Response (1 A to 2 A Load Step) .............................................25 11.5 Holdup Time ......................................................................................................26 11.6 AC Line Disturbance..........................................................................................27 12 Output Ripple Measurements................................................................................30 12.1.1 Ripple Measurement Technique.................................................................30 12.1.2 Measurement Results.................................................................................31 13 Output Over-current Shutdown/Restart .................................................................32 14 Line Surge.............................................................................................................33 15 Conducted EMI .....................................................................................................34 16 Appendix ...............................................................................................................36 16.1 Heat Sink Drawing .............................................................................................36 17 Revision History ....................................................................................................37 Page 3 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 1 Introduction This document is an engineering report describing a 90-265 VAC input, 30 V, 1.07 A continuous, 2.7 A peak output power supply utilizing a PKS606Y. This power supply is intended as a general-purpose evaluation platform for PeakSwitch, and is ideal for applications where a significant pulsed output load is required, such as printers, audio amplifiers, DVRs and DC motor drives. The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data. Figure 1 – EP-93 Populated Circuit Board Photograph. Page 5 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 2 Power Supply Specification Description Symbol Input Voltage VIN Frequency fLINE No-Load Input Power (230 VAC) Output Output Voltage VOUT1 Output Ripple Voltage VRIPPLE1 Output Current IOUT1 Total Output Power Continuous Output Power POUT Peak Output Power POUT_PEAK Efficiency Full Load η Required average efficiency at ηCEC 25, 50, 75 and 100 % of POUT Min Typ Max Units Comment 90 47 265 64 0.2 VAC Hz W 2 Wire – no P.E. 50/60 27 30 33 400 2.71 V mV A 81 W W 0 1.07 32 82 % % 80.2 ± 10% 20 MHz bandwidth o Measured at POUT, 25 C Per California Energy Commission (CEC) / ENERGY STAR requirements Environmental Conducted EMI Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II Safety Surge 1 (D) 2 (C) kV Surge 1 (D) 2 (C) kV Ambient Temperature TAMB 0 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 50 o C 1.2/50 µs surge, IEC 1000-4-5, Series Impedance: Differential Mode (D): 2 Ω Common Mode (C): 12 Ω 100 kHz ring wave, 500 A short circuit current, differential (D) and common mode (C) Free convection, sea level Page 6 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 3 Schematic Figure 2 – EP-93 Schematic. Page 7 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 4 Circuit Description 4.1 Input EMI Filtering Components C1, C2, C3, C10, C17, C19, R15, L1, and L2 provide common mode and differential mode EMI filtering. The use of two Y capacitors (C10 and C19) together with an output common choke (L2) and the frequency jitter feature of PeakSwitch allows the supply to meet EN55022B conducted EMI limits even with the output connected directly to safety earth ground. On the PCB layout C19 is placed so that the primary side is connected as close to the bulk capacitor as possible to route surge currents away from U1. Resistors R1 and R2 discharge C3 when AC power is removed. 