www.avx.com AVX Advanced Ceramic Capacitors for Power Supply, High Voltage and Tip and Ring Applications Version 10.5 Contents Introduction – Application Specific MLCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 SMPS (Switch Mode Power Supply) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 SM Style Stacked MLC Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28 SMX High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-32 CH/CV Style Vertical/Horizontal Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-38 TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-41 MH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 RH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43-44 Custom Lead Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Assembly Guidelines (SM, CH, CV & RH Styles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-47 SK Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-49 SE Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-51 CECC Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 High Voltage MLC Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ESCC Qualified SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53-58 HV Style (US Preferred Sizes) DIP Lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-61 CH/CV Style (European Preferred Sizes) Vertical/Horizontal Mount, DIP & Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-65 SV Style Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66-68 MLC Chip Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Basic Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-73 Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74-78 High Voltage MLC Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-80 High Voltage MLCC Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81-82 High Voltage MLC Chips FLEXITERM® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-84 High Voltage MLC Leaded Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-86 Hi-Q® High RF Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87-91 Tip & Ring Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92-93 Tip & Ring Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-95 MLC Chips, Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96-97 Single-In-Line Packages (SIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-99 Discoidal MLC Feed-Through Capacitors and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DC Style (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101-103 XB Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-107 XF Style (Feed-Through Discoidal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-107 Filtered Arrays XD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Baseline Management – BS9100 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Advanced Application Specific Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Application Specific MLCs Problem Solving at the Leading Edge As the world’s leading manufacturer and innovator in application specific multilayer ceramic (ASMLC) capacitors, AVX offers a unique technological and production capability to the field. AVX actively pursues and satisfies the high reliability and custom needs of a variety of governmental and industrial customers. Successful involvement in missile programs, extensive work in ultra-high reliability telecommunications and sophisticated capacitor design applications – all have established AVX as the source for advanced and high reliability ASMLC capacitors. Advanced Products are ISO9001 certified organizations for design and manufacturing of MLC capacitors. AVX Advanced Application Capacitors are organized around three distinct functions: • Application Specific Development Laboratories • Advanced Manufacturing Facilities • Quality Control For designs or applications not listed please consult Advanced Products. Olean, NY, USA - 716-372-6611 Coleraine, Northern Ireland - ++44(0) 28703 44188 St. Appollinaire, France - ++33(0) 38071 7400 International Space Station 2 Defense / Military Telecommunications Undersea Cable Repeater Application Specific MLCs Problem Solving at the Leading Edge APPLICATION SPECIFIC DEVELOPMENT LABORATORIES Initially, AVX technical personnel communicate with customers to learn the requirements that the new capacitor must satisfy. The personnel involved are well-versed in material, manufacturing and electronic application technologies. They study the overall application and the environment in which the part will function. Programs are begun for selection of appropriate ceramic formulations, metal systems and designs. These programs yield a detailed technology profile from which mechanical design and process specifications follow. ADVANCED MANUFACTURING FACILITIES The ability and reputation of AVX in high reliability MLCs is due in part to the company’s complete control over all phases of the production process. This includes powder processing, tape casting and/or wet build-up, green MLC assembly and final capacitor assembly/packaging. Recent renovations at AVX have upgraded green MLC assembly areas to certified clean room levels. A favorite feature with many customers of AVX is our ability to work with customers in solving special packaging requirements. This includes special lead configurations and multiple chip packaging that simplifies the mounting of specialty capacitors. To the customer, the total capability of AVX assures a high level of consistent control at all steps of production. QUALITY CONTROL The Q. A. organization is an integral part of manufacturing. Quality Control tests the product of each manufacturing process, detects flaws or variations from the narrow acceptable standard and isolates the cause of the deviation. Corrective action can then be taken to return the process to within its predetermined control levels. Quality Assurance has large and well-equipped laboratories where statistical samples are evaluated and tested to determine failure rates, characterize products and assure compliance with specification. Both destructive and nondestructive testing are used, including advanced ultrasonic inspection equipment for non-destructive inspection of an entire production quantity. Put the experience, technology and facilities of the leading company in multilayer ceramics to work for you. No other source offers the unique combination of capability and commitment to advanced application specific components. 3 SMPS Capacitors SMPS Capacitor Applications FOREWORD Output Filter Capacitor High speed switch mode power supplies place high demands on the capacitors used in the input or output filters of Resonant DC-DC or Pulse Modulated DC-DC converters. AVX Corporation has developed several multilayer ceramic (MLC) capacitor styles for these switcher applications. These capacitors have been extensively tested and characterized and found to have almost ideal performances to meet the stringent requirements of these applications. The output from the switching circuit of a Switcher consists of current on and off. From an elevated DC reference, this current is an AC ripple additive on the DC. In order to smooth this ripple effect, a filter circuit (usually inductive input) is built to allow a storage of energy to take place during the rising ripple portion and to allow a discharge of energy during the falling ripple portion. The ESR and ESL of the capacitor contribute to the net ripple effect. The output filter capacitor is chosen for ESR, and with previous types of capacitors, multiples were used in an attempt to lower the net ESR. The MLC offers ESRs well below the minimum allowable to lower noise levels, thus eliminating the need for multiple units. Input Filter Capacitor The Input Filter capacitor is required to perform two functions: To supply an unrestricted burst of current to the power supply switch circuitry and to not only do it without generating any noise, but to help suppress noise generated in the switch circuitry. It is, in effect, a very large decoupling capacitor. It must have very low ESL, capabilities for very high dv/dt, as well as di/dt and it must have a very low ESR to eliminate power loss. The distance from the primary DC source, as well as the type of capacitor used in this source (usually electrolytics), presents a very high inductance to the input of the Switcher. The MLC input capacitor, with its excellent ESL and ESR characteristics, is located physically close to the switch circuitry. Repetitive peak currents, inherent with the Switcher design, require a high ripple capability, as well as high surge capability for transients, both induced and conducted from other sources. MLCs have both these capabilities. 4 Other MLC Capacitors for SMPS Applications AVX also manufactures coupling, decoupling, resonant and snubber capacitors for SMPS applications. Contact AVX for Application Specific S.M.P.S. capacitor requirements. Olean, NY, USA 716-372-6611 Coleraine, Northern Ireland ++44(0) 28703 44188 St. Apollinaire, France ++33(0) 38071 7400 SMPS Capacitors Capacitor Selection and Performance ASMLC CAPACITOR SELECTION SMPS Design Information (SM, CH, CV, RH and SK Styles) Absolute Maximum Capacitance ESL Absolute Maximum Output Capacitance Assuming no ESR - Capacitive Induced Ripple Assuming no ESL and no ESR 25 2 MHz Load Current - Amps 1 MHz 50 mV Noise Due to Capacitance 20 Load Current - Amps 25 15 500 KHz 10 5 250 KHz DIP Leads SK Series 20 50 mV Noise Due to ESL 15 250 KHz 10 500 KHz 5 1 MHz 2 MHz 0 0 0 5 10 15 Maximum Output Filter Capacitance ( F) 0 20 5 10 15 Maximum Output Filter Capacitance ESL (nH) 20 Absolute Maximum Capacitance ESR Assuming no ESL - Capacitive Induced Ripple 50 mV Noise Due to ESR 20 15 5 SK Series 10 DIP Leads Load Current - Amps 25 0 0 10 20 30 Maximum Output Filter Capacitance ESR (mOhm) 40 ASMLC CAPACITOR PERFORMANCE Capacitance as Measured from dv/dt Slope 200 mA/ns Current Pulse Measurement starts after Inductive Ring Decay 16 14 AI Electrolytic 15 F 12 Capacitance ( F) MLC SM02 10 F 10 Wet Ta 10 F 8 Solid Ta 5.6 F 6 4 MLC SM04 4.7 F 2 0 10 -9 10 -8 10 -7 10 -6 10 -5 Time (Seconds) 5 SMPS Capacitors Capacitor Performance AC Ripple Capability Due to the wide range of product offering in this catalog, the AC ripple capabilities for switch mode power supply capacitors and high voltage capacitors are provided in the form of IBM compatible software package called SpiCalci. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com. SpiCalci program will provide answers to most of the design engineers’ questions on critical parameters for their specific applications: • Equivalent Series Resistance - function of frequency and temperature • Equivalent Series Inductance - function of design • Self Resonant Frequency f = 1/ (2 x π L x C) • Thermal Characteristics - function of design • AC Ripple Capabilities - function of frequency, temperature and design Examples of Product Performance TYPICAL ESR -vs- Frequency MAXIMUM RMS CURRENT FOR 50 VDC, CH - X7R FOR SM04 STYLE CAPACITORS 4.7μF 9μF 1μF @ 100 KHz & 25ⴗC Ambient ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION 50 10.000 45 40 35 A RMS ESR (Ohms) 1.000 0.100 30 25 20 15 0.010 10 5 0.001 1.0 10.0 100.0 Frequency (kHz) 1000.0 0 6.8 CH41 8.7 CH51 10.4 CH61 16.5 11.9 CH71 CH76 STYLE 29.9 CH81 26.6 CH86 28.8 CH91 EXAMPLE (CH ONLY) MAXIMUM RMS CURRENT FOR 50 WVDC, SM - X7R MAXIMUM RMS CURRENT FOR 25 WVDC, SK - Z5U @ 100 KHz & 25ⴗC Ambient ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION @ 100 KHz & 25ⴗC Ambient ASSUMING MAX. CAP. FOR EACH STYLE 50 12 100 KHz ARMS 45 100 KHz ARMS 40 35 30 25 20 8 6 4 2 0 1.7 SK01 15 10 4.5 SK04 6.2 SK05 7.4 7.7 SK06 SK07 STYLE EXAMPLE (SK ONLY) 5 0 36.8 SM01 28.3 SM02 22.7 9.7 SM03 SM04 STYLE EXAMPLE (SM ONLY) 6 10 5.7 SM05 33.8 SM06 11.0 SK08 6.7 SK09 8.7 SK10 SMPS Capacitors Application Information on SupraCap® SUPRACAP® - LARGE CAPACITANCE VALUE MLCs High speed switch mode power supplies require extremely low equivalent series resistance (ESR) and equivalent series inductance (ESL) capacitors for input and output filtering. These requirements are beyond the practical limits of electrolytic capacitors, both aluminum and tantalums, but are readily met by multilayer ceramic (MLCs) capacitors (Figure 1). Theoretical SMPS’s output filter capacitor values are in the range of 6-10 μF/amp at 40KHz and drop to less than 1 μF/amp at 1MHz. Most electrolytic applications use 10 to 100 times the theoretical value in order to obtain lower ESR from paralleling many capacitors. This is not necessary with SupraCap® MLC capacitors which inherently have ESRs in the range of milliohms. These extremely low values of ESR mean low ripple voltage and less self-heating of the capacitor. ESR Comparison of Different Capacitor Technologies ESR -vs- Frequency 100μF Filter Capacitors 1.E+00 ESR (⍀) 1.E-01 1.E-02 Output noise spikes are reduced by lowering the filter capacitance self-inductance. The ripple current is a triangle wave form with constant di/dt except when it changes polarity, then the di/dt is very high. The noise voltage generated by the filter capacitor is VNoise = L Capacitor di/dt AVX SupraCap® devices have inductance value less than 3nH. Figure 2 compares a 5.6 μF MLC to a 5.6 μF tantalum which was specially designed for low ESR and ESL. When subjected to a di/dt of 200 mA/ns the tantalum shows an ESR of 165 mΩ and an ESL of 18nH versus the MLC’s 4 mΩ and 0.3 nH. These performance differences allow considerable reduction in size and weight of the filter capacitor. Additionally, MLCs are compatible with surface mount technology reflow and assembly techniques which is the desirable assembly for conversion frequencies exceeding 1 MHz. Electrolytic capacitors (both aluminum and tantalum) are not compatible with normal vapor phase (VPS) or infrared (IR) reflow temperatures (205-215°C) due to electrolyte and structural problems. AVX SupraCap® devices are supplied with lead frames for either thru-hole or surface mount assembly. The lead frames act as stress relief for differences in coefficients of expansion between the large ceramic chip (10 ppm/°C) and the PC boards. 50nS TPOS-7 50mV DSW 16 Ta 1.E-03 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Frequency (Hz) Aluminum Electrolytic 100μF / 50V Low ESR Solid Tantalum 100μF / 10V Solid Aluminum Electrolytic 100μF / 16V MLCC 100μF / 50V MLC Figure 1 CSW 1 50mV ⌬V=2.0mV 50nS VZR-0.2 ⌬T=25.5nS Figure 2 7 SMPS Stacked MLC Capacitors (SM Style) Technical Information on SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Dielectric Withstanding Voltage 25°C (Flash Test) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1K MΩ or 100 MΩ-μF, whichever is less. Typical ESR Performance (mΩ) ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz ESR @ 500KHz ESR @ 1MHz ESR @ 5MHz ESR @ 10MHz HOW TO ORDER SM0 1 Aluminum Electrolytic 100μF/50V 300 285 280 265 265 335 560 Solid Aluminum Electrolytic 100μF/16V 29 22 20 18 17 17 22 MLCC SMPS 100μF/50V 3 2 2.5 4 7 12.5 20 MLCC SMPS 4.7μF/50V 66 23 15 8 7.5 8 14 AVX Styles: SM-1, SM-2, SM-3, SM-4, SM-5, SM-6 7 C 106 AVX Style Size Voltage Temperature Capacitance SM0 = Uncoated See 50V = 5 Coefficient Code SM5 = Epoxy Coated Dimensions 100V = 1 C0G = A (2 significant digits chart 200V = 2 X7R = C + number of zeros) 500V = 7 Z5U = E 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. 8 Low ESR Solid Tantalum 100μF/10V 72 67 62 56 56 72 91 *Hi-Rel M A N 650 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Standard B = Hi-Rel* Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% Z5U: M = ±20% Z = +80%, -20% P = GMV (+100, -0%) screening for C0G and X7R only. Screening consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. SMPS Stacked MLC Capacitors (SM Style) Surface Mount and Thru-Hole Styles (SM0, SM5) CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. B E RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style SM-1 SM-2 SM-3 SM-4 SM-5 SM-6 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 10 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±.635 (±0.025) 52.1 38.4 26.7 10.2 6.35 52.1 (2.050) (1.510) (1.050) (0.400) (0.250) (2.050) E (max.) 12.7 22.1 12.7 11.2 7.62 34.3 (0.500) (0.870) (0.500) (0.440) (0.300) (1.350) No. of Leads per side 20 15 10 4 3 20 Note: For SM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E 9 SMPS Stacked MLC Capacitors (SM Style) Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm SM01 _ _ _ _ _ _ AN120 AVX STYLE SM02 _ _ _ _ _ _ AN120 SM03 _ _ _ _ _ _ AN120 SM04 _ _ _ _ _ _ AN120 SM05 _ _ _ _ _ _ AN120 SM06 _ _ _ _ _ _ AN120 50V 100V 200V 500V 50V 100V 200V 500V 50V .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 –– 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 X7R 27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 Z5U 84 32 12 – – 110 46 34 –– 40 15 100V 200V 500V .50 Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm SM01 _ _ _ _ _ _ AN240 AVX STYLE SM02 _ _ _ _ _ _ AN240 SM03 _ _ _ _ _ _ AN240 SM04 _ _ _ _ _ _ AN240 SM05 _ _ _ _ _ _ AN240 SM06 _ _ _ _ _ _ AN240 50V 100V 200V 500V 50V 100V 200V 500V 50V .