MITSUBISHI IGBT MODULES CM150DU-24NFH HIGH POWER SWITCHING USE CM150DU-24NFH ¡IC ................................................................... 150A ¡VCES ......................................................... 1200V ¡Insulated Type ¡2-elements in a pack APPLICATION High frequency switching use (30kHz to 60kHz). Gradient amplifier, Induction heating, power supply, etc. OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm TC measured point 94 80 ±0.25 23 4 G1E1 12 4 4 11 18 E2 G2 C1 E2 C2E1 2–φ6.5 MOUNTING HOLES 23 48 CM 24 17 13 7 13.5 2.5 16 TAB C2E1 E2 21.2 +1 30 –0.5 LABEL #110. t=0.5 C1 G1 E1 25 7.5 16 2.5 E2 G2 3–M5NUTS 12mm deep CIRCUIT DIAGRAM Feb. 2009 MITSUBISHI IGBT MODULES CM150DU-24NFH HIGH POWER SWITCHING USE MAXIMUM RATINGS Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) PC’ (Note 3) Tj Tstg Viso — — — (Tj = 25°C, unless otherwise specified) Parameter Collector current Emitter current Maximum collector dissipation Maximum collector dissipation Junction temperature Storage temperature Isolation voltage Mounting torque Weight ELECTRICAL CHARACTERISTICS Symbol Conditions Collector-emitter voltage Gate-emitter voltage G-E Short C-E Short Operation Pulse Operation Pulse TC = 25°C TC’ = 25°C*4 Ratings 1200 ±20 150 300 150 300 650 960 –40 ~ +150 –40 ~ +125 2500 2.5 ~ 3.5 3.5 ~ 4.5 310 (Note 2) (Note 2) (Note 2) (Note 2) Terminals to base plate, f = 60Hz, AC 1 minute Main terminals M5 screw Mounting M6 screw Typical value Unit V V A A A A W W °C °C Vrms N•m N•m g (Tj = 25°C, unless otherwise specified) Test conditions Parameter Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 15mA, VCE = 10V 4.5 6 7.5 V IGES Gate leakage current ±VGE = VGES, VCE = 0V — — — — — — — — — — — — — — — — — — — 2.1 — 5.0 5.0 — — — 680 — — — — — 7.5 — — — 0.07 — — — 0.5 6.5 — 24 2.0 0.45 — 150 80 400 150 150 — 3.5 0.19 0.35 — µA VCE(sat) Collector-emitter saturation voltage Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) VEC(Note 1) Rth(j-c)Q Rth(j-c)R Rth(c-f) Rth(j-c’)Q Rth(j-c’)R RG Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge Emitter-collector voltage Thermal resistance*1 Contact thermal resistance Thermal resistance*4 Tj = 25°C Tj = 125°C IC = 150A, VGE = 15V VCE = 10V VGE = 0V VCC = 600V, IC = 150A, VGE = 15V VCC = 600V, IC = 150A VGE = ±15V RG = 2.1Ω, Inductive load IE = 150A IE = 150A, VGE = 0V IGBT part (1/2 module) FWDi part (1/2 module) Case to heat sink, Thermal compound Applied*2 (1/2 module) IGBT part (1/2 module) FWDi part (1/2 module) External gate resistance mA V nF nF nF nC ns ns ns ns ns 0.13*3 0.21*3 21 µC V K/W K/W K/W K/W K/W Ω *1 : Case temperature (TC) measured point is shown in page OUTLINE DRAWING. *2 : Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)]. *3 : If you use this value, Rth(f-a) should be measured just under the chips. *4 : Case temperature (TC’) measured point is just under the chips. Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter-collector free-wheel diode (FWDi). 2. Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. No short circuit capability is designed. Feb. 2009 2 MITSUBISHI IGBT MODULES CM150DU-24NFH HIGH POWER SWITCHING USE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) Tj = 25°C VGE=20 (V) 250 300 14 VCE = 10V 13 COLLECTOR CURRENT IC (A) COLLECTOR CURRENT IC (A) 300 15 12 200 150 11 100 10 50 9 250 200 150 100 50 Tj = 25°C Tj = 125°C 8 2 4 6 8 0 10 0 5 10 15 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) 9 VGE = 15V 8 Tj = 25°C Tj = 125°C 7 6 5 4 3 2 1 0 EMITTER CURRENT IE (A) 0 0 50 100 150 200 250 10 IC = 150A 4 IC = 60A 2 6 8 10 12 14 16 18 20 COLLECTOR CURRENT IC (A) GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 102 7 5 7 5 Tj = 125°C 3 Tj = 25°C 2 102 7 5 3 2 0 IC = 300A 6 103 101 Tj = 25°C 8 0 300 CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) 0 1 2 3 4 3 2 Cies 101 7 5 3 2 Coes 100 7 5 3 2 Cres VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 5 COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER-COLLECTOR VOLTAGE VEC (V) Feb. 2009 3 MITSUBISHI IGBT MODULES CM150DU-24NFH HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) REVERSE RECOVERY TIME trr (ns) 103 SWITCHING TIME (ns) 7 5 3 2 td(off) 102 7 5 td(on) tf tr Conditions: VCC = 600V VGE = ±15V RG = 2.1Ω Tj = 125°C Inductive load 2 3 5 7 103 3 2 101 7 5 3 2 100 1 10 2 3 5 7 102 5 5 3 3 2 2 Irr 102 102 trr 7 5 3 2 101 1 10 2 3 5 7 102 7 Conditions: 5 VCC = 600V VGE = ±15V 3 RG = 2.1Ω 2 Tj = 25°C Inductive load 101 2 3 5 7 103 COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi part) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 7 5 3 2 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 103 Tj = 25°C 7 7 Single Pulse TC = 25°C 10–1 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 Per unit base = 2 7 5 3 2 Rth(j–c) = 0.19K/W 7 5 3 2 Single Pulse TC = 25°C 10–1 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 Per unit base = 2 Rth(j–c) = 0.35K/W 10–3 10–3 REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TIME (s) 7 5 3 2 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TIME (s) GATE CHARGE CHARACTERISTICS (TYPICAL) GATE-EMITTER VOLTAGE VGE (V) 20 IC = 150A VCC = 400V 15 VCC = 600V 10 5 0 0 200 400 600 800 1000 GATE CHARGE QG (nC) Feb. 2009 4