4.2 PeakSwitch Primary Components D5, C7, and R5, R6 provide AC line and under voltage sensing for PeakSwitch U1. At startup, switching is inhibited until the input voltage is above the under-voltage threshold, determined when a current >25 µA flows into the EN/UV pin. Once the threshold is exceeded, the under-voltage status is not checked until auto-restart is triggered (no feedback for 30 ms). This allows the supply to continue to operate even below the under-voltage threshold as long as the output remains in regulation, maximizing hold-up time. The separate AC sense network of D5 and C7 allows the PeakSwitch to determine the cause of loss of regulation. If the input voltage is above the under-voltage threshold, then a fault condition is assumed. In this case PeakSwitch will latch off. If the input voltage is below the under-voltage threshold then loss of regulation was due to a low line condition and PeakSwitch will stop switching (but not latch off) until the under-voltage threshold is exceeded again. Once latched off, the supply can be reset by removing the AC input such that C7 discharges and the current into the EN/UV pin falls below 25 µA. The under-voltage function can be disabled by removing R6. Resistor R16 provides a small amount of bias to the U1 EN/UV pin to keep the under-voltage lockout function activated during brownout conditions when C7 may discharge. Diode D7, C6, C8, and R7 provide bias power and decoupling to U1. Diode D6, C5, R3, R4, and VR1 clamp the U1 drain voltage to safe levels. Use of a moderately slow diode (tRR ≤ 500 ns) for D6 increases power supply efficiency. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 4.3 Output Rectification and Filtering The secondary of the transformer is rectified and filtered by D8 and C12. As the peak load condition is of short duration, the output capacitor ripple current rating is appropriate for the continuous output current. As capacitor lifetime is a function of temperature rise, this can be used to determine if the capacitor rating (ESR and ripple current specification) is acceptable. Resistor R8 and capacitor C11 are fitted to reduce high frequency EMI. 4.4 Output Feedback Diodes D9 and VR2, along with the forward drop of the LED of optocoupler U2, set the output voltage of the power supply. Resistor R13 provides a bias current through D9 and VR2 to improve regulation by operating VR2 closer to its knee and test current. Resistor R12 sets the overall gain of the feedback loop while capacitor C15 boosts high frequency loop gain to reduce pulse grouping. A high gain (300-600%) optocoupler U2 is used to reduce control loop delays. 4.5 Output Protection Components Q1, Q2, R9 to R11, R14, C13, C16, D10, and VR3 are used for latching overvoltage and overcurrent protection in conjunction with the smart AC sensing feature, to shut down the supply in a fault condition. If either an output overvoltage (e.g. optocoupler failure), or overcurrent (e.g. motor stall) fault occurs, SCR Q2 is fired, shorting the output winding. The SCR is connected directly to the secondary winding to allow a lower current rating and lower cost device to be used, as the SCR does not have to discharge the output capacitor. The value of VR3 is selected to give the desired overvoltage trigger threshold. For overcurrent protection, the value of R9 is selected to turn on Q1 at the desired overcurrent threshold while R10 and C13 provide a time constant, to prevent short duration (~200 ms) transient loads from triggering shutdown. The shutdown condition can be reset by briefly removing AC power for ~3 seconds (maximum), the time required for C7 to discharge and the current into the EN/UV pin to fall below 25 µA. Page 9 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 5 PCB Layout Figure 3 – EP-93 Printed Circuit Layout. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 6 Bill of Materials Item 1 2 3 Qty 2 1 1 Part Ref C1 C2 C3 C4 4 5 1 1 C5 C6 6 7 8 9 10 1 2 2 1 1 C7 C8 C14 C10 C19 C11 C12 11 1 C13 12 2 C15 C16 13 14 1 5 15 1 C17 D1 D2 D3 D4 D5 D6 16 17 18 2 1 1 D7 D9 D8 D10 19 20 1 1 F1 HS1 21 1 J1 22 1 J2 23 24 1 1 J3 JP1 25 1 JP2 26 27 28 29 1 1 1 1 L1 L2 U1 (REF) Q1 30 31 32 33 1 2 1 1 Q2 R1 R2 R3 R4 Page 11 of 40 Description 100 pF, Ceramic, Y1 680 nF, 275 VAC, Film, X2 150 µF, 400 V, Electrolytic, (18 x 35.5) 2.2 nF, 1 kV, Disc Ceramic 47 µF, 35 V, Electrolytic, Gen Purpose, (5 x 11) 100 nF, 400 V, Film 220 nF, 50 V, Ceramic, Z5U, 0.2" L.S. 1 nF, Ceramic, Y1 330 pF, 1 kV, Disc Ceramic 330 µF, 50 V, 22 mΩ, Electrolytic, (10 x 25) 47 uF, 16 V, Electrolytic, Gen Purpose, (5 x 11.5) 100 nF, 50 V, Ceramic, Z5U Mfg Part Number ECK-DNA101MB PX684K3ID6 YSD2GM151L32B0 BAI0264 5GAD22 ECA-1VHG470 Mfg Panasonic Carli Luminous Town Vishay Panasonic ECQ-E4104KF C322C224M5U5CA ECK-DNA102MB 5GAT33 EEU-FM1H331L Panasonic Kemet Panasonic Vishay Panasonic ECA-1CHG470 Panasonic C317C104M5U5CA Kemet 4700 pF, 1 kV, Thru-hole, Disc Ceramic 1000 V, 1 A, Rectifier, DO-41 5GAD47 1N4007 Vishay/Sprague Vishay 800 V, 1 A, Fast Recovery Diode, 500 ns, DO-41 75 V, 300 mA, Fast Switching, DO-35 150 V, 3 A, Schottky, DO-201AD 200 V, 1 A, Ultrafast Recovery, 50 ns, DO-41 3.15 A, 250 V, Slow, TR5 HEATSINK/Alum, TO-220 1-hole, 2 Mtg Pins AC Input Receptacle and Accessory Plug, PCBM 2 Position (1 x 2) header, 0.156-pitch, Vertical PCB Terminal Hole, 18 AWG Wire Jumper, Non-insulated, 22 AWG, 0.4 in Wire Jumper, Non-insulated, 22 AWG, 0.3 in 5.3 mH, 1 A, Common Mode Choke 5.3 µH, 4 A, Common Mode Choke Bead Nut, Hex, Kep 4-40, Zinc Plate PNP, Small Signal BJT, 40 V, 0.2 A, TO92 SCR, 400 V, 1.25 A, TO-92 1.3 MΩ, 5%, 1/4 W, Carbon Film 10 kΩ, 5%, 1/2 W, Carbon Film 22 Ω, 5%, 1/2 W, Carbon Film FR106 Diodes Inc. 1N4148 STPS3150RL UF4003 Vishay ST Vishay 3,821,315,0410 Custom 161-R301SN13 Wickman Clark Precision Sheetmetal Kobiconn 26-48-1021 Molex N/A 298 N/A Alpha 298 Alpha ELF15N010A Custom Panasonic 2N3906 Vishay FS0202DA CFR-25JB-1M3 CFR-50JB-10K CFR-50JB-22R Fagor Yageo Yageo Yageo Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 34 35 36 37 38 39 40 41 42 43 44 45 46 1 R5 1 R6 1 R7 1 R8 1 R9 1 R10 1 R11 2 R12 R13 1 R14 1 R15 1 R16 1 RT1 1 U1 (REF) 47 1 T1 2.2 MΩ, 5%, 1/4 W, Carbon Film 2.4 MΩ, 5%, 1/4 W, Carbon Film 4.7 kΩ, 5%, 1/4 W, Carbon Film 68 Ω, 5%, 1/2 W, Carbon Film 0.33 Ω, 5%, 2 W, Metal Oxide 1.5 kΩ, 5%, 1/8 W, Carbon Film 3 kΩ, 5%, 1/4 W, Carbon Film 1 kΩ, 5%, 1/4 W, Carbon Film 100 Ω, 5%, 1/8 W, Carbon Film 2.2 Ω, 5%, 1/8 W, Carbon Film 2.7 MΩ, 5%, 1/8 W, Carbon Film NTC Thermistor, 10 Ω, 1.7 A SCR, Phillips, 4-40 X 5/16 Pan-head Machine Screw, Steel, Zinc Plate Transformer, EE25, 10 Pins, Vertical 48 1 U1 PeakSwitch, PKS606Y, TO-220-7C 49 1 U2 Optocoupler, 35 V, CTR 300-600%, 4-DIP PC817X4 50 51 52 53 1 VR1 1 VR2 1 VR3 1 U1 (REF) 100 V, 5%, 1 W, DO-41 28 V, 5%, 500 mW, DO-35 36 V, 5%, 500 mW, DO-35 Washer Flat #4, Zinc Plated 54 55 56 57 58 59 1 1 J1 (REF) 1 J1 (REF) 1 J1 (REF) 1 U1 (REF) 1 C4, RT1, L2 (REF) PCB, EP-93, REVD Wire, UL1015, 18 AWG, GRN/YEL Heat Shrink, 1/4-inch, BLK Snap-in Terminal Silicone Heat Sink Compound Silicone Adhesive, Non-corrosive 22-Jun-2006 CFR-25JB-2M2 CFR-25JB-2M4 CFR-25JB-4K7 CFR-50JB-68R RS2 0.33 5% A CFR-12JB-1K5 CFR-25JB-3K0 CFR-25JB-1K0 CFR-12JB-91R CFR-12JB-2R2 CFR-12JB-2M7 CL-120 Yageo Yageo Yageo Yageo Stackpole/Sei Yageo Yageo Yageo Yageo Yageo Yageo Thermometrics SIL6039 LSPA10545 SNX1882 PKS606Y Hi Cal LiShin Santronics Power Integrations Sharp 1N4764A 1N5255B 1N5258B #4FWZ Microsemi Microsemi Microsemi Building Fasteners 8918-189 221014-6BK 02-07-2102 Belden Alpha Molex 19-155 GC Electronics Note: (REF) indicates mechanical items associated with the referenced component(s) but that are not shown on the schematic. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 7 Transformer Specification 7.1 Electrical Diagram NC WDG #4 7T 2 X 29 AWG 1 WDG #5 19T 2 X 29 AWG 3 9,10 WDG #3 10T 4 X 26 AWG Triple insulated 7,8 WDG #1 20T 2 X 29 AWG 2 5 WDG #2 5T 2 X 29 AWG 4 Figure 4 – Transformer Electrical Diagram. 