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18 12 –– 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 X7R 54 24 14 5.2 82 36 22 8.0 36 12 Z5U 160 64 24 – – 230 92 68 –– 80 30 C0G 100V 200V 500V 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm SM01 _ _ _ _ _ _ AN360 AVX STYLE SM02 _ _ _ _ _ _ AN360 SM03 _ _ _ _ _ _ AN360 100V 200V 500V SM04 _ _ _ _ _ _ AN360 SM05 _ _ _ _ _ _ AN360 SM06 _ _ _ _ _ _ AN360 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 100V 200V 500V 3.9 1.5 X7R 82 36 21 7.8 120 54 33 12 54 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28 Z5U 250 96 36 – – 350 130 100 – – 120 45 18 –– 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – – Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm SM01 _ _ _ _ _ _ AN480 AVX STYLE SM02 _ _ _ _ _ _ AN480 SM03 _ _ _ _ _ _ AN480 SM04 _ _ _ _ _ _ AN480 SM05 _ _ _ _ _ _ AN480 SM06 _ _ _ _ _ _ AN480 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37 24 –– 48 18 12 –– 18 7.2 2.8 – – 1000 570 360 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 4.0 2.8 1.6 .72 4.8 4.0 2.2 1.0 2.0 1.6 .80 X7R 110 48 28 10 160 72 44 16 72 24 Z5U 330 120 48 – – 470 180 130 – – 160 60 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm SM01 _ _ _ _ _ _ AN650 AVX STYLE SM02 _ _ _ _ _ _ AN650 SM03 _ _ _ _ _ _ AN650 SM04 _ _ _ _ _ _ AN650 SM05 _ _ _ _ _ _ AN650 SM06 _ _ _ _ _ _ AN650 50V 100V 200V 500V 50V 100V 200V 500V 50V .47 .80 .65 .35 .12 .25 .20 .12 .05 16 6.5 2.5 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47 30 –– 60 23 15 –– 23 9.0 3.6 – – 1300 720 460 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 5.0 3.5 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 X7R 130 60 35 13 200 90 55 20 90 30 Z5U 420 160 60 – – 590 230 170 – – 200 75 10 2.0 100V 200V 500V 100V 200V 500V 12 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 AVX IS QUALIFIED TO MIL-PRF-49470/1 AND MIL-PRF-49470/2 DSCC drawing 87106 capacitors. MIL-PRF-49470 specification was created to produce a robust replacement for DSCC 87106. MIL-PRF-49470 offers two product levels. Level “B” is the standard reliability. Level “T” is the high reliability suitable for space application. AVX is qualified to supply MIL-PRF-49470/1 parts. These are unencapsulated ceramic dielectric, switch mode power supply capacitors. AVX is also qualified to supply MIL-PRF49470/2 parts. These are encapsulated ceramic dielectric, switch mode power supply capacitors. PLEASE CONTACT THE DSCC WEBSITE [http://www.dscc.dla.mil/Programs/MilSpec/DocSearch.asp] for details on testing, electrical, mechanical and part number options. PLEASE CONTACT THE DSCC WEBSITE [http://www.dscc.dla.mil/Programs/QmlQpl/] for the latest QPL (Qualified Products List). The SMPS capacitors are designed for high current, highpower and high-temperature applications. These capacitors have very low ESR (Equivalent Series Resistance) and ESL (Equivalent Series Inductance). SMPS Series capacitors offer design and component engineers a proven technology specifically designed for programs requiring high reliability performance in harsh environments. MIL-PRF-49470 SMPS Series capacitors are primarily used in input/output filters of high-power and high-voltage power supplies as well as in bus filters and DC snubbers for high power inverters and other high-current applications. These capacitors are available with through-hole and surface mount leads. The operating temperature is -55°C to +125°C. The MIL-PRF-49470 capacitors are preferred over the HOW TO ORDER M49470 R 01 474 K C N Performance specification indicating MIL-PRF-49470 Characteristic Performance specification sheet number 01 – indicating MIL-PRF-49470/1 02 – indicating MIL-PRF-49470/2 Capacitance Capacitance Tolerance Rated Voltage Configuration (Lead Style) For “T” level parts, replace the “M” in the pin with “T” (for example M49470R01474KCN becomes T49470R01474KCN) MIL-PRF-49470 contains additional capacitors that are not available in 87106, such as additional lead configurations and lower profile parts. On the pages to follow is the general dimensional outline along with a cross reference from 87106 parts to MIL-PRF49470 parts. 11 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470/1 MIL-PRF-49470/1 MIL-PRF-49470/1 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable), standard reliability and high reliability unencapsulated, Style PS01. D E A See B See Note 4 Note 4 1.397 ±0.254 (0.055 ±0.010) SEATING PLANE See Note 3 6.35 (0.250) MIN 0.254 ±0.05 (0.010 ±0.002) See Note 6 2.54 (0.100) MAX 0.635 (0.025) MIN (See Note 5) 2.54 (0.100) TYP 0.508 ±0.050 (0.020 ±0.002) 6.35 (0.250) MIN LEAD STYLE N AND A E E 0.254 (0.010) RAD (TYP) 1.27 (0.050) MIN C L C LEAD STYLE J AND C 0.254 (0.010) RAD (TYP) L 1.27 (0.050) MIN C CIRCUIT DIAGRAM LEAD STYLE L AND B DIMENSIONS: millimeters (inches) D C ±0.635 (±0.025) 1 11.4 (0.450) 49.5 (1.950) 52.7 (2.075) 12.7 (0.500) 20 2 20.3 (0.800) 36.8 (1.450) 40.0 (1.535) 22.1 (0.870) 15 3 11.4 (0.450) 24.1 (0.950) 27.3 (1.075) 12.7 (0.500) 10 4 10.2 (0.400) 8.89 (0.350) 10.8 (0.425) 11.2 (0.440) 4 5 6.35 (0.250) 6.20 (0.224) 6.97 (0.275) 7.62 (0.300) 3 6 31.8 (1.250) 49.5 (1.950) 52.7 (2.075) 34.3 (1.350) 20 Min. Max. E (max.) Number of Leads per side Case Code NOTES: 1. Dimensions are in millimeters (inches) 2. Unless otherwise specified, tolerances are 0.254 (±0.010). 3. Lead frame configuration is shown as typical above the seating plane. 4. See table I of MIL-PRF-49470/1 for specific maximum A dimension. For maximum B dimension, add 1.65 (0.065) to the appropriate A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage rating. 5. For case code 5, dimensions shall be 2.54 (0.100) maximum and 0.305 (0.012) minimum. 6. Lead alignment within pin rows shall be within ±0.10 (0.005). 12 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470/2 MIL-PRF-49470/2 MIL-PRF-49470/2 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable), standard reliability and high reliability encapsulated, Style PS02. D E A MAX See Note 3 0.38 ±0.13 (0.015 ±0.005) SEATING PLANE 0.254 ±0.05 (0.010 ±0.002) See Note 4 0.50 ±0.05 (0.020 ±0.002) 4.45 (0.175) MAX 1.02 (0.040) MIN 6.35 (0.250) MIN C 2.54 (0.100) TYP LEAD STYLE N AND A E E 0.254 (0.010) RAD (TYP) L 0.254 (0.010) RAD (TYP) 1.27 (0.050) MIN L 1.27 (0.050) MIN C C LEAD STYLE J AND C CIRCUIT DIAGRAM DIMENSIONS: LEAD STYLE L AND B millimeters (inches) D ±0.635 (±0.025) E (max) Number of Leads per side Case Code C ±0.635 (±0.025) 1 11.4 (0.450) 54.7 (2.155) 14.7 (0.580) 20 2 20.3 (0.800) 41.0 (1.615) 24.1 (0.950) 15 3 11.4 (0.450) 29.3 (1.155) 14.7 (0.580) 10 4 10.2 (0.400) 12.3 (0.485) 12.3 (0.485) 4 5 6.35 (0.250) 9.02 (0.355) 9.02 (0.355) 3 6 31.8 (1.250) 54.7 (2.155) 36.3 (1.430) 20 NOTES: 1. Dimensions are in millimeters (inches) 2. Unless otherwise specified, tolerances are 0.254 (±0.001). 3. See table I of MIL-PRF-49470/2 for specific maximum A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage rating. 4. Lead alignment within pin rows shall be within ±0.10 (0.004). 13 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 87106- MIL-PRF-49470 PIN AVX PART NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 14 M49470X01105KAN M49470X01105MAN M49470X01125KAN M49470X01125MAN M49470X01155KAN M49470X01155MAN M49470X01185KAN M49470X01185MAN M49470X01225KAN M49470X01225MAN M49470X01275KAN M49470X01275MAN M49470X01335KAN M49470X01335MAN M49470X01395KAN M49470X01395MAN M49470X01475KAN M49470X01475MAN M49470X01475KAA M49470X01475MAA M49470X01565KAN M49470X01565MAN M49470X01565KAA M49470X01565MAA M49470X01825KAN M49470X01825MAN M49470X01106KAN M49470X01106MAN M49470X01126KAN M49470X01126MAN M49470X01156KAN M49470X01156MAN M49470X01156KAA M49470X01156MAA M49470X01186KAN M49470X01186MAN M49470X01226KAN M49470X01226MAN M49470X01276KAN M49470X01276MAN M49470X01336KAN M49470X01336MAN M49470X01396KAN M49470X01396MAN M49470X01476KAN M49470X01476MAN M49470X01476KAA M49470X01476MAA M49470X01686KAN M49470X01686MAN M49470X01686KAA M49470X01686MAA M49470X01826KAN M49470X01826MAN M49470X01826KAA M49470X01826MAA M49470X01107KAN M49470X01107MAN M49470X01107KAA M49470X01107MAA M49470X01157KAN M49470X01157MAN SM055C105KHN120 SM055C105MHN120 SM055C125KHN120 SM055C125MHN120 SM055C155KHN240 SM055C155MHN240 SM055C185KHN240 SM055C185MHN240 SM055C225KHN240 SM055C225MHN240 SM055C275KHN360 SM055C275MHN360 SM055C335KHN360 SM055C335MHN360 SM055C395KHN480 SM055C395MHN480 SM055C475KHN480 SM055C475MHN480 SM045C475KHN240 SM045C475MHN240 SM055C565KHN650 SM055C565MHN650 SM045C565KHN240 SM045C565KHN240 SM045C825KHN360 SM045C825MHN360 SM045C106KHN480 SM045C106MHN480 SM045C126KHN480 SM045C126MHN480 SM045C156KHN650 SM045C156MHN650 SM035C156KHN240 SM035C156MHN240 SM035C186KHN240 SM035C186MHN240 SM035C226KHN360 SM035C226MHN360 SM035C276KHN360 SM035C276MHN360 SM035C336KHN360 SM035C336MHN360 SM035C396KHN480 SM035C396MHN480 SM035C476KHN650 SM035C476MHN650 SM025C476KHN240 SM025C476MHN240 SM015C686KHN480 SM015C686MHN480 SM025C686KHN360 SM025C686MHN360 SM015C826KHN480 SM015C826MHN480 SM025C826KHN360 SM025C826MHN360 SM015C107KHN650 SM015C107MHN650 SM025C107KHN480 SM025C107MHN480 SM025C157KHN650 SM025C157MHN650 CAP (μF) 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 4.7 4.7 5.6 5.6 5.6 5.6 8.2 8.2 10 10 12 12 15 15 15 15 18 18 22 22 27 27 33 33 39 39 47 47 47 47 68 68 68 68 82 82 82 82 100 100 100 100 150 150 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE VOLT CODE (VDC) 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 4 50 4 50 5 50 5 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 2 50 2 50 1 50 1 50 2 50 2 50 1 50 1 50 2 50 2 50 1 50 1 50 2 50 2 50 2 50 2 50 87106- MIL-PRF-49470 PIN AVX PART NUMBER 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 M49470X01187KAN M49470X01187MAN M49470X01227KAN M49470X01227MAN M49470X01277KAN M49470X01277MAN M49470X01684KBN M49470X01684MBN M49470X01824KBN M49470X01824MBN M49470X01105KBN M49470X01105MBN M49470X01125KBN M49470X01125MBN M49470X01155KBN M49470X01155MBN M49470X01185KBN M49470X01185MBN M49470X01225KBN M49470X01225MBN M49470X01225KBA M49470X01225MBA M49470X01275KBN M49470X01275MBN M49470X01335KBN M49470X01335MBN M49470X01335KBA M49470X01335MBA M49470X01395KBN M49470X01395MBN M49470X01475KBN M49470X01475MBN M49470X01565KBN M49470X01565MBN M49470X01685KBN M49470X01685MBN M49470X01825KBN M49470X01825MBN M49470X01825KBA M49470X01825MBA M49470X01126KBN M49470X01126MBN M49470X01156KBN M49470X01156MBN M49470X01186KBN M49470X01186MBN M49470X01226KBN M49470X01226MBN M49470X01276KBN M49470X01276MBN M49470X01276KBA M49470X01276MBA M49470X01336KBN M49470X01336MBN M49470X01336KBA M49470X01336MBA M49470X01396KBN M49470X01396MBN M49470X01396KBA M49470X01396MBA M49470X01476KBN M49470X01476MBN SM065C187KHN480 SM065C187MHN480 SM065C227KHN480 SM065C227MHN480 SM065C277KHN650 SM065C277MHN650 SM051C684KHN120 SM051C684MHN120 SM051C824KHN240 SM051C824MHN240 SM051C105KHN240 SM051C105MHN240 SM051C125KHN240 SM051C125MHN240 SM051C155KHN360 SM051C155MHN360 SM051C185KHN360 SM051C185MHN360 SM051C225KHN480 SM051C225MHN480 SM041C225KHN240 SM041C225MHN240 SM051C275KHN480 SM051C275MHN480 SM051C335KHN650 SM051C335MHN650 SM041C335KHN240 SM041C335MHN240 SM041C395KHN360 SM041C395MHN360 SM041C475KHN360 SM041C475MHN360 SM041C565KHN480 SM041C565MHN480 SM041C685KHN480 SM041C685MHN480 SM041C825KHN650 SM041C825MHN650 SM031C825KHN240 SM031C825MHN240 SM031C126KHN240 SM031C126MHN240 SM031C156KHN360 SM031C156MHN360 SM031C186KHN360 SM031C186MHN360 SM031C226KHN480 SM031C226MHN480 SM031C276KHN650 SM031C276MHN650 SM021C276KHN240 SM021C276MHN240 SM011C336KHN360 SM011C336MHN360 SM021C336KHN240 SM021C336MHN240 SM011C396KHN480 SM011C396MHN480 SM021C396KHN360 SM021C396MHN360 SM011C476KHN480 SM011C476MHN480 CAP (μF) 180 180 220 220 270 270 0.68 0.68 0.82 0.82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.2 2.2 2.7 2.7 3.3 3.3 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 8.2 8.2 12 12 15 15 18 18 22 22 27 27 27 27 33 33 33 33 39 39 39 39 47 47 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 1 2 2 1 1 2 2 1 1 VOLT (VDC) 50 50 50 50 50 50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 87106- MIL-PRF-49470 PIN AVX PART NUMBER 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 M49470X01476KBA M49470X01476MBA M49470X01566KBN M49470X01566MBN M49470X01686KBN M49470X01686MBN M49470X01826KBN M49470X01826MBN M49470X01107KBN M49470X01107MBN M49470X01127KBN M49470X01127MBN M49470X01157KBN M49470X01157MBN M49470X01187KBN M49470X01187MBN M49470R01474KCN M49470R01474MCN M49470R01564KCN M49470R01564MCN M49470R01684KCN M49470R01684MCN M49470R01824KCN M49470R01824MCN M49470R01105KCN M49470R01105MCN M49470R01105KCA M49470R01105MCA M49470R01125KCN M49470R01125MCN M49470R01125KCA M49470R01125MCA M49470R01155KCN M49470R01155MCN M49470R01155KCA M49470R01155MCA M49470R01185KCN M49470R01185MCN M49470R01225KCN M49470R01225MCN M49470R01275KCN M49470R01275MCN M49470R01335KCN M49470R01335MCN M49470R01395KCN M49470R01395MCN M49470R01395KCA M49470R01395MCA M49470R01475KCN M49470R01475MCN M49470R01565KCN M49470R01565MCN M49470R01685KCN M49470R01685MCN M49470R01825KCN M49470R01825MCN M49470R01106KCN M49470R01106MCN M49470R01126KCN M49470R01126MCN M49470R01126KCA M49470R01126MCA SM021C476KHN360 SM021C476MHN360 SM011C566KHN650 SM011C566MHN650 SM021C686KHN480 SM021C686MHN480 SM021C826KHN650 SM021C826MHN650 SM061C107KHN360 SM061C107MHN360 SM061C127KHN360 SM061C127MHN360 SM061C157KHN480 SM061C157MHN480 SM061C187KHN650 SM061C187MHN650 SM052C474KHN240 SM052C474MHN240 SM052C564KHN240 SM052C564MHN240 SM052C684KHN360 SM052C684MHN360 SM052C824KHN360 SM052C824MHN360 SM052C105KHN480 SM052C105MHN480 SM042C105KHN120 SM042C105MHN120 SM052C125KHN480 SM052C125MHN480 SM042C125KHN240 SM042C125MHN240 SM052C155KHN650 SM052C155MHN650 SM042C155KHN240 SM042C155MHN240 SM042C185KHN360 SM042C185MHN360 SM042C225KHN360 SM042C225MHN360 SM042C275KHN480 SM042C275MHN480 SM042C335KHN480 SM042C335MHN480 SM042C395KHN650 SM042C395MHN650 SM032C395KHN240 SM032C395MHN240 SM032C475KHN240 SM032C475MHN240 SM032C565KHN240 SM032C565MHN240 SM032C685KHN360 SM032C685MHN360 SM032C825KHN360 SM032C825MHN360 SM032C106KHN480 SM032C106MHN480 SM032C126KHN650 SM032C126MHN650 SM022C126KHN240 SM022C126MHN240 CAP (μF) 47 47 56 56 68 68 82 82 100 100 120 120 150 150 180 180 0.47 0.47 0.56 0.56 0.68 0.68 0.82 0.82 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 12 12 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 2 2 1 1 2 2 2 2 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 5 5 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 VOLT (VDC) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 87106- MIL-PRF-49470 PIN AVX PART NUMBER 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 M49470R01156KCN M49470R01156MCN M49470R01156KCA M49470R01156MCA M49470R01186KCN M49470R01186MCN M49470R01186KCA M49470R01186MCA M49470R01226KCN M49470R01226MCN M49470R01226KCA M49470R01226MCA M49470R01276KCN M49470R01276MCN M49470R01276KCA M49470R01276MCA M49470R01336KCN M49470R01336MCN M49470R01396KCN M49470R01396MCN M49470R01476KCN M49470R01476MCN M49470R01566KCN M49470R01566MCN M49470R01686KCN M49470R01686MCN M49470R01826KCN M49470R01826MCN M49470R01107KCN M49470R01107MCN M49470R01127KCN M49470R01127MCN M49470Q01154KEN M49470Q01154MEN M49470Q01184KEN M49470Q01184MEN M49470Q01224KEN M49470Q01224MEN M49470Q01274KEN M49470Q01274MEN M49470Q01334KEN M49470Q01334MEN M49470Q01394KEN M49470Q01394MEN M49470Q01474KEN M49470Q01474MEN M49470Q01564KEN M49470Q01564MEN M49470Q01564KEA M49470Q01564MEA M49470Q01684KEN M49470Q01684MEN M49470Q01684KEA M49470Q01684MEA M49470Q01105KEN M49470Q01105MEN M49470Q01125KEN M49470Q01125MEN M49470Q01155KEN M49470Q01155MEN M49470Q01185KEN M49470Q01185MEN SM012C156KHN360 SM012C156MHN360 SM022C156KHN240 SM022C156MHN240 SM012C186KHN480 SM012C186MHN480 SM022C186KHN360 SM022C186MHN360 SM012C226KHN650 SM012C226MHN650 SM022C226KHN360 SM022C226MHN360 SM012C276KHN650 SM012C276MHN650 SM022C276KHN480 SM022C276MHN480 SM022C336KHN480 SM022C336MHN480 SM022C396KHN650 SM022C396MHN650 SM062C476KHN240 SM062C476MHN240 SM062C566KHN360 SM062C566MHN360 SM062C686KHN360 SM062C686MHN360 SM062C826KHN480 SM062C826MHN480 SM062C107KHN650 SM062C107MHN650 SM062C127KHN650 SM062C127MHN650 SM057C154KHN120 SM057C154MHN120 SM057C184KHN240 SM057C184MHN240 SM057C224KHN240 SM057C224MHN240 SM057C274KHN240 SM057C274MHN240 SM057C334KHN360 SM057C334MHN360 SM057C394KHN360 SM057C394MHN360 SM057C474KHN360 SM057C474MHN360 SM057C564KHN480 SM057C564MHN480 SM047C564KHN240 SM047C564MHN240 SM057C684KHN650 SM057C684MHN650 SM047C684KHN360 SM047C684MHN360 SM047C105KHN360 SM047C105MHN360 SM047C125KHN360 SM047C125MHN360 SM047C155KHN480 SM047C155MHN480 SM047C185KHN650 SM047C185MHN650 CAP (μF) 15 15 15 15 18 18 18 18 22 22 22 22 27 27 27 27 33 33 39 39 47 47 56 56 68 68 82 82 100 100 120 120 0.15 0.15 0.18 0.18 0.22 0.22 0.27 0.27 0.33 0.33 0.39 0.39 0.47 0.47 0.56 0.56 0.56 0.56 0.68 0.68 0.68 0.68 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 5 4 4 4 4 4 4 4 4 4 4 VOLT (VDC) 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 15 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 87106- MIL-PRF-49470 PIN AVX PART NUMBER 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 16 M49470Q01185KEA M49470Q01185MEA M49470Q01275KEN M49470Q01275MEN M49470Q01335KEN M49470Q01335MEN M49470Q01395KEN M49470Q01395MEN M49470Q01475KEN M49470Q01475MEN