IRF JANSH2N7394U Radiation hardened power mosfet surface mount (smd-1) Datasheet

PD-90884D
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (SMD-1)
IRHN7054
JANSR2N7394U
60V, N-CHANNEL
REF: MIL-PRF-19500/603
®
™
RAD-Hard HEXFET TECHNOLOGY
Product Summary
Part Number
IRHN7054
IRHN3054
IRHN4054
IRHN8054
Radiation Level
100K Rads (Si)
300K Rads (Si)
500K Rads (Si)
1000K Rads (Si)
RDS(on) I D
QPL Part Number
0.027Ω 35A JANSR2N7394U
0.027Ω 35A JANSF2N7394U
0.027Ω 35A JANSG2N7394U
0.040Ω 35A JANSH2N7394U
SMD-1
International Rectifier’s RAD-Hard TM HEXFET ®
technology provides high performance power
MOSFETs for space applications. This technology
has over a decade of proven performance and
reliability in satellite applications. These devices have
been characterized for both Total Dose and Single
Event Effects (SEE). The combination of low Rdson
and low gate charge reduces the power losses in
switching applications such as DC to DC converters
and motor control. These devices retain all of the well
established advantages of MOSFETs such as voltage
control, fast switching, ease of paralleling and
temperature stability of electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Light Weight
Surface Mount
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C Continuous Drain Current
ID @ VGS = 12V, TC = 100°C Continuous Drain Current
IDM
Pulsed Drain Current À
PD @ T C = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Package Mounting Surface Temperature
Weight
Units
35
30
283
150
1.2
±20
500
35
15
3.5
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
300 (5sec)
2.6 (Typical)
C
g
For footnotes refer to the last page
www.irf.com
1
05/15/06
IRHN7054, JANSR2N7394U
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Min
Drain-to-Source Breakdown Voltage
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
60
—
—
V
—
0.053
—
V/°C
—
—
2.0
12
—
—
—
—
—
—
—
—
0.027
0.030
4.0
—
25
250
Ω
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.0
100
-100
200
60
75
27
100
75
75
—
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
4100
2000
560
—
—
—
V
S( )
Ω
Parameter
BVDSS
µA
nA
nC
ns
nH
pF
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
VGS = 12V, ID = 30A Ã
VGS = 12V, ID = 35A
VDS = VGS, ID = 1.0mA
VDS > 15V, IDS = 30A Ã
VDS= 48V ,VGS=0V
VDS = 48V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID = 35A
VDS = 30V
VDD =30V, ID = 35A
VGS =12V, RG = 2.35Ω
Measured from the center of
drain pad to center of source pad
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
trr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
35
283
1.4
280
2.2
Test Conditions
A
V
ns
µC
Tj = 25°C, IS = 35A, VGS = 0V Ã
Tj = 25°C, IF = 35A, di/dt ≤ 100A/µs
VDD ≤ 50V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJ-PCB
Junction-to-Case
Junction-to-PC board
Min Typ Max Units
—
—
—
6.6
Test Conditions
0.83
— °C/W Soldered to a 1 inch square clad PC board
Note: Corresponding Spice and Saber models are available on International Rectifier Website.
For footnotes refer to the last page
2
www.irf.com
Radiation
Characteristics
Pre-Irradiation
IRHN7054, JANSR2N7394U
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Up to 500K Rads(Si)1
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source Ã
On-State Resistance (TO-3)
Static Drain-to-Source Ã
On-State Resistance (SMD-1)
Diode Forward Voltage Ã
1000K Rads (Si)2
Test Conditions
Units
Min
Max
Min
Max
60
2.0
—
—
—
—
—
4.0
100
-100
25
0.027
60
1.25
—
—
—
—
—
4.5
100
-100
50
0.04
µA
Ω
—
0.027
—
0.04
Ω
VGS = 12V, I D =30A
—
1.4
1.4
V
VGS = 0V, IS = 35A
—
VGS = 0V, ID = 1.0mA
VGS = V DS, ID = 1.0mA
V GS = 20V
VGS = -20 V
VDS=48V, V GS =0V
VGS = 12V, I D =30A
V
nA
1. Part numbers IRHN7054 (JANSR2N7394U) ,IRHN3054 (JANSF2N7394U) and IRHN4054 (JANSG2N7394U)
2. Part number IRHN8054 ( JANSH2N7394U)
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
Br
I
LET
(MeV/(mg/cm2))
36.8
59.9
Range
VDS (V)
(µm)
@VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V
39
60
60
45
40
32.8
40
35
30
25
Energy
(MeV)
305
345
@VGS=-20V
30
20
70
60
VDS
50
40
BR
I
30
20
10
0
0
-5
-10
-15
-20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHN7054, JANSR2N7394U
1000
Pre-Irradiation
1000
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
100
100
5.0V
20µs PULSE WIDTH
TJ = 25 °C
5.0V
10
1
10
10
100
1
VDS , Drain-to-Source Voltage (V)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
2.5
TJ = 25 ° C
100
TJ = 150 ° C
V DS = 25V
20µs PULSE WIDTH
6
7
8
9
10
11
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
100
Fig 2. Typical Output Characteristics
1000
5
10
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
20µs PULSE WIDTH
TJ = 150 °C
12
ID = 50A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
20
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
VGS , Gate-to-Source Voltage (V)
C, Capacitance (pF)
8000
IRHN7054, JANSR2N7394U
6000
Ciss
4000
Coss
2000
Crss
0
1
10
ID = 35A
VDS = 48V
VDS = 30V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
VDS , Drain-to-Source Voltage (V)
80
120
160
200
QG , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 25 ° C
100
ID , Drain Current (A)
ISD , Reverse Drain Current (A)
40
TJ = 150 ° C
10
1
0.4
V GS = 0 V
1.0
1.6
2.2
2.8
3.4
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
100
100us
1ms
10
10ms
TC = 25 ° C
TJ = 150 ° C
Single Pulse
1
4.0
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHN7054, JANSR2N7394U
Pre-Irradiation
50
LIMITED BY PACKAGE
V GS
40
ID , Drain Current (A)
RD
VDS
D.U.T.
RG
30
+
- VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
10
VDS
90%
0
25
50
75
100
125
150
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
0.01
0.001
0.00001
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHN7054, JANSR2N7394U
L
D.U.T
RG
IAS
VGS
20V
DRIVER
+
- VDD
0.01Ω
tp
TOP
1000
15V
VDS
EAS , Single Pulse Avalanche Energy (mJ)
1200
Fig 12a. Unclamped Inductive Test Circuit
A
BOTTOM
800
600
400
200
0
25
V(BR)DSS
ID
16A
22A
35A
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHN7054, JANSR2N7394U
Pre-Irradiation
Foot Notes:
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD = 25V, starting TJ = 25°C, L=0.82mH
Peak IL = 35A, VGS =12V
 I SD ≤ 35A, di/dt ≤ 150A/µs,
VDD ≤ 60V, TJ ≤ 150°C
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with V DS Bias.
48 volt VDS applied and V GS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — SMD-1
PAD ASSIGNMENTS
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/2006
8
www.irf.com
Similar pages