7.2 Electrical Specifications Electrical Strength Resonant Frequency 1 Second, from Pins 1-5 to Pins 6-10 Between Pins 1-5 and Pins 6-10 Pins 1-2, All other Windings Open, Measured at 100 kHz, 0.4 VRMS Pins 1-2, All other Windings Open Primary Leakage Inductance Pins 1-2, with Pins 6-10 Shorted, Measured at 100 kHz, 0.4V RMS Creepage Primary Inductance Page 13 of 40 3000 VAC, 60 Hz 6 mm (Min.) 132 µH, ±10% 2 MHz (Min.) 5.5 µH (Max.) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 7.3 Materials Item [1] Description Core: (EE25) E25/10/6 Ferroxcube 3C90 Material or Equivalent Gapped for AL of 88 nH/T2 Bobbin: 10-pin EE25, Vertical Mount, Yih Hwa YW-360 or Equivalent Magnet Wire: #29 AWG Double-coated Triple Insulated Wire: #26 AWG Tape, 3M #1298 or Equivalent 10.8 mm Wide Varnish [2] [3] [4] [5] [6] 7.4 22-Jun-2006 Transformer Build Diagram Pins Side Tape 1 3 ½ Primary 1 Shield 7,8 9,10 Secondary 4 5 Bias 3 2 ½ Primary Figure 5 – Transformer Build Diagram. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 40 22-Jun-2006 7.5 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply Transformer Construction 1/2 Primary Basic Insulation Bifilar Bias Winding Basic Insulation 30 V Quad filar Secondary Winding Basic Insulation Shield Basic Insulation 1/2 Primary Finish Wrap Final Assembly Page 15 of 40 Start at Pin 2. Wind 20 bifilar turns of item [3] in approximately 1.25 layer, finish on Pin 3. Use one layer of item [5] for basic insulation. Starting at Pin 5, wind 5 bifilar turns of item [3]. Spread turns evenly across bobbin. Finish at Pin 4. Use two layers of item [5] for basic insulation. Start at Pins 9 and 10. Wind 10 quad filar turns of item [4] (about 2 layers). Spread turns evenly across bobbin. Finish on Pins 7 and 8. Use two layers of item [5] for basic insulation. Starting at Pin 1, wind 7 bifilar turns of item [3]. Spread turns evenly across bobbin. Leave 1/2-inch of flying lead at finish. Use two layers of item [5] for basic insulation. Trap flying lead from shield winding between tape layers. Start at Pin 3. Wind 19 bifilar turns of item [3] in approximately 1 layer, finish on Pin 1. Use three layers of item [5] for finish wrap. Assemble and secure core halves. Dip Varnish (item [6]). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 8 Transformer Spreadsheet ACDC_PeakSwitch_0 INPUT INFO 31006; Rev.1.1; ©Copyright Power Integrations 2006 ENTER APPLICATION VARIABLES VACMIN 90 VACMAX 265 fL 50 Nominal Output 30.00 Voltage (VO) Maximum Output 2.71 Current (IO) Minimum Output 27.00 Voltage at Peak Load Continuous Power 32.00 Peak Power n 0.75 Z tC Estimate CIN 3.00 150.00 ENTER PeakSwitch VARIABLES PeakSwitch PKS606Y Chosen Device ILIMITMIN ILIMITMAX fSmin I^2fmin VOR VDS VD VDB VCLO KP (STEADY STATE) KP (TRANSIENT) 120.00 8.00 1.00 170 OUTPUT UNIT Volts Volts Hertz Volts Minimum AC Input Voltage Maximum AC Input Voltage AC Mains Frequency Nominal Output Voltage (at continuous power) Amps Power Supply Output Current (corresponding to peak power) 27.00 Volts Minimum Output Voltage at Peak Power (Assuming output droop during peak load) 32.00 Watts Continuous Output Power 73.17 Watts Peak Output Power Efficiency Estimate at output terminals and at peak load. Enter 0.7 if no better data available 0.60 Loss Allocation Factor (Z = Secondary side losses / Total losses) mSeconds Bridge Rectifier Conduction Time Estimate 150 uFarads Input Capacitance PKS606Y PKS606Y 2.600 3.000 250000 1955 120 8 1 0.7 170 0.50 0.30 PeakSwitch device Amps Amps Hertz A^2kHz Volts Volts Volts Volts Volts ENTER UVLO VARIABLES V_UV_TARGET 89 Volts V_UV_ACTUAL 92 Volts RUV_IDEAL RUV_ACTUAL 3.47 Mohms 3.60 Mohms BIAS WINDING VARIABLES VB NB PIVB ACDC_PeakSwitch_031006_Rev1-1.xls; PeakSwitch Continuous/Discontinuous Flyback Transformer Design Spreadsheet 15.00 Volts 5 63 Volts Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Nominal Clamp Voltage Ripple to Peak Current Ratio (KP < 6) Ripple to Peak Current Ratio under worst case at peak load (0.25 < KP < 6) Target DC under-voltage threshold, above which the power supply will start Typical DC start-up voltage based on standard value of RUV_ACTUAL Calculated value for UV Lockout resistor Closest standard value of