M49470Q01565KEN M49470Q01565MEN M49470Q01565KEA M49470Q01565MEA M49470Q01825KEN M49470Q01825MEN M49470Q01825KEA M49470Q01825MEA M49470Q01106KEN M49470Q01106MEN M49470Q01106KEA M49470Q01106MEA M49470Q01126KEN M49470Q01126MEN M49470Q01126KEA M49470Q01126MEA M49470Q01186KEN M49470Q01186MEN M49470Q01276KEN M49470Q01276MEN M49470Q01336KEN M49470Q01336MEN M49470Q01396KEN M49470Q01396MEN M49470X01685KAN M49470X01685MAN M49470X01566KAN M49470X01566MAN M49470X01566KAA M49470X01566MAA M49470X01127KAN M49470X01127MAN M49470X01106KBN M49470X01106MBN M49470Q01824KEN M49470Q01824MEN M49470Q01225KEN M49470Q01225MEN M49470Q01685KEN M49470Q01685MEN M49470Q01685KEA M49470Q01685MEA M49470Q01156KEN M49470Q01156MEN M49470Q01226KEN M49470Q01226MEN M49470X01105KAJ M49470X01105MAJ M49470X01125KAJ M49470X01125MAJ M49470X01155KAJ M49470X01155MAJ SM037C185KHN240 SM037C185MHN240 SM037C275KHN360 SM037C275MHN360 SM037C335KHN360 SM037C335MHN360 SM037C395KHN360 SM037C395MHN360 SM037C475KHN480 SM037C475MHN480 SM037C565KHN650 SM037C565MHN650 SM027C565KHN240 SM027C565MHN240 SM017C825KHN480 SM017C825MHN480 SM027C825KHN360 SM027C825MHN360 SM017C106KHN480 SM017C106MHN480 SM027C106KHN360 SM027C106MHN360 SM017C126KHN650 SM017C126MHN650 SM027C126KHN480 SM027C126MHN480 SM027C186KHN650 SM027C186MHN650 SM067C276KHN360 SM067C276MHN360 SM067C336KHN480 SM067C336MHN480 SM067C396KHN650 SM067C396MHN650 SM045C685KHN360 SM045C685MHN360 SM015C566KHN360 SM015C566MHN360 SM025C566KHN240 SM025C566MHN240 SM025C127KHN480 SM025C127MHN480 SM031C106KHN240 SM031C106MHN240 SM047C824KHN360 SM047C824MHN360 SM037C225KHN240 SM037C225MHN240 SM017C685KHN480 SM017C685MHN480 SM027C685KHN240 SM027C685MHN240 SM027C156KHN650 SM027C156MHN650 SM067C226KHN360 SM067C226MHN360 SM055C105KHJ120 SM055C105MHJ120 SM055C125KHJ120 SM055C125MHJ120 SM055C155KHJ240 SM055C155MHJ240 CAP (μF) 1.8 1.8 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 5.6 5.6 8.2 8.2 8.2 8.2 10 10 10 10 12 12 12 12 18 18 27 27 33 33 39 39 6.8 6.8 56 56 56 56 120 120 10 10 0.82 0.82 2.2 2.2 6.8 6.8 6.8 6.8 15 15 22 22 1.0 1.0 1.2 1.2 1.5 1.5 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 6 6 6 6 6 6 4 4 1 1 2 2 2 2 3 3 4 4 3 3 1 1 2 2 2 2 6 6 5 5 5 5 5 5 VOLT (VDC) 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 50 50 50 50 50 50 50 50 100 100 500 500 500 500 500 500 500 500 500 500 500 500 50 50 50 50 50 50 87106- MIL-PRF-49470 PIN AVX PART NUMBER 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 M49470X01185KAJ M49470X01185MAJ M49470X01225KAJ M49470X01225MAJ M49470X01275KAJ M49470X01275MAJ M49470X01335KAJ M49470X01335MAJ M49470X01395KAJ M49470X01395MAJ M49470X01475KAJ M49470X01475MAJ M49470X01475KAC M49470X01475MAC M49470X01565KAJ M49470X01565MAJ M49470X01565KAC M49470X01565MAC M49470X01685KAJ M49470X01685MAJ M49470X01825KAJ M49470X01825MAJ M49470X01106KAJ M49470X01106MAJ M49470X01126KAJ M49470X01126MAJ M49470X01156KAJ M49470X01156MAJ M49470X01156KAC M49470X01156MAC M49470X01186KAJ M49470X01186MAJ M49470X01226KAJ M49470X01226MAJ M49470X01276KAJ M49470X01276MAJ M49470X01336KAJ M49470X01336MAJ M49470X01396KAJ M49470X01396MAJ M49470X01476KAJ M49470X01476MAJ M49470X01476KAC M49470X01476MAC M49470X01566KAJ M49470X01566MAJ M49470X01566KAC M49470X01566MAC M49470X01686KAJ M49470X01686MAJ M49470X01686KAC M49470X01686MAC M49470X01826KAJ M49470X01826MAJ M49470X01826KAC M49470X01826MAC M49470X01107KAJ M49470X01107MAJ M49470X01107KAC M49470X01107MAC M49470X01127KAJ M49470X01127MAJ SM055C185KHJ240 SM055C185MHJ240 SM055C225KHJ240 SM055C225MHJ240 SM055C275KHJ360 SM055C275MHJ360 SM055C335KHJ360 SM055C335MHJ360 SM055C395KHJ480 SM055C395MHJ480 SM055C475KHJ480 SM055C475MHJ480 SM045C475KHJ240 SM045C475MHJ240 SM055C565KHJ650 SM055C565MHJ650 SM045C565KHJ240 SM045C565MHJ240 SM045C685KHJ360 SM045C685MHJ360 SM045C825KHJ360 SM045C825MHJ360 SM045C106KHJ480 SM045C106MHJ480 SM045C126KHJ480 SM045C126MHJ480 SM045C156KHJ650 SM045C156MHJ650 SM035C156KHJ240 SM035C156MHJ240 SM035C186KHJ240 SM035C186MHJ240 SM035C226KHJ360 SM035C226MHJ360 SM035C276KHJ360 SM035C276MHJ360 SM035C336KHJ360 SM035C336MHJ360 SM035C396KHJ480 SM035C396MHJ480 SM035C476KHJ650 SM035C476MHJ650 SM025C476KHJ240 SM025C476MHJ240 SM015C566KHJ360 SM015C566MHJ360 SM025C566KHJ240 SM025C566MHJ240 SM015C686KHJ480 SM015C686MHJ480 SM025C686KHJ360 SM025C686MHJ360 SM015C826KHJ480 SM015C826MHJ480 SM025C826KHJ360 SM025C826MHJ360 SM015C107KHJ650 SM015C107MHJ650 SM025C107KHJ480 SM025C107MHJ480 SM025C127KHJ480 SM025C127MHJ480 CAP (μF) 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 4.7 4.7 5.6 5.6 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 15 15 15 15 18 18 22 22 27 27 33 33 39 39 47 47 47 47 56 56 56 56 68 68 68 68 82 82 82 82 100 100 100 100 120 120 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±10% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE VOLT CODE (VDC) 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 4 50 4 50 5 50 5 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 2 50 2 50 1 50 1 50 2 50 2 50 1 50 1 50 2 50 2 50 1 50 1 50 2 50 2 50 1 50 1 50 2 50 2 50 2 50 2 50 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 87106- MIL-PRF-49470 PIN AVX PART NUMBER 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 M49470X01157KAJ M49470X01157MAJ M49470X01187KAJ M49470X01187MAJ M49470X01227KAJ M49470X01227MAJ M49470X01277KAJ M49470X01277MAJ M49470X01684KBJ M49470X01684MBJ M49470X01824KBJ M49470X01824MBJ M49470X01105KBJ M49470X01105MBJ M49470X01125KBJ M49470X01125MBJ M49470X01155KBJ M49470X01155MBJ M49470X01185KBJ M49470X01185MBJ M49470X01225KBJ M49470X01225MBJ M49470X01225KBC M49470X01225MBC M49470X01275KBJ M49470X01275MBJ M49470X01335KBJ M49470X01335MBJ M49470X01335KBC M49470X01335MBC M49470X01395KBJ M49470X01395MBJ M49470X01475KBJ M49470X01475MBJ M49470X01565KBJ M49470X01565MBJ M49470X01685KBJ M49470X01685MBJ M49470X01825KBJ M49470X01825MBJ M49470X01825KBC M49470X01825MBC M49470X01106KBJ M49470X01106MBJ M49470X01126KBJ M49470X01126MBJ M49470X01156KBJ M49470X01156MBJ M49470X01186KBJ M49470X01186MBJ M49470X01226KBJ M49470X01226MBJ M49470X01276KBJ M49470X01276MBJ M49470X01276KBC M49470X01276MBC M49470X01336KBJ M49470X01336MBJ M49470X01336KBC M49470X01336MBC M49470X01396KBJ M49470X01396MBJ SM025C157KHJ650 SM025C157MHJ650 SM065C187KHJ480 SM065C187MHJ480 SM065C227KHJ480 SM065C227MHJ480 SM065C277KHJ650 SM065C277MHJ650 SM051C684KHJ120 SM051C684MHJ120 SM051C824KHJ240 SM051C824MHJ240 SM051C105KHJ240 SM051C105MHJ240 SM051C125KHJ240 SM051C125MHJ240 SM051C155KHJ360 SM051C155MHJ360 SM051C185KHJ360 SM051C185MHJ360 SM051C225KHJ480 SM051C225MHJ480 SM041C225KHJ240 SM041C225MHJ240 SM051C275KHJ480 SM051C275MHJ480 SM051C335KHJ650 SM051C335MHJ650 SM041C335KHJ240 SM041C335MHJ240 SM041C395KHJ360 SM041C395MHJ360 SM041C475KHJ360 SM041C475MHJ360 SM041C565KHJ480 SM041C565MHJ480 SM041C685KHJ480 SM041C685MHJ480 SM041C825KHJ650 SM041C825MHJ650 SM031C825KHJ240 SM031C825MHJ240 SM031C106KHJ240 SM031C106MHJ240 SM031C126KHJ240 SM031C126MHJ240 SM031C156KHJ360 SM031C156MHJ360 SM031C186KHJ360 SM031C186MHJ360 SM031C226KHJ480 SM031C226MHJ480 SM031C276KHJ650 SM031C276MHJ650 SM021C276KHJ240 SM021C276MHJ240 SM011C336KHJ360 SM011C336MHJ360 SM021C336KHJ240 SM021C336MHJ240 SM011C396KHJ480 SM011C396MHJ480 CAP (μF) 150 150 180 180 220 220 270 270 0.68 0.68 0.82 0.82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.2 2.2 2.7 2.7 3.3 3.3 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 8.2 8.2 10 10 12 12 15 15 18 18 22 22 27 27 27 27 33 33 33 33 39 39 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 2 2 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 1 2 2 1 1 VOLT (VDC) 50 50 50 50 50 50 50 50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 87106- MIL-PRF-49470 PIN AVX PART NUMBER 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 M49470X01396KBC M49470X01396MBC M49470X01476KBJ M49470X01476MBJ M49470X01476KBC M49470X01476MBC M49470X01566KBJ M49470X01566MBJ M49470X01686KBJ M49470X01686MBJ M49470X01826KBJ M49470X01826MBJ M49470X01107KBJ M49470X01107MBJ M49470X01127KBJ M49470X01127MBJ M49470X01157KBJ M49470X01157MBJ M49470X01187KBJ M49470X01187MBJ M49470R01474KCJ M49470R01474MCJ M49470R01564KCJ M49470R01564MCJ M49470R01684KCJ M49470R01684MCJ M49470R01824KCJ M49470R01824MCJ M49470R01105KCJ M49470R01105MCJ M49470R01105KCC M49470R01105MCC M49470R01125KCJ M49470R01125MCJ M49470R01125KCC M49470R01125MCC M49470R01155KCJ M49470R01155MCJ M49470R01155KCC M49470R01155MCC M49470R01185KCJ M49470R01185MCJ M49470R01225KCJ M49470R01225MCJ M49470R01275KCJ M49470R01275MCJ M49470R01335KCJ M49470R01335MCJ M49470R01395KCJ M49470R01395MCJ M49470R01395KCC M49470R01395MCC M49470R01475KCJ M49470R01475MCJ M49470R01565KCJ M49470R01565MCJ M49470R01685KCJ M49470R01685MCJ M49470R01825KCJ M49470R01825MCJ M49470R01106KCJ M49470R01106MCJ SM021C396KHJ360 SM021C396MHJ360 SM011C476KHJ480 SM011C476MHJ480 SM021C476KHJ360 SM021C476MHJ360 SM011C566KHJ650 SM011C566MHJ650 SM021C686KHJ480 SM021C686MHJ480 SM021C826KHJ650 SM021C826MHJ650 SM061C107KHJ360 SM061C107MHJ360 SM061C127KHJ360 SM061C127MHJ360 SM061C157KHJ480 SM061C157MHJ480 SM061C187KHJ650 SM061C187MHJ650 SM052C474KHJ240 SM052C474MHJ240 SM052C564KHJ240 SM052C564MHJ240 SM052C684KHJ360 SM052C684MHJ360 SM052C824KHJ360 SM052C824MHJ360 SM052C105KHJ480 SM052C105MHJ480 SM042C105KHJ120 SM042C105MHJ120 SM052C125KHJ480 SM052C125MHJ480 SM042C125KHJ240 SM042C125MHJ240 SM052C155KHJ650 SM052C155MHJ650 SM042C155KHJ230 SM042C155MHJ230 SM042C185KHJ360 SM042C185MHJ360 SM042C225KHJ360 SM042C225MHJ360 SM042C275KHJ480 SM042C275MHJ480 SM042C335KHJ480 SM042C335MHJ480 SM042C395KHJ650 SM042C395MHJ650 SM032C395KHJ240 SM032C395MHJ240 SM032C475KHJ240 SM032C475MHJ240 SM032C565KHJ240 SM032C565MHJ240 SM032C685KHJ360 SM032C685MHJ360 SM032C825KHJ360 SM032C825MHJ360 SM032C106KHJ480 SM032C106MHJ480 CAP (μF) 39 39 47 47 47 47 56 56 68 68 82 82 100 100 120 120 150 150 180 180 0.47 0.47 0.56 0.56 0.68 0.68 0.82 0.82 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 2 2 1 1 2 2 1 1 2 2 2 2 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 5 5 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 VOLT (VDC) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 17 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 87106- MIL-PRF-49470 PIN AVX PART NUMBER 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 18 M49470R01126KCJ M49470R01126MCJ M49470R01126KCC M49470R01126MCC M49470R01156KCJ M49470R01156MCJ M49470R01156KCC M49470R01156MCC M49470R01186KCJ M49470R01186MCJ M49470R01186KCC M49470R01186MCC M49470R01226KCJ M49470R01226MCJ M49470R01226KCC M49470R01226MCC M49470R01276KCJ M49470R01276MCJ M49470R01276KCC M49470R01276MCC M49470R01336KCJ M49470R01336MCJ M49470R01396KCJ M49470R01396MCJ M49470R01476KCJ M49470R01476MCJ M49470R01566KCJ M49470R01566MCJ M49470R01686KCJ M49470R01686MCJ M49470R01826KCJ M49470R01826MCJ M49470R01107KCJ M49470R01107MCJ M49470R01127KCJ M49470R01127MCJ M49470Q01154KEJ M49470Q01154MEJ M49470Q01184KEJ M49470Q01184MEJ M49470Q01224KEJ M49470Q01224MEJ M49470Q01274KEJ M49470Q01274MEJ M49470Q01334KEJ M49470Q01334MEJ M49470Q01394KEJ M49470Q01394MEJ M49470Q01474KEJ M49470Q01474MEJ M49470Q01564KEJ M49470Q01564MEJ M49470Q01564KEC M49470Q01564MEC M49470Q01684KEJ M49470Q01684MEJ M49470Q01684KEC M49470Q01684MEC M49470Q01824KEJ M49470Q01824MEJ M49470Q01105KEJ M49470Q01105MEJ SM032C126KHJ650 SM032C126MHJ650 SM022C126KHJ240 SM022C126MHJ240 SM012C156KHJ360 SM012C156MHJ360 SM022C156KHJ240 SM022C156MHJ240 SM012C186KHJ480 SM012C186MHJ480 SM022C186KHJ360 SM022C186MHJ360 SM012C226KHJ650 SM012C226MHJ650 SM022C226KHJ360 SM022C226MHJ360 SM012C276KHJ650 SM012C276MHJ650 SM022C276KHJ480 SM022C276MHJ480 SM022C336KHJ480 SM022C336MHJ480 SM022C396KHJ650 SM022C396MHJ650 SM062C476KHJ240 SM062C476MHJ240 SM062C566KHJ360 SM062C566MHJ360 SM062C686KHJ360 SM062C686MHJ360 SM062C826KHJ480 SM062C826MHJ480 SM062C107KHJ650 SM062C107MHJ650 SM062C127KHJ650 SM062C127MHJ650 SM057C154KHJ120 SM057C154MHJ120 SM057C184KHJ240 SM057C184MHJ240 SM057C224KHJ240 SM057C224MHJ240 SM057C274KHJ240 SM057C274MHJ240 SM057C334KHJ360 SM057C334MHJ360 SM057C394KHJ360 SM057C394MHJ360 SM057C474KHJ360 SM057C474MHJ360 SM057C564KHJ480 SM057C564MHJ480 SM047C564KHJ240 SM047C564MHJ240 SM057C684KHJ650 SM057C684MHJ650 SM047C684KHJ240 SM047C684MHJ240 SM047C824KHJ360 SM047C824MHJ360 SM047C105KHJ360 SM047C105MHJ360 CAP (μF) 12 12 12 12 15 15 15 15 18 18 18 18 22 22 22 22 27 27 27 27 33 33 39 39 47 47 56 56 68 68 82 82 100 100 120 120 0.15 0.15 0.18 0.18 0.22 0.22 0.27 0.27 0.33 0.33 0.39 0.39 0.47 0.47 0.56 0.56 0.56 0.56 0.68 0.68 0.68 0.68 0.82 0.82 1.0 1.0 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 3 3 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 5 4 4 4 4 4 4 VOLT (VDC) 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 87106- MIL-PRF-49470 PIN AVX PART NUMBER 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 M49470Q01125KEJ M49470Q01125MEJ M49470Q01155KEJ M49470Q01155MEJ M49470Q01185KEJ M49470Q01185MEJ M49470Q01185KEC M49470Q01185MEC M49470Q01225KEJ M49470Q01225MEJ M49470Q01275KEJ M49470Q01275MEJ M49470Q01335KEJ M49470Q01335MEJ M49470Q01395KEJ M49470Q01395MEJ M49470Q01475KEJ M49470Q01475MEJ M49470Q01565KEJ M49470Q01565MEJ M49470Q01565KEC M49470Q01565MEC M49470Q01685KEJ M49470Q01685MEJ M49470Q01685KEC M49470Q01685MEC M49470Q01825KEJ M49470Q01825MEJ M49470Q01825KEC M49470Q01825MEC M49470Q01106KEJ M49470Q01106MEJ M49470Q01106KEC M49470Q01106MEC M49470Q01126KEJ M49470Q01126KEJ M49470Q01126MEC M49470Q01126MEC M49470Q01156KEJ M49470Q01156MEJ M49470Q01186KEJ M49470Q01186MEJ M49470Q01226KEJ M49470Q01226MEJ M49470Q01276KEJ M49470Q01276MEJ M49470Q01336KEJ M49470Q01336MEJ M49470Q01396KEJ M49470Q01396MEJ SM047C125KHJ360 SM047C125MHJ360 SM047C155KHJ480 SM047C155MHJ480 SM047C185KHJ650 SM047C185MHJ650 SM037C185KHJ240 SM037C185MHJ240 SM037C225KHJ240 SM037C225MHJ240 SM037C275KHJ360 SM037C275MHJ360 SM037C335KHJ360 SM037C335MHJ360 SM037C395KHJ360 SM037C395MHJ360 SM037C475KHJ480 SM037C475MHJ480 SM037C565KHJ650 SM037C565MHJ650 SM027C565KHJ240 SM027C565MHJ240 SM017C685KHJ480 SM017C685MHJ480 SM027C685KHJ240 SM027C685MHJ240 SM017C825KHJ480 SM017C825MHJ480 SM027C825KHJ360 SM027C825MHJ360 SM017C106KHJ480 SM017C106MHJ480 SM027C106KHJ360 SM027C106MHJ360 SM017C126KHJ650 SM017C126KHJ650 SM027C126MHJ480 SM027C126MHJ480 SM027C156KHJ650 SM027C156MHJ650 SM027C186KHJ650 SM027C186MHJ650 SM067C226KHJ360 SM067C226MHJ360 SM067C276KHJ360 SM067C276MHJ360 SM067C336KHJ480 SM067C336MHJ480 SM067C396KHJ650 SM067C396MHJ650 CAP (μF) 1.2 1.2 1.5 1.5 1.8 1.8 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 5.6 5.6 6.8 6.8 6.8 6.8 8.2 8.2 8.2 8.2 10 10 10 10 12 12 12 12 15 15 18 18 22 22 27 27 33 33 39 39 TOL ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±10% ±20% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% CASE CODE 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 6 6 6 6 6 6 6 6 VOLT (VDC) 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 CHIP SEPARATION 0.254 (0.010) TYP. D B E 1.397 (0.055) ±0.254 (0.010) A 6.35 (0.250) 0.254 (0 010) 0.508 (0.020) TYP. 2 54 (0 100) TYP “N” STYLE LEADS 0.254 (0.010) RAD. TYP. 1.778 (0.070) ±0.254 (0.010) 1.905 (0.075) ±0.635 (0.025) TYP. SCHEMATIC “J” STYLE LEADS DIMENSIONS millimeters (inches) Case Code A (max.) (See Note 2) B (max.) (See Note 2) C ±.635 (±0.025) E (max.) No. of Leads per side 1 16.5 (0.650) 18.2 (0.715) 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20 2 16.5 (0.650) 18.2 (0.715) 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15 3 16.5 (0.650) 18.2 (0.715) 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10 4 16.5 (0.650) 18.2 (0.715) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4 5 16.5 (0.650) 18.2 (0.715) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3 6 16.5 (0.650) 18.2 (0.715) 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20 D ±.635 (±0.025) NOTES: 1. Unless otherwise specified, tolerances 0.254 (±0.010). 2. “A” dimensions are maximum (see tables on pages 22 thru 25 for specific part number dimensions). 3. “N” straight leads; “J” leads formed in. 4. For case code 5, dimensions shall be 2.54 (0.100) maximum, 0.305 (0.012) minimum. 19 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 Ordering Information Insulation Resistance. Part Number: The complete part number shall be as follows: At +25°C, rated voltage: 100K MΩ or 1,000 MΩ-μF, whichever is less. X7R: 87106 XXX ______________ Dash number (see list) Ordering Data. The contract or purchase order should specify the following: At +125°C, rated voltage: 10K MΩ or 100 MΩ-μF, whichever is less. _________________ Drawing number Dielectric Withstanding Voltage. Dielectric withstanding voltage shall be 250 percent of rated voltage except 500V rated parts at 150 percent of rated voltage. a. Complete part number. b. Requirements for delivery of one copy of the quality conformance inspection data with each shipment of parts by the manufacturer. Capacitance Tolerance. M = ±20 percent. J = ±5 percent, K = ±10 percent, c. Whether the manufacturer performs the group B tests, or provides certification of compliance with group B requirements. Solderability of Terminals. 