resistor to RUV_IDEAL Bias winding Voltage Number of Bias Winding Turns Bias Rectifier Maximum Peak Inverse Voltage Page 16 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EE25 EE25 Core Bobbin AE LE AL BW M L NS EE25 EE25_BOBBIN 0.404 7.34 1420 10.20 0.00 10 DC INPUT VOLTAGE PARAMETERS VMIN VMAX P/N: P/N: cm^2 cm nH/T^2 mm mm 3 10 User Selected Core Size(Verify acceptable thermal rise under continuous load conditions) PC40EE25-Z EE25_BOBBIN Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Number of Secondary Turns 81 Volts 375 Volts Minimum DC Input Voltage Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS DMAX ON-Time Extension 0.62 IAVG IP IR IRMS 1.34 2.60 1.31 1.80 !!! Info. ON-Time Extension feature invoked. Verify this design for acceptable electrical and thermal performance on the bench Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS LP LP_TOLERANCE NP ALG Target BM BM BAC ur LG BWE OD INS DIA AWG CM CMA Page 17 of 40 10.00 Amps Amps Amps Amps 132 uHenries Typical Primary Inductance. +/- 10% to ensure a minimum primary inductance of 119 uH 10 % Primary inductance tolerance 39 Primary Winding Number of Turns 88 nH/T^2 Gapped Core Effective Inductance 3000 Gauss Target Peak Flux Density at Maximum Current Limit 2523 Gauss Calculated Maximum Operating Flux Density, BM < 3000 is recommended 635 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) 2053 Relative Permeability of Ungapped Core 0.54 mm Gap Length (Lg > 0.1 mm) 30.6 mm Effective Bobbin Width 0.79 mm Maximum Primary Wire Diameter including insulation 0.08 mm Estimated Total Insulation Thickness (= 2 * film thickness) 0.71 mm Bare conductor diameter 22 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) 645 Cmils Bare conductor effective area in circular mils 358 Cmils/ Primary Winding Current Capacity Amp (100 < CMA < 500) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP ISRMS IRIPPLE CMS AWGS 10.06 5.44 4.72 1089 Amps Amps Amps Cmils 19 AWG VOLTAGE STRESS PARAMETERS VDRAIN 624 Volts PIVS 127 Volts Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 22-Jun-2006 Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance) Output Rectifier Maximum Peak Inverse Voltage Page 18 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 9 Performance Data All measurements performed at room temperature, 60 Hz input frequency. 9.1 Efficiency 84% 84% 83% Efficiency (%) 83% 82% 82% 81% 81% 100% Load 50% Load 80% 75% Load 25% Load 80% 79% 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz. 9.1.1 Active Mode CEC Measurement Data All single output adapters, including those provided with products for sale in California after July 1st, 2006 must meet the California Energy Commission (CEC) requirement for minimum active mode efficiency and no-load input power. Minimum active mode efficiency is defined as the average efficiency of 25, 50, 75 and 100% of rated output power, with the limit based on the nameplate output power: Nameplate Output (PO) Minimum Efficiency in Active Mode of Operation <1W ≥ 1 W to ≤ 49 W > 49 W 0.49 × PO 0.09 × ln (PO) + 0.49 [ln = natural log] 0.84 For adapters that are single input voltage only, the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC). For universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC). Page 19 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 To meet the standard, the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the CEC/Energy Star standard. Percent of Full Load 25 50 75 100 Average CEC specified minimum average efficiency (%) Efficiency (%) 115 VAC 230 VAC 81.0% 81.6% 82.4% 82.1% 80.5% 81.5% 82.8% 83.4% 81.8% 82% 80.2% More states within the USA and other countries are adopting this standard. For the latest up to date information please visit the PI Green Room: http://www.powerint.com/greenroom/regulations.htm Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 20 of 40 22-Jun-2006 9.2 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply No-load Input Power 0.22 0.20 0.18 Input Power (W) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz. 9.3 Available Standby Output Power The chart below shows the available output power vs. line voltage for input power levels of 1 W and 3 W. 2.50 Available Output Power (W) 2.25 2.00 1.75 Pin = 1W Pin = 3W 1.50 1.25 1.00 0.75 0.50 0.25 0.00 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage Figure 8 –- Available Output Power vs. Input Voltage for PIN of 1 W and 3 W. Page 21 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 9.4 22-Jun-2006 Regulation 9.4.1 Load Regulation 100.5% 115 VAC 230 VAC 100.0% Regulation (%) 99.5% 99.0% 98.5% 98.0% 97.5% 97.0% 96.5% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Output Load (A) Figure 9 – Output Regulation vs. Load, Room Temperature. 9.4.2 Line Regulation 103% 102% 101% Regulation (%) 100% 99% 98% 97% 96% 95% 94% 93% 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage Figure 10 – Line Regulation, Room Temperature, Full Load. (32 W). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 10 Thermal Performance Temperature of key components, open frame room temperature and 85 VAC input. Item Temperature (°C) 85 VAC Ambient D8 (Output Rectifier) C12 (Output Capacitor) U1 (PeakSwitch) T1 (Transformer) L1 (Common Mode Choke) C4 (Bulk Capacitor) Page 23 of 40 25.2 65.8 47.0 70.0 58.0 47.0 34.7 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 11 Waveforms 11.1 Drain Voltage and Current, Normal Operation Figure 11 – 90 VAC, Full Load. Upper: VDRAIN, 100 V / div. Lower: IDRAIN, 0.5 A, 5 µs / div. Figure 12 – 265 VAC, Full Load. Upper: VDRAIN, 200 V / div. Lower: IDRAIN, 0.5 A, 5 µs / div. 11.2 Output Voltage Start-up Profile Figure 13 – Start-Up Profile, 90 VAC. 5 V, 5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 14 – Start-Up Profile, 265 VAC. 5 V, 5 ms / div. Page 24 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 11.3 Drain Voltage and Current Start-up Profile Figure 15 – 90 VAC Input, 32 W Load. Upper: VDRAIN, 100 V, 2 ms / div. Lower: IDRAIN, 2 A / div. Figure 16 – 265 VAC Input, 32 W Load. Upper: VDRAIN, 200 V, 2 ms / div. Lower: IDRAIN, 2 A / div. 11.4 Load Transient Response (1 A to 2 A Load Step) Figure 17 – Transient Response, 90 VAC, 1 A to 2 A to 1 A Load Step. Upper: Output Voltage, 1 V/div. Lower: Load Current, 1 A, 50 ms/div. Page 25 of 40 Figure 18 – Transient Response, 265 VAC, 1 A to 2 A to 1 A Load Step. Upper: Output Voltage, 1 V/div. Lower: Load Current, 1 A, 50 ms/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 11.5 Holdup Time All measurements taken at 32 W output load. Figure 19 – Holdup Time, 90 VAC. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 1 A/div. Bottom Trace: AC Input Current, 5 A, 10 ms/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 11.6 AC Line Disturbance All measurements taken at 32 W output load. Figure 20 – Half-Cycle Dropout, 90 VAC, 60 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 100 V, 20 ms/div. Figure 21 – Half-Cycle Dropout, 120 VAC, 60 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 100 V, 20 ms/div. Figure 22 – Half-Cycle Dropout, 216 VAC, 50 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div. Figure 23 – Half-Cycle Dropout, 240 VAC, 50 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div. Page 27 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 Figure 24 – Full Cycle Dropout, 120 VAC, 60Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div. Figure 25 – Full Cycle Dropout, 240 VAC, 50 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div. Figure 26 – Line Sag from 120 VAC to 84 VAC (50 cycles), 60 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 100 V, 200 ms/div. Figure 27 – Line Sag from 120 VAC to 48 VAC (16 cycles), 60 Hz. Top Trace: Output Voltage, 10 V/div. Bottom Trace: AC Input Voltage, 100 V, 200 ms/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply Figure 28 – Line Swell from 240 VAC to 300 VAC (500 msec), 50 Hz. Top Trace: Output Voltage, 10 V/div. Bottom Trace: AC Input Voltage, 500 V, 100 ms/div. Page 29 of 40 Figure 29 – Peak Drain Voltage During 300 VAC Line Swell, 100 V, 2 µs/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 12 Output Ripple Measurements 12.1.