49470. In accordance with MIL-PRF- d. Requirements for notification of change of products to acquiring activity, if applicable. Resistance to Soldering Heat. In accordance with MIL-STD202, method 210, condition B, for 20 seconds. e. Requirements for packaging and packing. Source of Supply. Vendor CAGE number _____________ 96095 Shock. In accordance with MIL-PRF-49470. Vendor name and address _________________________ Olean Advanced Products A Division of AVX Corporation 1695 Seneca Avenue Olean, NY 14760 Performance Characteristics Operating Temperature Range. The operating temperature range shall be -55°C to +125°C. Electrical Characteristics. Rated Voltage. See tables on pages 22, 23, 24 & 25. Immersion Cycling. In accordance with MIL-PRF-49470. Moisture Resistance. In accordance with MIL-PRF-49470. Life. Life shall be 200 percent of rated voltage except 500V rated parts at 120 percent of rated voltage applied at +125°C for 1,000 hours. Thermal Shock. MIL-STD-202, method 107, test condition A, except high temperature is +125°C. Capacitance. Measured in accordance with method 305 of MIL-STD-202 (1KHz at 1.0Vrms, open circuit voltage, at +25°C). Dissipation Factor (+25°C). X7R: Dissipation factor shall be 2.5 percent maximum (measured under the same conditions as capacitance.) C0G: Dissipation factor shall be 0.15 percent maximum. Temperature Coefficient. DSCC Dwg. Bias = 0 volt 88011 All Voltages 0±30 ppm/°C 87106 50 WVDC ±15% and 100 WVDC 87106 200 WVDC ±15% 87106 500 WVDC ±15% 20 Bias = rated voltage 0±30 ppm/°C +15, -25% +15, -40% +15, -50% Voltage Conditioning. In accordance with MIL-PRF-49470, except 500V rated parts at 120 percent of rated voltage at +125°C. Terminal Strength. MIL-STD-202, method 211, condition B, except that each lead shall be bent away from the body 90 degrees from the original position and back, two bends. Marking. Marking shall be in accordance with MIL-STD-1285, except the part number shall be as specified in paragraph 1.2 of 87106, or 88011 with the manufacturer’s name or code and date code minimum, except case sizes 4 and 5 shall be marked with coded cap and tolerance minimum. Full marking shall be included on the package. SMPS Stacked MLC Capacitors (SM Style) DSCC #87106 and #88011 Table II. Group A inspection. Inspection Requirement paragraph of MIL-PRF-49470 Test method paragraph of MIL-PRF-49470 Sampling procedure 3.9 4.8.5 100% inspection 3.4 3.1 3.5 and 3.5.1 4.8.4 Subgroup 1 Thermal shock and voltage conditioning 1/ Subgroup 2 Visual and mechanical examination: Material Physical dimensions Interface requirements (other than physical dimensions) Marking 2/ Workmanship 13 samples 0 failures 3.28 3.30 1/ Post checks are required (see paragraph 3.9 of MIL-PRF-49470). 2/ Marking defects are based on visual examination only. Any subsequent electrical defects shall not be used as a basis for determining marking defects. Table III. Group B inspection. 1/ Inspection Requirement paragraph of MIL-PRF-49470 Test method paragraph of MIL-PRF-49470 Subgroup 1 3/ Temperature coefficient Resistance to solvents 5/ 6/ Immersion Terminal strength 5/ 4/ 3.23 3.18 3.24 4/ 4.8.20 4.8.15 4.8.10 Subgroup 2 Resistance to soldering heat Moisture resistance 3.20 3.21 Number of sample units to be inspected Number of defectives permitted 2/ 12 1 4.8.17 4.8.18 12 1 3.28.1 4.8.4.1 6 1 Subgroup 4 Solderability 3.15 4.8.12 3 0 Subgroup 5 Life 3.26 4.8.22 5 minimum per case code 0 Subgroup 3 Marking legibility (laser marking only) 6/ 1 1/ Unless otherwise specified herein, when necessary, mounting of group B samples shall be at the discretion of the manufacturer. 2/ A sample unit having one or more defects shall be charged as a single defective. 3/ Order of tests is at discretion of manufacturer. 4/ See 3.2.3 of DSCC 87106. 5/ Sample size shall be 3 pieces with zero defectives permitted. 6/ Total of one defect allowed for combination of subgroup 1, subgroup 2, and subgroup 3 inspections. 21 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) Electrical characteristics Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) 001 002 241 242 003 004 243 244 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 005 006 245 246 007 008 247 248 009 010 249 250 1.5 1.5 1.5 1.5 1.8 1.8 1.8 1.8 2.2 2.2 2.2 2.2 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 011 012 251 252 013 014 253 254 2.7 2.7 2.7 2.7 3.3 3.3 3.3 3.3 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 015 016 255 256 017 018 257 258 3.9 3.9 3.9 3.9 4.7 4.7 4.7 4.7 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 019 020 259 260 5.6 5.6 5.6 5.6 K M K M 5 5 5 5 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 223 224 261 262 6.8 6.8 6.8 6.8 K M K M 4 4 4 4 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 021 022 263 264 8.2 8.2 8.2 8.2 K M K M 4 4 4 4 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 023 024 265 266 025 026 267 268 10 10 10 10 12 12 12 12 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 027 028 269 270 15 15 15 15 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 029 030 271 18 18 18 K M K 3 3 3 N N J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) 272 272 18 18 M M 3 3 J J 6.10 (0.240) 6.10 (0.240) 031 032 273 274 033 034 275 276 035 036 277 278 22 22 22 22 27 27 27 27 33 33 33 33 K M K M K M K M K M K M 3 3 3 3 3 3 3 3 3 3 3 3 N N J J N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 037 038 279 280 39 39 39 39 K M K M 3 3 3 3 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 039 040 281 282 47 47 47 47 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 225 226 283 284 56 56 56 56 K M K M 1 1 1 1 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 041 042 285 286 043 044 287 288 68 68 68 68 82 82 82 82 K M K M K M K M 1 1 1 1 1 1 1 1 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 045 046 289 290 100 100 100 100 K M K M 1 1 1 1 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 227 228 291 292 120 120 120 120 K M K M 2 2 2 2 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 047 048 293 294 150 150 150 150 K M K M 2 2 2 2 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 049 050 295 296 051 052 297 298 180 180 180 180 220 220 220 220 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 053 054 299 300 270 270 270 270 K M K M 6 6 6 6 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) Cap. Value (μF) 055 056 301 302 .68 .68 .68 .68 K M K M 5 5 5 5 N N J J 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 057 058 303 304 059 060 305 306 061 062 307 308 .82 .82 .82 .82 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 063 064 309 310 065 066 311 312 1.5 1.5 1.5 1.5 1.8 1.8 1.8 1.8 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 067 068 313 314 069 070 315 316 2.2 2.2 2.2 2.2 2.7 2.7 2.7 2.7 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 071 072 317 318 3.3 3.3 3.3 3.3 K M K M 5 5 5 5 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 073 074 319 320 075 076 321 322 3.9 3.9 3.9 3.9 4.7 4.7 4.7 4.7 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 077 078 323 324 079 080 325 326 5.6 5.6 5.6 5.6 6.8 6.8 6.8 6.8 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 081 082 327 328 8.2 8.2 8.2 8.2 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 229 230 329 330 083 084 331 332 10 10 10 10 12 12 12 12 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 50V 50V 22 Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- 100V SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) Electrical characteristics DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 085 086 333 334 087 088 335 336 15 15 15 15 18 18 18 18 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 113 114 361 362 115 116 363 364 .47 .47 .47 .47 .56 .56 .56 .56 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 089 090 337 338 22 22 22 22 K M M M 3 3 3 3 N N K J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 091 092 339 340 27 27 27 27 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 117 118 365 366 119 120 367 368 .68 .68 .68 .68 .82 .82 .82 .82 K M K M K M M M 5 5 5 5 5 5 5 5 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 093 094 341 342 33 33 33 33 K M K M 1 1 1 1 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 095 096 343 344 097 098 345 346 39 39 39 39 47 47 47 47 K M K M K M K M 1 1 1 1 1 1 1 1 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 121 122 369 370 123 124 371 372 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 125 126 373 374 1.5 1.5 1.5 1.5 K M K M 5 5 5 5 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 099 100 347 348 56 56 56 56 K M K M 1 1 1 1 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 101 102 349 350 68 68 68 68 K M K M 2 2 2 2 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 127 128 375 376 129 130 377 378 1.8 1.8 1.8 1.8 2.2 2.2 2.2 2.2 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 103 104 351 352 82 82 82 82 K M K M 2 2 2 2 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 105 106 353 354 107 108 355 356 100 100 100 100 120 120 120 120 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 131 132 379 380 133 134 381 382 2.7 2.7 2.7 2.7 3.3 3.3 3.3 3.3 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 135 136 383 384 3.9 3.9 3.9 3.9 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 109 110 357 358 150 150 150 150 K M K M 6 6 6 6 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 111 112 359 360 180 180 180 180 K M K M 6 6 6 6 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 137 138 385 386 139 140 387 388 4.7 4.7 4.7 4.7 5.6 5.6 5.6 5.6 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 141 142 389 390 143 144 391 392 6.8 6.8 6.8 6.8 8.2 8.2 8.2 8.2 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 100V DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 145 146 393 394 10 10 10 10 K M K M 3 3 3 3 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 147 148 395 396 12 12 12 12 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 149 150 397 398 15 15 15 15 K M K M 1 1 1 1 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 151 152 399 400 18 18 18 18 K M K M 1 1 1 1 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 153 154 401 402 155 156 403 404 22 22 22 22 27 27 27 27 K M K M K M K M 1 1 1 1 1 1 1 1 N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 157 158 405 406 33 33 33 33 K M K M 2 2 2 2 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 159 160 407 408 39 39 39 39 K M K M 2 2 2 2 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 161 162 409 410 47 47 47 47 K M K M 6 6 6 6 N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 163 164 411 412 165 166 413 414 56 56 56 56 68 68 68 68 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 167 168 415 416 82 82 82 82 K M K M 6 6 6 6 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 169 170 417 418 171 172 419 420 100 100 100 100 120 120 120 120 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 200V 200V 23 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) Electrical characteristics DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 500V 500V 173 174 421 422 .15 .15 .15 .15 K M K M 5 5 5 5 N N J J 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 175 176 423 424 177 178 425 426 179 180 427 428 .18 .18 .18 .18 .22 .22 .22 .22 .27 .27 .27 .27 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 181 182 429 430 183 184 431 432 185 186 433 434 .33 .33 .33 .33 .39 .39 .39 .39 .47 .47 .47 .47 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 187 188 435 436 .56 .56 .56 .56 K M K M 5 5 5 5 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 189 190 437 438 231 232 439 440 191 192 441 442 193 194 443 444 .68 .68 .68 .68 .82 .82 .82 .82 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M K M K M K M K M 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 N N J J N N J J N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 195 196 445 446 1.5 1.5 1.5 1.5 K M K M 4 4 4 4 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 197 198 447 448 1.8 1.8 1.8 1.8 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 233 234 449 450 2.2 2.2 2.2 2.2 K M K M 3 3 3 3 N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 199 200 451 452 2.7 2.7 2.7 2.7 K M K M 3 3 3 3 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 24 201 202 453 454 203 204 455 456 3.3 3.3 3.3 3.3 3.9 3.9 3.9 3.9 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 205 206 457 458 4.7 4.7 4.7 4.7 K M K M 3 3 3 3 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 207 208 459 460 5.6 5.6 5.6 5.6 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 235 236 461 462 209 210 463 464 211 212 465 466 6.8 6.8 6.8 6.8 8.2 8.2 8.2 8.2 10 10 10 10 K M K M K M K M K M K M 1 1 1 1 1 1 1 1 1 1 1 1 N N J J N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 213 214 467 468 237 238 469 470 215 216 471 472 12 12 12 12 15 15 15 15 18 18 18 18 K M K M K M K M K M K M 1 1 1 1 2 2 2 2 2 2 2 2 N N J J N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 239 240 473 474 217 218 475 476 22 22 22 22 27 27 27 27 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 219 220 477 478 33 33 33 33 K M K M 6 6 6 6 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 221 222 479 480 39 39 39 39 K M K M 6 6 6 6 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #88011 (C0G) CG (C0G) Electrical characteristics per MIL-C-20 DSCC Dwg. 88011- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 001* 002* 003* 004* 005* 006* 007* 008* 009* 010* 011* 012* 013* 014* 015* 016* 017* 018* 019* 020* 021* 022* 023* 024* 025* 026* 027* 028* 029* 030* 031* 032* 033* 034* 035* 036* 037* 038* 039* 040* 041* 042* 043* 044* 045* 046* 047* 048* 049* 050* 051* 052* 053* 054* 055* 056* 057* 058* 059* 060* .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 15 15 J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 061* 062* 063* 064* 065* 066* 067* 068* 069* 070* 071* 072* 073* 074* 075* 076* 077* 078* 079* .047 .047 .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 J K J K J K J K J K J K J K J K J K J DSCC Dwg. 88011- Cap. Value (μF) 080* 081* 082* 083* 084* 085* 086* 087* 088* 089* 090* 091* 092* 093* 094* 095* 096* 097* 098* 099* 100* 101* 102* 103* 104* 105* 106* 107* 108* 109* 110* 111* 112* 113* 114* 115* 116* 117* 118* 119* 120* .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 121* 122* 123* 124* 125* 126* 127* 128* 129* 130* 131* 132* 133* 134* 135* 136* 137* 138* 139* 140* 141* 142* 143* 144* 145* 146* 147* 148* 149* 150* 151* 152* 153* 154* 155* 156* 157* 158* .022 .022 .027 .027 .033 .033 .039 .039 .047 .047 .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 50V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 2 2 6 6 6 6 6 6 6 6 6 6 DSCC Dwg. 88011- Cap. Value (μF) 159* 160* 161* 162* 163* 164* 165* 166* 167* 168* 169* 170* 171* 172* 173* 174* 175* 176* 177* 178* 179* 180* .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 3.05 (0.120) 3.05 (0.120) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) N N N N N N N N N N N N N N N N N N N 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) *Add J or L for applicable formed leads 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 6 6 6 6 6 6 6 6 6 6 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 3.05 (0.120) 3.05 (0.120) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 200V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) J K J K J K J K J K J K J K J K J K J K J K 181* 182* 183* 184* 185* 186* 187* 188* 189* 190* 191* 192* 193* 194* 195* 196* 197* 198* 199* 200* 201* 202* 203* 204* 205* 206* 207* 208* 209* 210* 211* 212* 213* 214* 215* 216* 217* 218* 219* 220* 221* 222* 223* 224* 225* 226* 227* 228* 229* 230* 231* 232* 233* 234* 235* 236* 237* 238* .010 .010 .012 .012 .015 .015 .018 .018 .022 .022 .027 .027 .033 .033 .039 .039 .047 .047 .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 200V (continued) 100V (continued) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 100V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 3 3 3 3 1 1 1 1 1 1 2 2 2 2 6 6 6 6 6 6 6 6 N N N N N N N N N N N N N N N N N N N N N N 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 3.05 (0.120) 3.05 (0.120) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 500V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 2 2 2 2 6 6 6 6 6 6 25 SMPS Stacked MLC Capacitors (SM9 Style) Technical Information on SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Dielectric Withstanding Voltage 25°C (Flash Test) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1K MΩ or 100 MΩ-μF, whichever is less. Typical ESR Performance (mΩ) ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz ESR @ 500KHz ESR @ 1MHz ESR @ 5MHz ESR @ 10MHz HOW TO ORDER SM9 AVX Style Size SM9 = Plastic Case Aluminum Electrolytic 100μF/50V 300 285 280 265 265 335 560 Solid Aluminum Electrolytic 100μF/16V 29 22 20 18 17 17 22 MLCC SMPS 100μF/50V 3 2 2.5 4 7 12.5 20 MLCC SMPS 4.7μF/50V 66 23 15 8 7.5 8 14 AVX Styles: SM91, SM92, SM93, SM94, SM95, SM96 1 7 Size See dimensions chart Voltage 50V = 5 100V = 1 200V = 2 500V = 7 C 106 M Temperature Coefficient C0G = A X7R = C Z5U = E A Capacitance Capacitance Test Code Tolerance Level (2 significant C0G: J = ±5% A = Standard digits + no. K = ±10% B = Hi-Rel* of zeros) M = ±20% 10 pF = 100 X7R: K = ±10% 100 pF = 101 M = ±20% 1,000 pF = 102 Z = +80, -20% 22,000 pF = 223 Z5U: Z = +80, -20% 220,000 pF = 224 P = GMV (+100, -0%) 1 μF = 105 10 μF = 106 100 μF = 107 Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. 26 Low ESR Solid Tantalum 100μF/10V 72 67 62 56 56 72 91 *Hi-Rel N Termination N = Straight Lead J = Leads formed in L = Leads formed out 660 Height See table on page 28 for max cap. per height screening for C0G and X7R only. Screening consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. SMPS Stacked MLC Capacitors Encapsulated in DAP (Diallyl Phthalate) Case (SM9 Style) D E 0.381 (0.015) ±0.127 (0.005) Maximum Height (see table) 6.35 (0.250) (MIN.) 4.445 (0.175) MAX 1.016 (0.040) MIN 0.254 (0.010) TYP. C 0.508 (0.020) TYP. 2.54 (0.100) CENTERS TYP. “N” STYLE LEADS D E Maximum Height (see table) 0.381 (0.015) ±0.127 (0.005) 0.254 (0.010) RAD. TYP. 1.778 (0.070) ±0.254 (0.010) 0.254 (0.010) TYP. 0.508 (0.020) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 4.445 (0.175) MAX 1.016 (0.040) MIN C 2.54 (0.100) CENTERS TYP. “J” STYLE LEADS D E Maximum Height (see table) 0.381 (0.015) ±0.127 (0.005) 0.254 (0.010) RAD. TYP. 1.778 (0.070) ±0.254 (0.010) 0.254 (0.010) TYP. 0.508 (0.020)TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 4.445 (0.175) MAX 1.016 (0.040) MIN 2.54 (0.100) CENTERS TYP. C “L” STYLE LEADS DIMENSIONS Case Code SM91 SM92 SM93 SM94 SM95 SM96 millimeters (inches) C ±0.635 (0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±0.254 (0.010) 54.7 41.0 29.3 12.3 9.02 54.7 (2.155) (1.615) (1.155) (0.485) (0.355) (2.155) E +0.000 (0.000) -0.254 (0.010) 14.7 24.1 14.7 12.3 9.02 36.3 (0.580) (0.950) (0.580) (0.485) (0.355) (1.430) No. of Leads per side* 20 15 10 4 3 20 *Leads styles N, J or L available 27 SMPS Stacked MLC Capacitors Encapsulated in DAP (Diallyl Phthalate) Case (SM9 Style) Max Capacitance (μF) Available Versus Style with Height of 0.270" - 6.86mm SM91 _ _ _ _ _ _ AN270 AVX STYLE SM92 _ _ _ _ _ _ AN270 SM93 _ _ _ _ _ _ AN270 SM94 _ _ _ _ _ _ AN270 SM95 _ _ _ _ _ _ AN270 SM96 _ _ _ _ _ _ AN270 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50 X7R 27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4 Z5U 84 32 12 – – 110 46 34 –– 40 15 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 –– 100V 200V 500V 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height of 0.390" - 9.91mm SM91 _ _ _ _ _ _ AN390 AVX STYLE SM92 _ _ _ _ _ _ AN390 SM93 _ _ _ _ _ _ AN390 SM94 _ _ _ _ _ _ AN390 SM95 _ _ _ _ _ _ AN390 SM96 _ _ _ _ _ _ AN390 50V 100V 200V 500V 50V 100V 200V 500V 50V .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18 12 –– 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 X7R 54 24 14 5.2 82 36 22 8.0 36 12 Z5U 160 64 24 – – 230 92 68 –– 80 30 C0G 100V 200V 500V 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height of 0.530" - 13.46mm SM91 _ _ _ _ _ _ AN530 AVX STYLE SM92 _ _ _ _ _ _ AN530 SM93 _ _ _ _ _ _ AN530 SM94 _ _ _ _ _ _ AN530 SM95 _ _ _ _ _ _ AN530 SM96 _ _ _ _ _ _ AN530 50V 100V 200V 500V 50V 100V 200V 500V 50V .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28 18 –– 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 3.0 2.1 1.2 3.6 3.0 1.8 .78 1.5 1.2 .60 X7R 82 36 21 7.8 120 54 33 12 54 18 Z5U 250 96 36 – – 350 130 100 – – 120 45 C0G .54 100V 200V 500V 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height of 0.660" - 16.76mm SM91 _ _ _ _ _ _ AN660 AVX STYLE SM92 _ _ _ _ _ _ AN660 SM93 _ _ _ _ _ _ AN660 SM94 _ _ _ _ _ _ AN660 SM95 _ _ _ _ _ _ AN660 SM96 _ _ _ _ _ _ AN660 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37 24 –– 48 18 12 –– 18 7.2 2.8 – – 1000 570 360 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 4.0 2.8 1.6 .72 4.8 4.0 2.4 1.0 2.0 1.6 .80 X7R 110 48 28 10 160 72 44 16 72 24 Z5U 330 120 48 – – 470 180 130 – – 160 60 Max Capacitance (μF) Available Versus Style with Height of 0.800" - 20.3mm SM91 _ _ _ _ _ _ AN800 AVX STYLE SM92 _ _ _ _ _ _ AN800 SM93 _ _ _ _ _ _ AN800 SM95 _ _ _ _ _ _ AN800 SM96 _ _ _ _ _ _ AN800 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .47 .80 .65 .35 .12 .25 .20 .12 .05 16 6.5 2.5 X7R 130 60 35 13 200 90 55 20 90 30 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47 Z5U 420 160 60 – – 590 230 170 – – 200 75 30 –– 60 23 15 –– 23 9.0 3.6 – – 1300 720 460 – – 28 100V 200V 500V SM94 _ _ _ _ _ _ AN800 100V 200V 500V 12 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC SMX-style, stacked Switch Mode Power Supply Capacitors (SMPS) utilizing Multilayer Ceramic (MLCC) construction are ideally suited for high temperature applications up to 200ºC. This product is intended for downhole oil exploration, including logging while drilling, geophysical probes, as well as space and aerospace electronics. The high temperature solder utilized in the construction of SMX-style parts assures reliable operation in harsh environments. The wide product offering provides designers a solution for high capacitance value and high voltage capacitors rated at 200ºC. The SMX-style capacitors are ideally suited for applications as DC filters in high power, high frequency motor drives, high pulsed-current circuitry, as well as low power electronics. SMX-style, SMPS capacitors are characterized with excellent performance in comparison to wet tantalum products. The main benefits of SMX-product over wet tantalum capacitors include: • Much lower ESR and lower losses • Excellent capacitance retention with frequency • Excellent high frequency performance • Low DC leakage current • Much higher current handling capabilities Typical Extended Temperature TCC Characterization of C0G, SMPS Capacitors Test conditions: 1 Vrms, 1 kHz, 0 VDC bias Typical Extended Temperature TCC Characterization of X7R/X9U, SMPS Capacitors Test conditions: 1 Vrms, 1 kHz, 0 VDC bias 1.0 Percentage Capacitance Change 20 0.8 Percentage Capacitance Change 0.6 0.4 0.2 0.0 -0.2 0 -20 -40 -60 -80 -100 -0.4 -75 -50 -25 -0.6 0 25 50 75 100 125 150 175 200 Temperature (ºC) -0.8 -1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 Temperature (ºC) Typical Extended Temperature IR Characterization of X7R/X9U, SMPS Capacitors Typical Extended Temperature IR Characterization of C0G, SMPS Capacitors 10000 RC Product (⍀*F) RC Product (⍀*F) 10000 1000 100 1000 100 10 10 120 130 140 150 160 170 Temperature (ºC) 180 190 200 1 120 130 140 150 160 170 180 190 200 Temperature (ºC) 29 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient X7R/X9U: C Temperature Coefficient 0 ±30 ppm/°C, -55° to +200°C ±15%, -55°C to +125°C +15% - 56%, -55ºC to +200°C Capacitance Test (MIL-STD-202 Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R/X9U: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) 100K MΩ or 1000 MΩ-μF, whichever is less. Insulation Resistance 125°C (MIL-STD-202 Method 302) 10K MΩ or 100 MΩ-μF, whichever is less. Insulation Resistance 200°C (MIL-STD-202 Method 302) 100 MΩ or 1 MΩ -μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Moisture Resistance (MIL-STD-202 Method 106) Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) HOW TO ORDER SMX AVX Style SMX = Uncoated 1 AVX Styles: SMX1, SMX2, SMX3, SMX4, SMX5, SMX6 7 C 106 Size Voltage Temperature Capacitance See 25 = 3 Coefficient Code Dimensions 50V = 5 C0G = A (2 significant digits chart 100V = 1 X7R/X9U = C + number of zeros) 200V = 2 10 pF = 100 500V = 7 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 M A N 650 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Standard Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% Note: Capacitors with X7R/X9U dielectric is not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. 30 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A E 0.254 (0.010) TYP. B RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style SMX1 SMX2 SMX3 SMX4 SMX5 SMX6 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 32 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±.635 (±0.025) 52.1 38.4 26.7 10.2 6.35 52.1 (2.050) (1.510) (1.050) (0.400) (0.250) (2.050) E (max.) 12.7 22.1 12.7 11.2 7.62 34.3 (0.500) (0.870) (0.500) (0.440) (0.300) (1.350) No. of Leads per side 20 15 10 4 3 20 31 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm AVX SMX1 _ _ _ _ _ _ AN120 SMX2 _ _ _ _ _ _ AN120 STYLE 25V 50V 100V 200V 500V 25V C0G 1.0 .70 .40 .18 .068 1.2 X7R/X9U 22 12 7.0 2.6 1.0 33 SMX3 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V 1.0 .60 .26 .10 .50 18 11 4.0 1.5 11 SMX4 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V .40 .20 .09 .033 .16 6.0 3.6 1.3 .50 3.3 SMX5 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V .13 .07 .02 .01 .05 1.8 1.1 .40 .15 1.2 SMX6 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V 50V 100V 200V 500V .04 .02 .01 .0039 3.2 2.4 1.3 .50 .20 .68 .40 .16 .056 68 40 24 9.4 3.3 Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm SMX1 _ _ _ _ _ _ AN240 SMX2 _ _ _ _ _ _ AN240 SMX3 _ _ _ _ _ _ AN240 SMX4 _ _ _ _ _ _ AN240 SMX5 _ _ _ _ _ _ AN240 SMX6 _ _ _ _ _ _ AN240 AVX STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V C0G 2.0 1.4 .80 .36 .13 2.4 2.0 1.2 .52 .20 1.0 .80 .40 .18 .068 .33 .26 .14 .05 .02 .10 .08 .05 .02 .0078 6.4 4.8 2.6 1.0 .40 X7R/X9U 44 24 14 5.2 2.0 66 36 22 8.0 3.0 22 12 7.2 2.6 1.0 6.6 3.6 2.2 .80 .30 2.4 1.3 .80 .32 .110 130 80 48 18 6.6 Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm SMX1 _ _ _ _ _ _ AN360 SMX2 _ _ _ _ _ _ AN360 SMX3 _ _ _ _ _ _ AN360 SMX4 _ _ _ _ _ _ AN360 SMX5 _ _ _ _ _ _ AN360 SMX6 _ _ _ _ _ _ AN360 AVX STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V C0G 3.0 2.1 1.2 .54 .22 3.6 3.0 1.8 .78 .30 1.5 1.2 .60 .27 .10 .48 .39 .21 .07 .03 .15 .12 .07 .03 .011 10 7.2 3.9 1.5 .60 X7R/X9U 68 36 21 7.8 3.0 100 54 33 12 4.5 33 18 10 3.9 1.5 10 5.4 3.3 1.2 .47 3.6 2.0 1.2 .48 .160 200 120 72 28 10 Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm SMX1 _ _ _ _ _ _ AN480 SMX2 _ _ _ _ _ _ AN480 SMX3 _ _ _ _ _ _ AN480 SMX4 _ _ _ _ _ _ AN480 SMX5 _ _ _ _ _ _ AN480 SMX6 _ _ _ _ _ _ AN480 AVX STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V C0G 4.0 2.8 1.6 .72 .27 4.8 4.0 2.2 1.0 .40 2.0 1.6 .80 .36 .130 .64 .52 .28 .10 .04 .20 .16 .10 .04 .015 13 9.6 5.2 2.0 .80 X7R/X9U 88 48 28 10 4.0 130 72 44 16 6.0 44 24 14 5.2 2.0 13 7.2 4.4 1.6 .60 4.8 2.7 1.6 .64 .22 270 160 96 37 13 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm SMX1 _ _ _ _ _ _ AN650 SMX2 _ _ _ _ _ _ AN650 SMX3 _ _ _ _ _ _ AN650 SMX4 _ _ _ _ _ _ AN650 SMX5 _ _ _ _ _ _ AN650 SMX6 _ _ _ _ _ _ AN650 AVX STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V C0G 5.0 3.5 2.0 .90 .34 6.0 5.0 3.0 1.3 .50 2.5 2.0 1.0 .45 .160 .82 .65 .35 .12 .05 .25 .20 .12 .05 .019 16 12 6.5 2.5 1.0 X7R/X9U 110 60 35 13 5.0 160 90 55 20 7.5 56 30 18 6.5 2.5 16 9.0 5.5 2.0 .80 6.0 3.4 2.0 .80 .28 340 200 120 47 16 32 SMPS Capacitors Chip Assemblies CH/CV - Radial, Dual-in-Line, 4 Terminal/SMT ‘J’ & ‘L’ Ranges 10nF to 180 μF BS9100 approved 50V to 500 VDC Low ESR/ESL -55ºC to +125ºC 1B/C0G and 2C1/X7R Dielectrics This range allows SMPS engineers to select the best volumetric solution for input and output filter applications in high reliability designs. Utilizing advanced multilayer ceramic techniques to minimize ESR/ESL giving high current handling properties appropriate for filtering, smoothing and decoupling circuits. ELECTRICAL SPECIFICATIONS Temperature Coefficient CECC 30 000, (4.24.1) 1B/C0G: A Temperature Coefficient - 0 ± 30 ppm/ºC, -55º to +125ºC 2C1/X7R: C Temperature Characteristic - ± 15%, -55º to +125ºC Dielectric Withstanding Voltage 25°C (Flash Test) 1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 150% rated voltage) Capacitance Test 25ºC 1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz for 100 pF or less) 2C1/X7R: Measured at 1 VRMS max at 1KHz Life Test (1000 hrs) CECC 30 000 (4.23) 1B/C0G & 2C1/X7R: 200% rated voltage at +125ºC. (500 Volt units @ 120% rated voltage) Dissipation Factor 25°C 1B/C0G: 0.15% max at 1KHz, 1 VRMS max (1MHz for 100 pF or less) 2C1/X7R: 2.5% max at 1KHz, 1 VRMS max Damp Heat IEC 68-2-3, 56 days. Insulation Resistance 25°C 1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF, whichever is less Resistance to Solder Heat IEC 68-2-20 Dielectric Withstanding Voltage 25°C (Flash Test) 1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 150% rated voltage) Thermal Shock IEC 68-2-14 -55ºC to +125ºC, 5 cycles Vibration IEC 68-2-6 10Hz - 2000Hz, 0.75mm or 98m/sec2, 6 hrs. Bump IEC 68-2-29 390m/sec2, 4000 bumps MARKING CH and CV 4x, 5x, 81-84 A5C 225K xxxxxx Top line A (AVX). Voltage code, dielectric code. Middle line capacitance code, tolerance code. Bottom line 6 digit batch code. Other CH, CV Styles AVX 5C 156M xxxxxx Top line AVX. Second line voltage code, dielectric code. Third line capacitance code, tolerance code. Bottom line, 6 digit batch code. 33 SMPS Capacitors (CV Style) Chip Assemblies VERTICALLY MOUNTED RADIAL PRODUCT DIMENSIONS Part Number format (CVxxxxxxxxxxxA2) Typical Part Number CV525C106MA30A2 T Max. millimeters (inches) L (max) Style CV41-44 CV51-54 CV61-64 CV71-74 CV76-79 L Max. H Max. 10.6 11.9 16.5 17.8 22.7 H (max) (0.417) (0.468) (0.649) (0.700) (0.893) 8.7 10.7 13.6 21.6 16.6 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) 8.2 10.2 15.2 15.2 21.2* (0.322) (0.400) (0.600) (0.600) (0.834) Lead Dia (nom) 0.7 (0.028) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) *Tolerance ± 0.8 millimeters (inches) 25 (0.984) ±3 (0.118) Style Lead Dia. See Table T max CV41/51/61/71/76 CV42/52/62/72/77 CV43/53/63/73/78 CV44/54/64/74/79 S ±0.5 (0.020) 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) VERTICALLY MOUNTED 4 TERMINAL RADIAL PRODUCT Part Number format (CVxxxxxxxxx3xx4) DIMENSIONS Typical Part Number CV435C106MA30A4 T Max. L (max) Style M1 = M2 ±0.5 (0.020) L Max. H Max. millimeters (inches) CV43-44 CV53-54 CV63-64 CV73-74 CV78-79 10.6 11.9 16.5 17.8 22.7 H (max) (0.417) (0.468) (0.649) (0.700) (0.893) 8.7 10.7 13.6 21.6 16.6 (0.342) (0.421) (0.535) (0.850) (0.653) Lead Dia (nom) 0.7 (0.028) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) S (nom) 8.2 10.2 15.2 15.2 21.2* (0.322) (0.400) (0.600) (0.600) (0.834) *Tolerance ± 0.8 (0.031) 25 (0.984) ±3 (0.118) M1 Lead Dia. See Table M2 S1 ±0.5 (0.020) millimeters (inches) Style S1 ±0.5 (0.020) CV43/53/63/73/78 CV44/54/64/74/79 T max S1 11.1 (0.437) 14.8 (0.583) 5.08 (0.200) 7.62 (0.300) Note 1. This style is only available in 3 & 4 chip assemblies HOW TO ORDER CV Style Code 52 5 C 106 Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance (see product section) 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R A 3 0 Specification Code Finish Code Lead Dia. Code Lead Space Code Lead Style Code 3 = Uncoated 0 = Standard 8 = Coated (classified as uninsulated) A = Standard 2 = 2 Terminal 4 = 4 Terminal See Note 1 above (2 significant C0G: J = ±5% A = Non-customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% Note: See page 109 for How to Order BS9100 parts 34 M A 2 SMPS Capacitors (CH Style) Chip Assemblies HORIZONTALLY MOUNTED 4 TERMINAL RADIAL PRODUCT DIMENSIONS Part Number format (CHxxxxxxxxx3xx4) Typical Part Number CH782C106MA30A4 L max W max T max 25 (0.984) ±3 (0.118) Lead dia (see table) Style L (max) W (max) S (nom) CH42-44 CH52-54 CH62-64 CH72-74 CH77-79 CH82-84 CH87-89 CH92-94 10.6 (0.417) 11.9 (0.468) 16.5 (0.649) 17.8 (0.700) 22.7 (0.893) 14.1 (0.555) 17.8 (0.700) 22.7 (0.893) 8.7 (0.342) 10.7 (0.421) 13.6 (0.535) 21.6 (0.850) 16.6 (0.653) 38.2 (1.503) 38.2 (1.503) 40.6 (1.598) 8.2 (0.322) 10.2 (0.400) 15.2 (0.600) 15.2 (0.600) 21.2* (0.834) 10.2 (0.400) 15.2 (0.600) 21.2* (0.834) S1 (nom) 5.08 (0.200) 7.62 (0.300) 7.62 (0.300) 15.2 (0.600) 10.2 (0.400) 27.9 (1.100) 27.9 (1.100) 30.5 (1.200) *Tolerance ± 0.8 M2 M1 millimeters (inches) S Lead Dia (nom) 0.7 (0.028) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 1.0 (0.039) 1.2 (0.047) NOTE: This style is only available in 2, 3 & 4 chip assemblies only S1 ± 0.5 (0.020) M1 = M2 ± 0.5 (0.020) millimeters (inches) Style S ± 0.5 (0.020) T max CH42/52/62/72/77/87/92 CH43/53/63/73/78/88/93 CH44/54/64/74/79/89/94 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HORIZONTALLY MOUNTED DUAL-IN-LINE PRODUCT DIMENSIONS Part Number format (CHxxxxxxxxxx0A0) Typical Part Number CH615C106MA30A0 W max CH41-44 CH51-54 CH61-64 CH71-74 CH76-79 CH81-84 CH86-89 CH91-94 2.0 (0.079) max T max 13 (0.512) ± 1 (0.039) L2 9.2 10.7 14.9 16.8 21.6 12.0 18.9 24.0 (0.362) (0.421) (0.586) (0.661) (0.850) (0.472) (0.744) (0.944) W (max) 8.7 10.7 13.6 21.6 16.6 38.2 38.2 40.6 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) (1.503) (1.503) (1.598) 8.2 10.2 14.0 15.2 20.3* 10.2 15.2 20.3* (0.322) (0.400) (0.551) (0.600) (0.800) (0.400) (0.600) (0.800) No. of Leads per side 3 4 5 7 6 14 14 14 *Tolerance ± 0.8 (0.031) S ± 0.5 (0.020) millimeters (inches) Style CH41/51/61/71/76/81/86/91 CH42/52/62/72/77/82/87/92 CH43/53/63/73/78/83/88/93 CH44/54/64/74/79/84/89/94 L1 2.54 (0.100) ± 0.05 (0.002) L (max) Style L max millimeters (inches) Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) T max 3.8 (0.150) 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HOW TO ORDER CH Style Code 52 5 C 106 M Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance (see product section) 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R A 3 0 Specification Code Finish Code Lead Dia. Code Lead Space Code 3 = Uncoated 0 = Standard 8 = Coated (classified as uninsulated) A = Standard (2 significant C0G: J = ±5% A = Non-customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% A 0 Lead Style Code 0 = Straight dual in line 4 = 4 Terminal Note: See page 109 for How to Order BS9100 parts 35 SMPS Capacitors (CH Style) Chip Assemblies HORIZONTALLY MOUNTED ‘L’ LEAD SMT PRODUCT DIMENSIONS Part Number format (CHxxxxxxxxxx0A7) Typical Part Number CH411C275KA30A7 L (max) Style W max 2.54 (0.1) ± 0.5 (0.02) T max L max S ± 0.5 (0.02) 2.54 (0.1) ± 0.5 (0.02) millimeters (inches) CH41-44 CH51-54 CH61-64 CH71-74 CH76-79 CH81-84 CH86-89 CH91-94 9.2 10.7 14.9 16.8 21.6 12.0 18.9 24.0 W (max) (0.362) (0.421) (0.586) (0.661) (0.850) (0.472) (0.744) (0.944) 8.7 10.7 13.6 21.6 16.6 38.2 38.2 40.6 No. of Leads per side 3 4 5 7 6 14 14 14 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) (1.503) (1.503) (1.598) 8.2 10.2 14.0 15.2 20.3* 10.2 15.2 20.3* (0.322) (0.400) (0.551) (0.600) (0.800) (0.400) (0.600) (0.800) *Tolerance ± 0.8 (0.031) NOTE: A ‘L’ lead low profile version (CH....0A5) is available with lead height 1.1 (0.043) max. for single chip assemblies eg. CH415C225MA30A5 L1 L2 Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) millimeters (inches) Style CH41/51/61/71/76/81/86/91 CH42/52/62/72/77/82/87/92 CH43/53/63/73/78/83/88/93 CH44/54/64/74/79/84/89/94 T max 3.8 (0.150) 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HORIZONTALLY MOUNTED ‘J’ LEAD SMT PRODUCT Part Number format (CHxxxxxxxxxx0A8) DIMENSIONS Typical Part Number CH411C275KA30A8 L2 L1 2.54 (0.100) ± 0.5 (0.020) T max L max S ± 0.5 (0.020) W max millimeters (inches) L (max) Style CH41-44 CH51-54 CH61-64 CH71-74 CH76-79 CH81-84 CH86-89 CH91-94 9.2 10.7 14.9 16.8 21.6 12.0 18.9 24.0 W (max) (0.362) (0.421) (0.586) (0.661) (0.850) (0.472) (0.744) (0.944) 8.7 10.7 13.6 21.6 16.6 38.2 38.2 40.6 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) (1.503) (1.503) (1.598) 8.2 10.2 14.0 15.2 20.3* 10.2 15.2 20.3* (0.322) (0.400) (0.551) (0.600) (0.800) (0.400) (0.600) (0.800) No. of Leads per side 3 4 5 7 6 14 14 14 *Tolerance ± 0.8 (0.031) 2.54 (0.100) ± 0.5 (0.020) millimeters (inches) Style CH41/51/61/71/76/81/86/91 CH42/52/62/72/77/82/87/92 CH43/53/63/73/78/83/88/93 CH44/54/64/74/79/84/89/94 NOTE: A ‘J’ lead low profile version (CH....0A3) is available with lead height 1.1 (0.043) max. for single chip assemblies eg. CH515C475MA30A3 Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) T 3.8 7.4 11.1 14.8 max (0.150) (0.291) (0.437) (0.583) HOW TO ORDER CH Style Code 52 5 C 106 Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance (see product section) 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R A Specification Code (2 significant C0G: J = ±5% A = Non-customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% Note: See page 109 for How to Order BS9100 parts 36 M 3 0 Finish Code Lead Dia. Code 3 = Uncoated 0 = Standard 8 = Coated (classified as uninsulated) A 7 Lead Space Code Lead Style Code A = Standard 3 = Low profile ‘J’ (single chip) 5 = Low profile ‘L’ (single chip) 7 = ‘L’ Dual in line 8 = ‘J’ Dual in line SMPS Capacitors (CH/CV Style) Chip Assemblies C0G DIELECTRIC ULTRA STABLE CERAMIC CH/CV41-44 Styles CH/CV51-54 Styles CH/CV61-64 Styles CH/CV71-74 Styles CH/CV76-79 Styles CH81-84 Styles CH86-89 Styles CH91-94 Styles Voltage DC Cap μF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 0.01 41 0.012 41 0.015 41 0.018 41 0.022 42 51 0.027 42 51 0.033 41 42 52 61 0.039 41 42 52 61 0.047 41 41 43 52 61 0.056 41 41 43 52 61 0.068 41 41 41 44 51 53 62 71 76 0.082 41 41 42 51 53 62 71 76 81 0.1 41 42 42 51 51 54 62 71 76 81 0.12 42 42 42 51 51 52 61 62 72 77 81 86 0.15 42 42 42 51 52 52 61 61 63 72 77 81 86 0.18 42 42 43 51 52 52 61 61 63 72 77 82 86 0.22 42 43 43 52 52 52 61 61 62 64 71 72 76 77 81 82 86 91 0.27 43 43 44 52 52 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91 0.33 43 44 52 53 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91 0.39 44 52 53 54 62 62 62 71 71 72 74 76 76 77 79 81 81 81 83 86 87 92 0.47 53 54 62 62 63 71 71 72 76 76 77 81 81 81 83 86 87 92 0.56 53 62 63 63 71 72 72 76 77 77 81 81 82 84 86 86 88 92 0.68 54 62 63 64 72 72 72 77 77 77 81 82 82 86 86 86 88 92 0.82 63 64 72 72 73 77 77 78 82 82 82 86 86 87 89 91 93 1 63 64 72 72 73 77 77 78 82 82 82 86 87 87 91 91 93 64 72 73 74 1.2 81 77 78 79 82 82 83 87 87 87 91 91 92 94 1.5 73 73 78 78 82 83 83 87 87 87 91 92 92 1.8 73 74 78 79 83 83 84 87 87 88 92 92 92 2.2 74 79 83 84 87 88 88 92 92 92 88 88 89 2.7 84 3.3 88 89 3.9 89 92 92 93 92 93 93 93 93 94 4.7 93 94 5.6 94 NB Figures in cells refer to size within ordering information 37 SMPS Capacitors (CH/CV Style) Chip Assemblies X7R DIELECTRIC STABLE CERAMIC CH/CV41-44 Styles CH/CV51-54 Styles CH/CV61-64 Styles CH/CV71-74 Styles CH/CV76-79 Styles CH81-84 Styles CH86-89 Styles CH91-94 Styles Voltage DC Cap μF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 0.12 41 0.15 41 0.18 41 0.22 41 0.27 42 51 0.33 41 42 51 0.39 41 42 51 0.47 41 42 52 61 0.56 41 43 52 61 0.68 42 43 51 52 61 0.82 42 44 51 52 61 71 76 81 1 41 42 44 51 53 61 62 71 76 81 41 42 52 53 61 62 71 76 81 1.5 41 43 52 54 61 62 71 76 81 1.8 41 41 43 52 61 62 72 77 82 86 2.2 41 41 44 51 52 61 63 71 72 76 77 81 82 86 2.7 41 41 51 53 62 63 71 72 76 77 81 82 87 91 3.3 41 42 51 53 62 64 71 72 76 77 81 82 87 91 3.9 42 42 51 51 54 62 72 73 77 78 81 83 86 87 91 4.7 42 42 51 52 61 62 72 73 77 78 82 83 86 87 91 5.6 42 42 51 52 61 63 72 74 77 79 82 84 86 88 92 6.8 42 43 52 52 61 61 63 8.2 43 43 52 52 61 61 64 10 43 44 52 53 61 62 64 12 44 53 53 62 62 15 53 54 62 62 71 71 76 76 81 81 84 18 54 62 63 71 72 76 77 81 81 22 54 62 63 72 72 77 77 27 63 64 72 72 33 63 64 39 64 1.2 86 72 77 82 86 88 92 71 73 76 78 82 87 89 91 92 71 73 76 78 83 87 91 92 71 71 74 76 76 79 81 83 87 92 93 86 87 92 93 86 88 92 94 81 82 86 86 88 92 77 77 82 82 86 86 89 93 72 73 77 78 82 82 86 87 91 93 72 73 77 78 82 82 87 87 91 91 94 47 73 74 78 79 82 83 87 87 91 92 56 73 78 83 83 87 87 92 92 68 74 79 83 84 87 88 92 92 84 88 88 92 92 100 88 89 92 93 120 89 93 93 82 150 93 94 180 94 NB Figures in cells refer to size within ordering information 38 TurboCapTM High-CV SMPS Capacitors The TurboCapTM, MLC capacitors from AVX Corporation are characterized with very high capacitance in a small volume. By vertical stacking of the ceramic elements, the footprint required for mounting the capacitors is greatly reduced. TurboCapsTM are ideally suited as filters in the input and output stages of switch mode power supplies (SMPS). With their ultra-low ESR, these capacitors are designed to handle high ripple current at high frequencies and high power levels. The DIP leads in either thru-hole or surface mount configurations offer superior stress relief to the ceramic elements. The leads effectively decouple the parts from the board and minimize thermally or mechanically induced stresses encountered during assembly, temperature cycling or other environmental conditions. TYPICAL APPLICATION OF TURBOCAPTM SMPS CAPACITORS FOR INPUT AND OUTPUT FILTERS IN DC/DC CONVERTERS SNUBBER Vout Vin OUTPUT FILTER INPUT FILTER VCC FB G PWM CONTROLLER GND 39 TurboCapTM High-CV SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. ±15%, -55° to +125°C Capacitance Test (MIL-STD-202 Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs) X7R: 150% rated voltage at +125°C. Dissipation Factor 25°C 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106) Ten cycles with no voltage applied. Insulation Resistance 25°C (MIL-STD-202 Method 302) 500 MΩ-μF, whichever is less. Thermal Shock (MIL-STD-202 Method 107, Condition A) Insulation Resistance 125°C (MIL-STD-202 Method 302) 50 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Typical ESR Performance (Ω) 27μF 0.007 0.003 0.002 ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz HOW TO ORDER 47μF 0.004 0.002 0.0015 100μF 0.003 0.0015 0.001 AVX Styles: ST12 and ST20 ST12 5 C 186 M A N 03 AVX Style ST12 ST20 Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 1 μF = 105 10 μF = 106 100 μF = 107 Capacitance Tolerance M = ±20% Test Level A = Standard Termination N = Straight Lead J = Leads formed in L = Leads formed out Number of Leads Per Side 03 = 3 05 = 5 10 = 10 CAPACITANCE (μF) ST12 Cap (μF) .82 1.3 2.7 8.2 12 14 18 22 27 47 50 68 100 220 40 50V ST20 100V Voltage 25V 50V 100V 500V ...03 ...05 ...03 ...03 ...10 ...05 ...05 ...03 ...05 ...10 ...03 ...05 ...10 ...10 Development ...10 Numbers inside shaded areas refer to the number of leads per side (the last two digits of the part number. TurboCapTM High-CV SMPS Capacitors E D B A 1.397 (0.055) ±0.254 (0.010) 6.35 (0.25) MIN. 0.254 (0.010) TYP. 0.508 (0.020) TYP. C 3, 5 or 10 leads per side 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “N” STYLE LEADS E D B 0.254 (0.010) RAD. TYP. A 1.397 (0.055) ±0.254 (0.010) 1.778 (0.070) ± 0.254 (0.010) B 0.508 (0.020) TYP. 3, 5 or 10 leads per side 1.397 (0.055) ± 0.127 (0.005) C 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “J” STYLE LEADS E D B A 1.397 (0.055) ±0.254 (0.010) 1.778 (0.070) ± 0.254 (0.010) B 0.508 (0.020) TYP. 3, 5 or 10 leads per side 0.254 (0.010) RAD. TYP. 1.397 (0.055) ± 0.127 (0.005) C 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “L” STYLE LEADS DIMENSIONS Style ST125C***M*N03 ST125C***M*N05 ST125C***M*N10 ST205C***M*N03 ST205C***M*N05 ST205C***M*N10 millimeters (inches) A (max.) 3.56 3.56 3.56 5.59 5.59 5.59 (0.140) (0.140) (0.140) (0.220) (0.220) (0.220) B (max.)* 5.21 5.21 5.21 7.24 7.24 7.24 (0.205) (0.205) (0.205) (0.285) (0.285) (0.285) C ± 0.635 (± 0.025) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 6.35 (0.250) 6.35 (0.250) 6.35 (0.250) D ± 1.27 (± 0.050) 9.53 (0.375) 14.61 (0.575) 26.67 (1.050) 8.26 (0.325) 13.34 (0.525) 26.04 (1.025) E (max.) 6.35 6.35 6.35 7.62 7.62 7.62 (0.250) (0.250) (0.250) (0.300) (0.300) (0.300) Lead Style N N N N N N No. of Leads Per Side 03 05 10 03 05 10 *The “B” dimension is defined for the “N” Style leads. The “L” and “J” Style Leads are 0.381 (0.015) longer. The ST12 will be 5.89 (0.220), the ST20 will be 7.62 (0.300). 41 MH Ceramic Capacitor Lead Free Ceramic Capacitor in Molded SM Leadframe AVX are pleased to introduce the MH range of multi layer ceramic capacitors. The MH components are surface mount molded parts with a multi layer ceramic insert. MH capacitors combine the ceramic attributes of very low ESR, non polar construction, excellent high frequency behavior, excellent voltage stress capabilities and wide temperature range; with the enhanced mechanical protection of a molded case. The MH range provides a lead free solution to customers who have previously been unable to use large case ceramic capacitors because of mechanical stressing concerns. HOW TO ORDER MH V 1 1 C 225 M A T 2 A MH Series Case Size see table below MLCC Count Voltage 3 = 25V 5 = 50V 1 = 100V Dielectric C = X7R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% Failure Rate A = Not Applicable Terminations T = Tin Plated Packaging 2 = 7" Reel 4 = 13" Reel 6 = Waffle Pack Special Code A= Std. Product MH X7R TARGET RANGE 105 125 155 185 225 275 335 395 475 565 685 825 106 126 156 186 226 276 336 396 476 Cap μF 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 25V PACKAGING 50V 100V 7" Reels 13" Reels Waffle Pack 400 1500 108 CASE DIMENSIONS: millimeters (inches) Code EIA Code L±0.20 (0.008) V 7361-38 7.30 (0.287) W+0.20 (0.008) H+0.20 (0.008) -0.10 (0.004) -0.10 (0.004) 6.10 (0.240) 3.45±0.30 (0.136±0.012) = In development, contact plant for detail NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications. 42 LEAD-FREE COMPATIBLE COMPONENT TS 16949, ISO 14001 Certified Manufacture SMPS Capacitors (RH Style) RH - Surface Mount ‘J’ Lead Range 0.047 μF to 47.0 μF Low ESR/ESL 25V to 500 VDC X7R Dielectric -55ºC to +125ºC This range of uncoated MLC capacitors are processed for input and output filter capacitors in high frequency DC-DC convertor applications above 10 Watts e.g. telecomms and instrumentation, where high volume and low cost is required. These products are available in surface mount ‘J’ leaded versions and can be supplied in bulk and tape/reel packaging. ELECTRICAL SPECIFICATIONS Typical ESR (mΩ) 3 μF, 100V X7R Temperature Coefficient CECC 30 000, (4.24.1) X7R: C Temperature Characteristic - ± 15%, -55ºC to +125ºC Capacitance Test Measured at 1 VRMS max at 1KHz ESR @ 100KHz 17 ESR @ 500KHz 12 ESR @ 1MHz 14 DIMENSIONS Dissipation Factor 25°C 2.5% max at 1KHz, 1 VRMS max Style L max RH21 7.62 (0.300) 5.40 (0.213) 4.60 (0.181) 2.50 (0.098) RH22 7.62 (0.300) 5.40 (0.213) 7.50 (0.295) 2.50 (0.098) RH31 7.62 (0.300) 7.00 (0.270) 5.08 (0.200) 5.08 (0.200) Life Test (1000 hrs) CECC 30 000 (4.23) 200% rated voltage at +125ºC. (500 Volt units @ 120% rated voltage) RH32 7.62 (0.300) 7.00 (0.270) 8.13 (0.320) 5.08 (0.200) RH41 9.20 (0.362) 8.70 (0.342) 4.90 (0.192) 5.08 (0.200) Thermal Shock IEC 68.2.14 -55ºC to +125ºC, 5 cycles RH42 9.20 (0.362) 8.70 (0.342) 8.20 (0.323) 5.08 (0.200) RH51 10.7 (0.421) 10.7 (0.421) 4.90 (0.192) 7.62 (0.300) RH52 10.7 (0.421) 10.7 (0.421) 8.20 (0.323) 7.62 (0.300) RH61 14.9 (0.586) 13.6 (0.535) 4.90 (0.192) 10.2 (0.400) RH62 14.9 (0.586) 13.6 (0.535) 8.20 (0.323) 10.2 (0.400) Insulation Resistance 25°C 100K megohms or 1000 megohms-μF, whichever is less Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 150% rated voltage) Resistance to Solder Heat IEC 68.2.20 W max millimeters (inches) H max S ± 0.1 (±0.004) h No. of leads per side 1.50 ±0.30 (0.059 ±0.012) 1.50 ±0.30 (0.059 ±0.012) 1.78 ±0.25 (0.070 ±0.010) 1.78 ±0.25 (0.070 ±0.010) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 2 2 3 3 3 3 4 4 5 5 DIMENSIONS millimeters (inches) L Max. W Max. 0.6 (0.024) ±0.1 (0.004) M1 M1 = M2 ±0.5 (0.020) H Max. h M2 0.25 (0.010)Typ. 2.54 (0.100) ±0.05 (0.002) Non-Accum. Bend Radius 90° ±5° 1.4 (0.055) Typ. 1.65 (0.065) ±0.15 (0.006) S 43 SMPS Capacitors (RH Style) RH - Surface Mount ‘J’ Lead Range X7R STABLE DIELECTRIC RH21/RH22 Style Cap μF 0.047 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.56 0.68 0.78 0.82 1 1.2 1.5 1.8 2.2 2.7 3 3.3 3.9 4.4 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 25 50 100 200 RH31/RH32 Style 500 50 100 RH41/RH42 Style Voltage DC 200 500 50 100 RH51/RH52 Style 200 500 50 100 200 RH61/RH62 Style 500 50 100 200 500 RH31 RH41 RH32 RH31 RH42 RH51 RH41 RH32 RH52 RH42 RH31 RH21 RH62 RH31 RH61 RH52 RH41 RH32 RH21 RH61 RH51 RH41 RH51 RH62 RH32 RH22 RH42 RH51 RH42 RH52 RH61 RH52 RH61 RH62 RH21 RH22 RH62 RH22 For availability of further parts in the RH21/RH22 Series, contact manufacturing. PACKAGING Style RH21 RH22 RH31 RH32 RH41 RH42 RH51 RH52 RH61 RH62 Qty/Reel 13" 800 500 800 500 800 see note 750 see note 500 see note Max. Qty/Waffle Pack 270 270 108 108 108 100 88 88 42 42 Note: T&R is not yet available. Contact manufacturing for further information as this will be available in the future. HOW TO ORDER RH 31 5 C 225 M Style Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Code Tolerance (see table above) 3 = 25V C = X7R (2 significant K = ±10% 5 = 50V 1 = 100V 2 = 200V 7 = 500V 44 digits + no. of zeros) eg. 105 = 1 μF 104 = 0.1 μF M = ±20% A 3 0 Specification Code Package Code Lead Dia. Code A = Non customized 3 = Waffle Pack A = Tape & Reel A 3 Lead Space Lead Style Code Code 0 = Standard A = Standard R = RoHS Compliant 3 = ‘J’ Lead SMPS Capacitors Custom Lead Configurations For the requirements that cannot be satisfied by standard SMPS style products (SM0-style or SM9-style), AVX offers leading edge solutions in custom lead configuration and custom packaging. Custom lead configurations offering optimum packaging, high current handling capabilities and stress relief mounting options are all possible with AVX. The custom solutions provided by AVX maintain high reliability of stacked capacitor product originally developed by AVX and historically recognized as the highest reliability product in the market. Custom packaging options provide solutions that eliminate reliability concerns in the next level assembly. These custom options provide the following benefits: CUSTOM LEAD CONFIGURATIONS… • eliminate soldering requirements altogether by providing means of electrical/mechanical connection to the circuit • provide options for remote soldering away from large ceramic capacitor body and eliminating the risk of thermal shock (refer to photograph with soft, insulated leads soldered to the stacked capacitor using high melting point SN10 solder) Many other innovations are available from AVX Olean Advanced Products. Let them apply these ideas to your application specific requirements. Please consult with AVX’s Application Engineering staff for a custom solution that will meet demands of your program requirements. CUSTOM PACKAGING… 45 SMPS Capacitors Assembly Guidelines Reliability ២ ២ = ២ Voltage Acceleration ២ AVX has been involved in numerous military and customer High Reliability programs for over 40 years. Reliability [% Failure Rate (FR%) or Mean Time Between Failure (MTBF)] is based on the number of failures and the cumulative test hours expanded by test versus use acceleration factors. The acceleration factors are calculated according to the following relationships: TT – TU 25 Temperature Where: = 10 Acceleration TT = test temp. (°C) TU = use temp. (°C) VT Vu 3 Where: VT = test voltage VU = use voltage Military Reliability levels are usually expressed in terms of rated conditions versus test conditions (generally 125°C and 2X WVDC). If actual conditions are less than rated, the reliability levels will improve significantly over rated and can be calculated by use of the above relationship for determining accelerated test hours. For example, if the actual use conditions were 75°C and 1/2 WVDC rating for a 125°C rated part, the acceleration factors are 64X for voltage and 100X for temperature. Reliabilities based on current testing can be obtained by contacting AVX. General Processing Guidelines Soldering The SM styles capacitors are generally quite large relative to other types of MLC capacitors. As a result of the size, precautions must be taken before subjecting the parts to any soldering operation in order to prevent thermal shock. Preheat prior to soldering is essential. The heating rate of the SupraCap® ceramic bodies during preheat must not exceed 4°C/second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies, adjacent to lead material, through the soldering process. The leads are attached to the chip stack with 10 / 88 / 2 (Sn / Pb / Ag, Solidus 268°C, Liquidus 290°C). Vibration Specifications* Due to the weight of the SupraCap® and the size and strength of the lead frame used, when the SupraCap® is to be used in an application where it will undergo high frequency vibration, we strongly recommend using our potted SM9 styles SupraCap®. If other DIP styles SupraCap® are to be used in a high frequency vibration environment, the SupraCap® should be supported in some way to prevent oscillation of the capacitor assembly which will result in lead breakage. If “strapping” the SupraCap® to the board is the chosen method of support, care should be taken not to chip the ceramic or apply undue pressure so that cracking of the ceramic results. 