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be used to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 30 and Figure 31. The Probe Master 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 30 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed). Figure 31 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with Wires for Probe Ground for Ripple Measurement, and Two Parallel Decoupling Capacitors Added). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 12.1.2 Measurement Results Figure 32 – Output Ripple, 90 VAC, 60 Hz, Full Load. 200 mV, 5 ms / div. Page 31 of 40 Figure 33 – Output Ripple, 265 VAC, 50 Hz, Full Load. 200 mV, 2 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 13 Output Over-current Shutdown/Restart Figure 34 – Supply Shutdown After Output Load Step from 1.07 A to 2.8 A, 85 VAC. Top Trace: Output Voltage, 10 V/div. Bottom Trace: Output Current, 1 A, 20 ms/div. Figure 35 – Supply Shutdown After Output Load Step from 1.07 A to 2.8 A, 265 VAC. Top Trace: Output Voltage, 10 V/div. Bottom Trace: Output Current, 1 A, 20 ms/div. Figure 36 – Output Recovery Following OverCurrent Shutdown and AC Input Recycle, 115 VAC. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 1 A/div. Bottom Trace: AC Input Voltage, 100 V, 500 ms/div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 14 Line Surge Differential input line 1.2/50 µs surge testing was completed on a single test unit to IEC61000-4-5, with 10 strikes per injection phase at 60 second intervals. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at 32 W and operation was verified following each surge event. Surge Level (V) +1kV -1kV +1kV -1kV +1kV -1kV +2kV Input Voltage (VAC) 230 230 230 230 230 230 230 +2kV 230 +2kV 230 +2kV 230 +2kV 230 +2kV 230 Injection Location Injection Phase (°) Test Result (Pass/Fail) L to N L to N L to N L to N L to N L to N L, N to GND L, N to GND L, N to GND L, N to GND L, N to GND L, N to GND 0 0 90 90 270 270 0 Pass Pass Pass Pass Pass Pass Pass 0 Pass 90 Pass 90 Pass 270 Pass 270 Pass Unit passes under all test conditions. Page 33 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 15 Conducted EMI For the measurements shown below, the power supply was resistively loaded to 32 W and attached to the LISN via a 2-meter IEC line cord arranged in a serpentine pattern. The power supply secondary return was hard-wired to the LISN ground using a 1-meter cable. Figure 37 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply Figure 38 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Page 35 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 16 Appendix 16.1 Heat Sink Drawing Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 36 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 17 Revision History Date 17-Mar-06 24-Mar-06 Author PI SJ PI SJ Revision 1.0 1.1 30-Mar-06 04-May-06 PI SJ PI SJ 1.2 1.3 22-Jun-06 PI SJ 1.4 Page 37 of 40 Description & changes First Release Fix board picture and add transformer suppliers Format for printing Updated PeakSwitch symbol in Figure 2 Revised ground connection on the circuit diagram in Figure 2 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 Notes Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 38 of 40 22-Jun-2006 EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply Notes Page 39 of 40 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply 22-Jun-2006 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2006 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Keihin Tatemono 1st Bldg 2-12-20 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa ken, Japan 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Room 2206-2207, Block A, Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via Vittorio Veneto 12 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-414-9760 Page 40 of 40