46 If bonding the SupraCap® to the board with adhesive, consideration of the CTE (coefficient of thermal expansion) is necessary. A mismatch between the CTE of the ceramic and adhesive can cause the ceramic to crack during temperature cycles. Processing Guidelines* There are practical size limitations for MLCs which prohibit reliable direct mounting of chip capacitors larger than 2225 (.22" x .25") to a substrate. These large chips are subject to thermal shock cracking and thermal cycling solder joint fatigue. Even 1812 (.18" x .12") and 2225 chip capacitors will have solder joint failures due to mechanical fatigue after 1500 thermal cycles from 0 to 85°C on FR4 and 3000 cycles on alumina from -55 to 125°C. This is due to differences in the Coefficient of Thermal Expansion (CTE) between MLCs and substrate materials used in hybrids and surface mount assemblies. Materials used in the manufacture of all electronic components and substrates have wide ranges of CTEs as shown in Table 1. Table I CTEs of Typical Components and Substrates Material Alloy 42 Alumina Barium Titanate Capacitor Body Copper Copper Clad Invar Filled Epoxy Resin (<TR) FR4/G-10 PC Board (X, Y) Nickel or Steel Polyimide/Glass PCB (X, Y) Polyimide/Kevlar PCB (X, Y) Tantalum Tin Lead Alloys CTE (ppm/°C) 5.3 7 10-12 17.6 6-7 18-25 18 15 12 7 6.5 27 Linear Displacement This CTE difference translates into mechanical stress that is due to the linear displacement of substrate and component. Linear displacement is a function of ⌬CTE (CTEsub – CTEcomp) and the overall length of the component. Long components/ substrates have large linear displacements even with a small ⌬CTE which will cause high stress in the solder joints and fatigue after a few temperature cycles. Figure 1 shows linear displacement for conditions where ⌬CTE is positive and negative. * Reference AVX Technical Information paper, “Processing Guidelines for SMPS Capacitors.” SMPS Capacitors Assembly Guidelines DIMENSIONS AT AMBIENT TEMPERATURE CAPACITOR "J" LEADS CAPACITOR BODY SUBSTRATE SUBSTRATE LINEAR DISPLACEMENT PUTS SOLDER JOINT AND CAPACITOR IN TENSION CAPACITOR SUBSTRATE "L" LEADS CAPACITOR BODY SOLDER FILLETS SOLDER LAND Toper > T amb CTE sub > CTE cap SUBSTRATE SUBSTRATE LINEAR DISPLACEMENT PUTS SOLDER JOINT AND CAPACITOR IN COMPRESSION CAPACITOR SUBSTRATE Figure 3. “J” and “L” Leadframes Mounted on Capacitors to Relieve Stress Toper > T amb CTE sub < CTE cap Figure 1. Linear Displacement Between Component and Substrate General Processing Guidelines Figure 2 shows the location of maximum stress in the solder joint due to positive and negative DCTE and linear displacement. SOLDER FILLET CAPACITOR MAXIMUM STRESS Inductance Adding leadframes has a small impact on component inductance but this is the price that must be paid for reliable operation over temperature. Figure 4 shows typical leadframe inductance that is added for two lead standoff distances (0.020" and 0.050") versus the number of leads along one side of SupraCap® which are specifically designed output filter capacitors for 1 MHz and above switchers. The actual inductance will be somewhat less because the leadframes flare out from the lead where the leadframe is attached to the capacitor body. 0.4 Stress for Toper > T amb CTE sub > CTE cap MAXIMUM STRESS CAPACITOR Total Leadframe Inductance (nH) SUBSTRATE 0.3 0.2 0.1 0.050" Standoff 0.020" Standoff SOLDER FILLET 0 SUBSTRATE 5 10 15 Number of leads on one side of Capacitor 20 Figure 4. Number of Leads on One Side of Capacitor vs. Total Leadframe Inductance vs. Substrate Standoff Height Stress for Toper > T amb CTE sub < CTE cap Figure 2 Stress Relief Leadframes on larger capacitor sizes (greater than 2225) must be used to minimize mechanical stress on the solder joints during temperature cycling which is normal operation for power supplies (Figure 3). Failing solder joints increase both ESR and ESL causing an increase in ripple, noise and heat, accelerating failure. Layout Effective solder dams must be used to keep all molten solder on the solder lands during reflow or solder will migrate away from the land, causing opens or weak solder joints. High frequency output filters cannot use low power layout techniques such as necked down conductors because of the stringent inductance requirements. Very high frequency switch mode power supplies place tremendous restrictions on output filter capacitors. In addition to handling high ripple current (low ESR), ESL must approach zero nano henrys, part must be truly surface mountable and be available in new configurations to be integrated into transmission lines to further reduce inductance with load currents greater than 40A at 1 MHz and as frequencies move above 1-2 MHz. The total inductance is the sum of each side of the part where the inductance of one side is the parallel combination of each lead in the leadframe. That inductance is given by: L (nH) = 5x [In (2x) / (B+C) + 1/2] Where = lead length in inches In = natural log B+C = lead cross section in inches so L1 (nH) = 2xL (nH) where L1 is the total inductance of the leadframe. 47 SMPS Capacitors (SK Style) Commercial Radial Range PRODUCT OFFERING – C0G, X7R AND Z5U AVX SK styles are conformally coated MLC capacitors for input or output filtering in switch mode power supplies. They are specially processed to handle high currents and are low enough in cost for commercial SMPS application. ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. HOW TO ORDER SK Style 01 Size See chart below 3 E 125 Voltage 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 Temperature Coefficient Z5U = E X7R = C C0G = A Capacitance Code (2 significant digits + no. of zeros) 22 nF = 223 220 nF = 224 1 μF = 105 100 μF = 107 Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. TAPE & REEL QUANTITY RoHS Part SK01 Pieces 2000 Part SK01 Available Yes SK03/SK53 1000 SK03/SK53 Yes SK04/SK54 1000 SK04/SK54 Yes SK05/SK55 500 SK05/SK55 Yes SK06/SK56 500 SK06/SK56 Yes SK07 N/A SK07 No SK08 N/A SK08 No SK09/SK59 500 SK09/SK59 Yes SK10/SK60 400 SK10/SK60 Yes 48 Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1K MΩ or 100 MΩ-μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Z A A * Test Capacitance Leads Packaging Level Tolerance A = Tin/Lead (See Note 1) C0G: J = ±5% A = Standard R = RoHS K = ±10% Compliant B = Hi-Rel* M = ±20% Note 1: No suffix signifies bulk packaging, X7R: K = ±10% which is AVX standard packaging. M = ±20% SK01, SK*3, SK*4, SK*5, SK*6, SK*9 Z = +80, -20% & SK*0 are available taped and reel Z5U: M = ±20% per EIA-468. Use suffix “TR1” if tape & reel is required. Z = +80, -20% P = GMV (+100, -0%) *Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. SMPS Capacitors (SK Style) Product Offering – C0G, X7R and Z5U L L L H H T H H + 3.683 (0.145) M M M LL LL LL LD LD LD LS LS SK01 LS SK03 – SK10 SK53 - SK56 and SK59 – SK60 C0G Capacitance Range (μF) Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 25 WVDC min./max. .001/0.015 .01/0.056 .01/0.12 .01/0.18 .10/0.56 .10/0.68 .82/1.20 .10/0.27 .10/0.68 50 WVDC min./max. .001/0.012 .01/0.047 .01/0.10 .01/0.15 .01/0.47 .01/0.56 .68/1.10 .01/0.22 .01/0.56 100 WVDC 200 WVDC X7R Capacitance Range (μF) 500 WVDC Style min./max. min./max. min./max. .001/0.010 .0010/0.0056 .0010/0.0018 .01/0.039 .001/0.022 .001/0.0068 .01/0.082 .01/0.047 .001/0.015 .01/0.12 .01/0.068 .001/0.022 .01/0.39 .01/0.22 .01/0.068 .01/0.47 .01/0.27 .01/0.082 .56/0.82 .33/0.47 .10/0.15 .01/0.18 .01/0.10 .001/0.039 .01/0.47 .01/0.27 .01/0.082 SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 25 WVDC min./max. .01/0.39 .10/2.2 .10/4.7 .10/6.8 1.0/15 1.0/18 22/33 .10/8.2 1.0/18 50 WVDC min./max. .01/0.33 .10/1.8 .10/3.3 .10/6.8 1.0/10 1.0/14 15/22 .10/5.6 1.0/12 100 WVDC min./max. .01/0.27 .01/1.5 .10/2.7 .10/3.9 .10/5.6 1.0/8.2 10/15 .10/3.3 .10/6.8 200 WVDC min./max. .01/0.12 .01/0.68 .01/1.0 .10/1.8 .10/3.9 .10/4.7 5.6/8.2 .10/2.2 .10/4.7 500 WVDC min./max. .001/0.047 .01/0.27 .01/0.47 .01/0.68 .10/1.5 .10/2.2 2.2/3.9 .10/1.2 .10/2.2 Z5U Capacitance Range (μF) Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 25 WVDC min./max. .10/1.2 .10/5.6 1.0/10.0 1.0/18.0 1.0/47.0 1.0/68.0 82/120.0 1.0/27.0 1.0/56.0 50 WVDC min./max. .10/0.82 .10/3.30 1.0/8.20 1.0/10.00 1.0/39.00 1.0/47.00 56/100.00 1.0/18.00 1.0/39.00 100 WVDC 200 WVDC min./max. .10/0.47 .10/2.20 .10/4.70 1.0/6.80 1.0/22.00 1.0/27.00 33/47.00 1.0/10.00 1.0/22.00 min./max. .10/0.33 .10/1.50 .10/3.30 .10/4.70 1.0/15.00 1.0/18.00 22/33.00 1.0/6.80 1.0/18.00 DIMENSIONS Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 L = Length H = Height millimeters (inches) L (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 22.1 (0.870) 27.9 (1.100) 27.9 (1.100) 17.0 (0.670) 23.6 (0.930) H (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 15.2 (0.600) 15.2 (0.600) 15.2 (0.600) 13.7 (0.540) 18.3 (0.720) T = Thickness M = Meniscus 1.52 (0.060) max. T (max.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 8.89 (0.350) 5.08 (0.200) 6.35 (0.250) LS (nom.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 10.2 (0.400) 20.1 (0.790) 24.9 (0.980) 24.9 (0.980) 14.6 (0.575) 20.3 (0.800) LD (nom.) 0.508 (0.020) 0.508 (0.020) 0.508 (0.020) 0.635 (0.025) 0.813 (0.032) 0.813 (0.032) 0.813 (0.032) 0.635 (0.025) 0.813 (0.032) LS = Lead Spacing Nominal ±.787 (0.031) LL = Lead Length 50.8 (2.000) max./25.4 (1.000) min. LD = Lead Diameter Nominal ±.050 (0.002) 49 SMPS Capacitors (SE Style) Extended Commercial Radial Range PRODUCT OFFERING – X7R AVX SE styles offer capacitance extension to popular SK ranges. The CV product for SE-series, X7R capacitors (TCC: ±15% over -55 to +125°C) compares favorably to high CV ranges offered by other suppliers in much less stable Y5U dielectric (TCC: +22/-56% over -30 to +85°C). SE style capacitors are conformally coated and are designed for input and output filtering applications in switch mode power supplies. ELECTRICAL SPECIFICATIONS Temperature Coefficient X7R: Temperature Coefficient ±15%, -55° to +125°C Capacitance Test (MIL-STD-202 Method 305) X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 25°C X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Insulation Resistance 125°C (MIL-STD-202 Method 302) X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. Life Test (1000 hrs) X7R: 200% rated voltage at +125°C Moisture Resistance (MIL-STD-202 Method 106) X7R: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) HOW TO ORDER SE Style 01 Size See chart below 3 C 125 Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 22 nF = 223 220 nF = 224 1 μF = 105 100 μF = 107 Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. TAPE & REEL QUANTITY RoHS Part SE01 Pieces 2000 Part SE01 Available Yes SE03/SE53 1000 SE03/SE53 Yes SE04/SE54 1000 SE04/SE54 Yes SE05/SE55 500 SE05/SE55 Yes SE06/SE56 500 SE06/SE56 Yes 50 M Capacitance Tolerance X7R: K = ±10% M = ±20% Z = +80, -20% A Test Level A = Standard B = Hi-Rel* A * Leads Packaging A = Tin/Lead (See Note 1) R = RoHS Compliant Note 1: No suffix signifies bulk packaging, which is AVX standard packaging. Parts available tape and reel per EIA468. Use suffix “TR1” if tape & reel is required. *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-39014. SMPS Capacitors (SE Style) Product Offering – X7R L L L H H T H H + 3.683 (0.145) M M M LL LL LL LD LD LD LS LS SE01 LS SE03 – SE06 SE53 – SE56 X7R Capacitance Range (μF) Style 25 WVDC 50 WVDC 100 WVDC min./max. min./max. min./max. SE01 0.47/1.5 0.39/1.0 0.33/0.68 SE03/SE53 2.7/6.8 2.2/4.7 1.8/3.3 SE04/SE54 5.6/12 3.9/10 3.3/6.8 SE05/SE55 8.2/18 6.8/12 4.7/10.0 SE06/SE56 18/39 12/27 6.8/15 DIMENSIONS Style SE01 SE03/SE53 SE04/SE54 SE05/SE55 SE06/SE56 L = Length H = Height millimeters (inches) L (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 22.1 (0.870) H (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 15.2 (0.600) T = Thickness M = Meniscus 1.52 (0.060) max. T (max.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) LS (nom.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 10.2 (0.400) 20.1 (0.790) LD (nom.) 0.508 (0.020) 0.508 (0.020) 0.508 (0.020) 0.635 (0.025) 0.813 (0.032) LS = Lead Spacing Nominal ±.787 (0.031) LL = Lead Length 50.8 (2.000) max./25.4 (1.000 min.) LD = Lead Diameter Nominal ±.050 (0.002) 51 SMPS Capacitors (CECC Offering) L T H 1.50 31.7 (0.059) (1.248) MAX. MIN. t S DIMENSIONS Size Code millimeters (inches) Length (L) (max.) 10.16 (0.400) 12.7 (0.500) 23.6 (0.930) BR40 BR50 BR84 Height (H) (max.) 11.7 (0.460) 12.7 (0.500) 17.78 (0.700) Thickness (T) (max.) 3.81 (0.150) 5.1 (0.200) 6.35 (0.250) Nom (t) S ±0.4 0.51 (0.020) 0.64 (0.025) 0.76 (0.030) 5.08 (0.200) 10.16 (0.400) 20.32 (0.800) CECC APPROVED RANGE BR40 BR50 BR84 50V 683-104 124-224 104-564 1B/C0G CECC 30 601 801 Issue 1 100V 200V 473-683 333-473 104-154 683-104 104-474 104-334 500V 4R5-153 820-333 223-104 50V 185-275 395-475 475-186 2C1/X7R CECC 30 701 801 Issue 1 100V 200V 125-185 334-474 225-275 684-105 475-156 105-335 500V 473-154 104-394 474-155 HOW TO ORDER BR 84 1 C 156 K T A Style Code Size Code See Voltage Code Dielectric Code Capacitance Code Capacitance Tolerance Specification Code Lead Length Code 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R table above Note: If tape and reel is required, add TR to the end of the part number 52 (2 significant digits + no. of zeros) G = ±2% C0G only J = ±5% C0G only K = ±10% M = ±20% P = -0 +100% T = CECC A = 31.7mm min. ESCC Qualified SMPS Capacitors High Voltage Chip/Leaded Capacitors HIGH VOLTAGE CHIP CAPACITORS Capacitors, Fixed, Chip, Ceramic Dielectric, Type II, High Voltage, Based on Styles 1812 and 1825 for use in ESCC space programs, according to ESCC Generic Specification 3009 and associated Detail Specification 3009/034 as recommended by the Space Components Coordination Group. (ranges in table below) Note: Variants 01 to 12: metallized pads Size Variant 1812 01 02 03 04 05 06 07 08 09 10 11 12 1825 Rated Voltage Tolerance Capacitance (kV) (%) Code (E12) ±10 1.0 392 - 223 ±20 ±10 2.0 152 - 182 ±20 ±10 3.0 821 - 102 ±20 ±10 1.0 273 - 563 ±20 ±10 2.0 222 - 682 ±20 ±10 3.0 821 - 392 ±20 HOW TO ORDER Parts should be ordered using the ESCC variant number as follows: 3009034 XX B XXX Test Level Detail Spec Type Variant C = Standard test level Number (per table) B = Level C plus serialized and capacitance recorded before and after 100% burn-in. Capacitance Code The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 102 = 1000pF 103 = 10000pF Eg 300903401C223 HIGH VOLTAGE LEADED CAPACITORS Capacitors, Fixed, Ceramic Dielectric, Type II, High Voltage, 1.0 to 5.0 kV, Based on Case Styles VR, CV and CH for use in ESCC space programs, according to ESCC Generic Specification 3001 and associated Detail Specification 3001/034 as recommended by the Space Components Coordination Group. (ranges in table) Note 1: Lead Types a - Leaded Radial (epoxy coated) b - Leaded Radial (Polyurethane Varnish) c - Straight Dual in Line d - L Dual in Line Note 2: Tolerances of ±10% and ±20% are available HOW TO ORDER Parts should be ordered using the ESCC variant number as follows: Capacitance Code (E12) 2.0kV 3.0kV 4.0kV Case Lead Size Variant Type 1.0kV VR30S VR30 VR40 VR50 VR66 VR84 VR90 CV41 CH41 CH41 CV51 CH51 CH51 CV61 CH61 CH61 CV76 CH76 CH76 CV91 CH91 CH91 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 a a a a a a a b c d b c d b c d b c d b c d 392 273 473 154 224 684 125 473 473 473 154 154 154 224 224 224 684 684 684 125 125 125 - 203 563 124 274 564 105 275 124 124 124 274 274 274 564 564 564 105 105 105 275 275 275 152 222 822 183 393 473 184 822 822 822 183 183 183 393 393 393 473 473 473 184 184 184 - 182 682 153 333 823 154 334 153 153 153 333 333 333 823 823 823 154 154 154 334 334 334 821 821 472 123 223 473 823 472 472 472 123 123 123 223 223 223 473 473 473 823 823 823 - 102 392 103 183 393 683 184 103 103 103 183 183 183 393 393 393 683 683 683 184 184 184 182 562 103 183 473 182 182 182 562 562 562 103 103 103 183 183 183 473 473 473 - 222 822 153 393 124 222 222 222 822 822 822 153 153 153 393 393 393 124 124 124 5.0kV 332 682 123 223 - 392 103 183 563 332 332 332 682 682 682 123 123 123 223 223 223 - 392 392 392 103 103 103 183 183 183 563 563 563 3001034 XX B XXX K X Detail Spec Number Type Variant (per table above) Test Level C = Standard test level B = Level C plus serialized and capacitance recorded before and after 100% burn-in. Capacitance Code The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 102 = 1000pF 103 = 10000pF Capacitance Tolerance K = 10% M = 20% Voltage M = 1kV P = 2kV R = 3kV S = 4kV Z = 5kV Eg 300103412C274KM 53 ESCC Qualified SMPS Capacitors High Capacitance HIGH CAPACITANCE LEADED CAPACITORS Capacitors, Fixed, Ceramic Dielectric, Type II, High Capacitance, Based on Case Styles BR, CV and CH for use in ESCC space programs, according to ESCC Generic Specification 3001 and associated Detail Specification 3001/030 as recommended by the Space Components Coordination Group. (see ranges in table below) Case Size Variant Figure BR40 BR50 BR66 BR72 BR84 CV41 CH41 CH41 CH42 CH42 CH43 CH43 CH44 CH44 CV51 CH51 CH51 CH52 CH52 CH53 CH53 CH54 CH54 CV61 CH61 CH61 CH62 CH62 CH63 CH63 CH64 CH64 CV71 CH71 CH71 CH72 CH72 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ˜31 32 33 34 35 36 37 a a a a a b c d c d c d c d b c d c d c d c d b c d c d c d c d b c d c d 50V Capacitance Code (E12) 100V 200V 500V 185 - 335 395 - 565 685 - 106 126 - 186 126 - 186 185 - 335 185 - 335 185 - 335 395 - 685 395 - 685 825 - 106 825 - 106 126 126 395 - 565 395 - 565 395 - 565 685 - 106 685 - 106 126 - 156 126 - 156 186 - 226 186 - 226 685 - 106 685 - 106 685 - 106 126 - 226 126 - 226 276 - 336 276 - 336 396 396 126 - 186 126 - 186 126 - 186 226 - 396 226 - 396 125 - 395 225 - 395 475 - 825 825 - 156 825 - 156 125 - 275 125 - 275 125 - 275 335 - 565 335 - 565 685 - 825 685 - 825 106 106 225 - 395 225 - 395 225 - 395 475 - 825 475 - 825 106 - 126 106 - 126 156 156 475 - 825 475 - 825 475 - 825 106 - 156 106 - 156 186 - 226 186 - 226 276 - 336 276 - 336 825 - 156 825 - 156 825 - 156 186 - 276 186 - 276 334 - 564 684 - 105 105 - 225 225 - 335 225 - 335 334 - 564 334 - 564 334 - 564 684 - 125 684 - 125 155 - 185 155 - 185 225 225 684 - 105 684 - 105 684 - 105 125 - 225 125 - 225 275 - 335 275 - 335 395 395 105 - 225 105 - 225 105 - 225 275 - 475 275 - 475 565 - 685 565 - 685 825 - 106 825 - 106 225 - 335 225 - 335 225 - 335 395 - 685 395 - 685 124 - 224 274 - 394 474 - 105 824 - 155 824 - 155 124 - 224 124 - 224 124 - 224 274 - 474 274 - 474 564 - 684 564 - 684 824 - 105 824 - 105 274 - 394 274 - 394 274 - 394 474 - 824 474 - 824 105 - 125 105 - 125 155 155 474 - 105 474 - 105 474 - 105 105 - 185 105 - 185 225 - 275 225 - 275 335 335 824 - 155 824 - 155 824 - 155 185 - 335 185 - 335 Note 1: Lead Types a - Leaded Radial (epoxy coated) b - Leaded Radial (Polyurethane Varnish) c - Straight Dual in Line d - L Dual in Line Note 2: Tolerances of ±10% and ±20% are available Case Size Variant Figure CH73 CH73 CH74 CH74 CV76 CH76 CH76 CH77 CH77 CH78 CH78 CH79 CH79 CH81 CH81 CH82 CH82 CH83 CH83 CH84 CH84 CH86 CH86 CH87 CH87 CH88 CH88 CH89 CH89 CH91 CH91 CH92 CH92 CH93 CH93 CH94 CH94 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 c d c d b c d c d c d c d c d c d c d c d c d c d c d c d c d c d c d c d 50V 476 - 566 476 - 566 686 686 126 - 186 126 - 186 126 - 186 226 - 396 226 - 396 476 - 566 476 - 566 686 686 156 - 226 156 - 226 276 - 476 276 - 476 566 - 686 566 - 686 826 826 226 - 336 226 - 336 396 - 686 396 - 686 826 - 107 826 - 107 127 127 396 - 476 396 - 476 566 - 107 566 - 107 127 - 157 127 - 157 187 187 Capacitance Code (E12) 100V 200V 500V 336 - 396 336 - 396 476 476 825 - 156 825 - 156 825 - 156 186 - 276 186 - 276 336 - 396 336 - 396 476 476 126 - 186 126 - 186 226 - 396 226 - 396 476 - 566 476 - 566 686 686 156 - 276 156 - 276 336 - 566 336 - 566 686 - 826 686 - 826 107 107 336 - 396 336 - 396 476 - 826 476 - 826 107 - 127 107 - 127 157 157 825 - 106 825 - 106 126 126 225 - 335 225 - 335 225 - 335 395 - 685 395 - 685 825 - 106 825 - 106 126 126 225 - 395 225 - 395 475 - 825 475 - 825 106 - 126 106 - 126 156 156 395 - 685 395 - 685 825 - 156 825 - 156 186 - 226 186 - 226 276 276 825 - 106 825 - 106 126 - 226 126 - 226 276 - 336 276 - 336 396 396 395 - 475 395 - 475 565 565 824 - 155 824 - 155 824 - 155 185 - 335 185 - 335 395 - 475 395 - 475 565 565 824 - 155 824 - 155 155 - 225 155 - 225 HOW TO ORDER Parts should be ordered using the ESCC variant number as follows: 3001030 XX Detail Spec Number Type Variant (per table above) B Test Level C = Standard test level B = Level C plus serialized and capacitance recorded before and after 100% burn-in. EG 300103018C106KC Lot Acceptance Testing is available for all our ESCC qualified ranges. LAT 1 LAT 2 LAT 3 54 42 samples → 12 mechanical + 20 life test + 6 for TC + 4 for solder 30 samples → 20 life test + 6 for TC + 4 for solder 10 samples → 6 for TC + 4 for solder XXX K X Capacitance Code The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 102 = 1000pF 103 = 10000pF Capacitance Tolerance K = 10% M = 20% Voltage C = 50V E = 100V G = 200V L = 500V SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3009/034 PHYSICAL DIMENSIONS Millimeters (Inches) L Symbol I L l e e M = = M M Variants 01 to 06 Variants 07 to 12 Min. Max. Min. Max. 4.20 (0.165) 2.80 (0.110) – 5.00 (0.197) 3.60 (0.142) 3.00 (0.118) 0.75 (0.030) 4.20 (0.165) 5.67 (0.223) – 5.00 (0.197) 6.67 (0.263) 3.30 (0.130) 0.75 (0.030) 0.25 (0.010) 0.25 (0.010) ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – VR STYLE Millimeters (Inches) B F H Variant Case Size 01 VR30S 02 VR30 03 VR40 04 VR50 05 VR66 06 VR84 07 VR90 J L Ød E B Max. 7.62 (0.300) 7.62 (0.300) 10.16 (0.400) 12.7 (0.500) 17.5 (0.689) 23.62 (0.930) 23.5 (0.925) Ød Min. Max. 0.46 (0.018) 0.46 (0.018) 0.46 (0.018) 0.59 (0.023) 0.86 (0.034) 0.86 (0.034) 0.86 (0.034) 0.56 (0.022) 0.56 (0.022) 0.56 (0.022) 0.69 (0.027) 0.96 (0.038) 0.96 (0.038) 0.96 (0.038) Min. E Max. F Max. H Max. J Max. L Min. 4.58 (0.180) 4.58 (0.180) 4.58 (0.180) 9.66 (0.380) 14.2 (0.559) 20.4 (0.803) 20.4 (0.803) 5.58 (0.220) 5.58 (0.220) 5.58 (0.220) 10.66 (0.420) 15.2 (0.598) 22.0 (0.866) 22.0 (0.866) 5.00 (0.197) 5.00 (0.197) 5.00 (0.197) 5.10 (0.201) 6.40 (0.252) 6.40 (0.252) 6.40 (0.252) 4.60 (0.181) 9.62 (0.379) 11.7 (0.461) 14.2 (0.559) 16.5 (0.650) 19.78 (0.779) 42.0 (1.654) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – CV STYLE Millimeters (Inches) F B Ød H L Variant Case Size 08 CV41 11 CV51 14 CV61 17 CV76 20 CV91 B Max. 10.6 (0.417) 11.9 (0.469) 16.5 (0.650) 22.7 (0.894) 22.7 (0.894) Ød Min. Max. 0.65 (0.026) 0.85 (0.033) 0.85 (0.033) 0.85 (0.033) 1.15 (0.045) 0.75 (0.030) 0.95 (0.037) 0.95 (0.037) 0.95 (0.037) 1.25 (0.049) Min. E Max. F Max. H Max. Min. L Max. 7.70 (0.303) 9.66 (0.380) 14.74 (0.580) 20.4 (0.803) 20.4 (0.803) 8.70 (0.343) 10.66 (0.420) 15.74 (0.620) 22.0 (0.866) 22.0 (0.866) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 8.70 (0.343) 10.7 (0.421) 13.6 (0.535) 16.6 (0.654) 40.6 (1.598) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) L E 55 SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – CH STYLE, D.I.L. a1 A L b1 E e b D F Symbol a1 Min. 0.45 (0.018) 0.204 (0.008) 2.49 (0.098) 12.0 (0.472) b b1 e L Max. Notes 2.00 (0.079) 0.55 (0.022) 0.304 (0.012) 2.59 (0.102) 14.0 (0.551) 1 1 1 2 1 Notes: 1 – All leads 2 – Each space Millimeters (Inches) Variant Case Size 07 09 11 13 16 18 20 22 25 27 29 31 34 36 38 40 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 CH41 CH42 CH43 CH44 CH51 CH52 CH53 CH54 CH61 CH62 CH63 CH64 CH71 CH72 CH73 CH74 CH76 CH77 CH78 CH79 CH81 CH82 CH83 CH84 CH86 CH87 CH88 CH89 CH91 CH92 CH93 CH94 A Max. 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) D Max. 8.70 8.70 8.70 8.70 10.7 10.7 10.7 10.7 13.6 13.6 13.6 13.6 21.6 21.6 21.6 21.6 16.6 16.6 16.6 16.6 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.6 40.6 40.6 40.6 (0.343) (0.343) (0.343) (0.343) (0.421) (0.421) (0.421) (0.421) (0.535) (0.535) (0.535) (0.535) (0.850) (0.850) (0.850) (0.850) (0.654) (0.654) (0.654) (0.654) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.598) (1.598) (1.598) (1.598) E Min. 7.70 7.70 7.70 7.70 9.66 9.66 9.66 9.66 13.5 13.5 13.5 13.5 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 9.66 9.66 9.66 9.66 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 Max. (0.303) (0.303) (0.303) (0.303) (0.380) (0.380) (0.380) (0.380) (0.531) (0.531) (0.531) (0.531) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) (0.380) (0.380) (0.380) (0.380) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) 8.70 8.70 8.70 8.70 10.66 10.66 10.66 10.66 14.5 14.5 14.5 14.5 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 10.66 10.66 10.66 10.66 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – CH STYLE, L A L e b L D E L Case Size 10 13 16 19 22 CH41 CH51 CH61 CH76 CH91 b e F L A Max. 3.80 3.80 3.80 3.80 3.80 (0.150) (0.150) (0.150) (0.150) (0.150) Min. Max. 0.45 (0.018) 2.49 (0.098) 2.04 (0.080) 0.55 (0.022) 2.59 (0.102) 3.01 (0.120) Notes: 1 – All leads 2 – Each space 56 9.20 9.20 9.20 9.20 10.7 10.7 10.7 10.7 14.9 14.9 14.9 14.9 16.8 16.8 16.8 16.8 21.6 21.6 21.6 21.6 12.0 12.0 12.0 12.0 18.9 18.9 18.9 18.9 24.0 24.0 24.0 24.0 (0.362) (0.362) (0.362) (0.362) (0.421) (0.421) (0.421) (0.421) (0.587) (0.587) (0.587) (0.587) (0.661) (0.661) (0.661) (0.661) (0.850) (0.850) (0.850) (0.850) (0.472) (0.472) (0.472) (0.472) (0.744) (0.744) (0.744) (0.744) (0.945) (0.945) (0.945) (0.945) Millimeters (Inches) Variant Symbol (0.343) (0.343) (0.343) (0.343) (0.420) (0.420) (0.420) (0.420) (0.571) (0.571) (0.571) (0.571) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) (0.420) (0.420) (0.420) (0.420) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) F Max. D Max. 8.70 10.7 13.6 16.6 40.6 (0.343) (0.421) (0.535) (0.654) (1.598) Notes 1 2 1 E Min. 7.70 9.66 13.5 19.52 19.52 Max. F Max. (0.303) 8.70 (0.343) 9.20 (0.362) (0.380) 10.66 (0.420) 10.7 (0.421) (0.531) 14.5 (0.571) 14.9 (0.587) (0.769) 21.12 (0.831) 21.6 (0.850) (0.769) 21.12 (0.831) 24.0 (0.945) SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – BR STYLE Millimeters (Inches) B H F J L E Variant Case Size 01 BR40 02 BR50 03 BR66 04 BR72 05 BR84 B Max. 10.16 (0.400) 12.7 (0.500) 17.5 (0.689) 19.3 (0.760) 23.62 (0.930) Ød Min. Max. 0.46 (0.018) 0.59 (0.023) 0.86 (0.034) 0.86 (0.034) 0.71 (0.028) 0.56 (0.022) 0.69 (0.027) 0.96 (0.038) 0.96 (0.038) 0.81 (0.032) Min. E Max. F Max. H Max. J Max. L Min. 4.58 (0.180) 9.66 (0.380) 14.2 (0.559) 14.74 (0.580) 18.93 (0.745) 5.58 (0.220) 10.66 (0.420) 15.2 (0.598) 15.74 (0.620) 20.83 (0.820) 5.00 (0.197) 5.10 (0.201) 6.40 (0.252) 6.40 (0.252) 6.40 (0.252) 11.7 (0.461) 14.2 (0.559) 16.5 (0.650) 24.0 (0.945) 19.78 (0.779) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) Ød ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – CV STYLE Millimeters (Inches) F B Ød H L Variant Case Size 06 CV41 15 CV51 24 CV61 33 CV71 42 CV76 B Max. 10.6 (0.417) 11.9 (0.469) 16.5 (0.650) 17.8 (0.701) 22.7 (0.894) Ød Min. Max. 0.65 (0.026) 0.85 (0.033) 0.85 (0.033) 0.85 (0.033) 0.85 (0.033) 0.75 (0.030) 0.95 (0.037) 0.95 (0.037) 0.95 (0.037) 0.95 (0.037) Min. E Max. F Max. H Max. Min. L Max. 7.70 (0.303) 9.66 (0.380) 14.74 (0.580) 14.74 (0.580) 20.4 (0.803) 8.70 (0.343) 10.66 (0.420) 15.74 (0.620) 15.74 (0.620) 22.0 (0.866) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 8.70 (0.343) 10.7 (0.421) 13.6 (0.535) 21.6 (0.850) 16.6 (0.654) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) L E 57 SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – CH STYLE, D.I.L. a1 A L b1 E e b D F Symbol Min. a1 0.45 (0.018) 0.204 (0.008) 2.49 (0.098) 2.04 (0.080) b b1 e L Max. Notes 2.00 (0.079) 0.55 (0.022) 0.304 (0.012) 2.59 (0.102) 3.04 (0.120) 1 1 1 2 1 Notes: 1 – All leads 2 – Each space Millimeters (Inches) Variant Case Size 07 09 11 13 16 18 20 22 25 27 29 31 34 36 38 40 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 CH41 CH42 CH43 CH44 CH51 CH52 CH53 CH54 CH61 CH62 CH63 CH64 CH71 CH72 CH73 CH74 CH76 CH77 CH78 CH79 CH81 CH82 CH83 CH84 CH86 CH87 CH88 CH89 CH91 CH92 CH93 CH94 A Max. 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) D Max. 8.70 8.70 8.70 8.70 10.7 10.7 10.7 10.7 13.6 13.6 13.6 13.6 21.6 21.6 21.6 21.6 16.6 16.6 16.6 16.6 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.6 40.6 40.6 40.6 (0.343) (0.343) (0.343) (0.343) (0.421) (0.421) (0.421) (0.421) (0.535) (0.535) (0.535) (0.535) (0.850) (0.850) (0.850) (0.850) (0.654) (0.654) (0.654) (0.654) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.598) (1.598) (1.598) (1.598) E Min. 7.70 7.70 7.70 7.70 9.66 9.66 9.66 9.66 13.5 13.5 13.5 13.5 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 9.66 9.66 9.66 9.66 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 Max. (0.303) (0.303) (0.303) (0.303) (0.380) (0.380) (0.380) (0.380) (0.531) (0.531) (0.531) (0.531) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) (0.380) (0.380) (0.380) (0.380) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – CH STYLE, L A L e b L D F Symbol b e L Min. Max. 0.45 (0.018) 2.49 (0.098) 2.04 (0.080) 0.55 (0.022) 2.59 (0.102) 3.04 (0.120) Notes: 1 – All leads 2 – Each space 58 Notes 1 2 1 E L 8.70 8.70 8.70 8.70 10.66 10.66 10.66 10.66 14.5 14.5 14.5 14.5 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 10.66 10.66 10.66 10.66 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 (0.343) (0.343) (0.343) (0.343) (0.420) (0.420) (0.420) (0.420) (0.571) (0.571) (0.571) (0.571) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) (0.420) (0.420) (0.420) (0.420) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) F Max. 9.20 9.20 9.20 9.20 10.7 10.7 10.7 10.7 14.9 14.9 14.9 14.9 16.8 16.8 16.8 16.8 21.6 21.6 21.6 21.6 12.0 12.0 12.0 12.0 18.9 18.9 18.9 18.9 24.0 24.0 24.0 24.0 (0.362) (0.362) (0.362) (0.362) (0.421) (0.421) (0.421) (0.421) (0.587) (0.587) (0.587) (0.587) (0.661) (0.661) (0.661) (0.661) (0.850) (0.850) (0.850) (0.850) (0.472) (0.472) (0.472) (0.472) (0.744) (0.744) (0.744) (0.744) (0.945) (0.945) (0.945) (0.945) Millimeters (Inches) Variant Case Size 08 10 12 14 17 19 21 23 26 28 30 32 35 37 39 41 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 CH41 CH42 CH43 CH44 CH51 CH52 CH53 CH54 CH61 CH62 CH63 CH64 CH71 CH72 CH73 CH74 CH76 CH77 CH78 CH79 CH81 CH82 CH83 CH84 CH86 CH87 CH88 CH89 CH91 CH92 CH93 CH94 A Max. 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) D Max. 8.70 8.70 8.70 8.70 10.7 10.7 10.7 10.7 13.6 13.6 13.6 13.6 21.6 21.6 21.6 21.6 16.6 16.6 16.6 16.6 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.6 40.6 40.6 40.6 E Min. (0.343) 7.70 (0.343) 7.70 (0.343) 7.70 (0.343) 7.70 (0.421) 9.66 (0.421) 9.66 (0.421) 9.66 (0.421) 9.66 (0.535) 13.5 (0.535) 13.5 (0.535) 13.5 (0.535) 13.5 (0.850) 14.74 (0.850) 14.74 (0.850) 14.74 (0.850) 14.74 (0.654) 19.52 (0.654) 19.52 (0.654) 19.52 (0.654) 19.52 (1.504) 9.66 (1.504) 9.66 (1.504) 9.66 (1.504) 9.66 (1.504) 14.74 (1.504) 14.74 (1.504) 14.74 (1.504)) 14.74 (1.598) 19.52 (1.598) 19.52 (1.598) 19.52 (1.598) 19.52 (0.303) (0.303) (0.303) (0.303) (0.380) (0.380) (0.380) (0.380) (0.531) (0.531) (0.531) (0.531) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) (0.380) (0.380) (0.380) (0.380) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) Max. 8.70 8.70 8.70 8.70 10.66 10.66 10.66 10.66 14.5 14.5 14.5 14.5 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 10.66 10.66 10.66 10.66 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 (0.343 (0.343 (0.343 (0.343 (0.420) (0.420) (0.420) (0.420) (0.571) (0.571) (0.571) (0.571) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) (0.420) (0.420) (0.420) (0.420) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) F Max. 9.20 9.20 9.20 9.20 10.7 10.7 10.7 10.7 14.9 14.9 14.9 14.9 16.8 16.8 16.8 16.8 21.6 21.6 21.6 21.6 12.0 12.0 12.0 12.0 18.9 18.9 18.9 18.9 24.0 24.0 24.0 24.0 (0.362) (0.362) (0.362) (0.362) (0.421) (0.421) (0.421) (0.421) (0.587) (0.587) (0.587) (0.587) (0.661) (0.661) (0.661) (0.661) (0.850) (0.850) (0.850) (0.850) (0.472) (0.472) (0.472) (0.472) (0.744) (0.744) (0.744) (0.744) (0.945) (0.945) (0.945) (0.945) High Voltage DIP Leaded (HV Style) C0G Dielectric N1500 X7R Dielectric General Specifications General Specifications General Specifications Capacitance Range 100 pF to 1.2 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz, for ≤100 pF use 1 MHz) Capacitance Tolerances ±5%, ±10%, ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic 0 ± 30 ppm/°C Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz, for ≤100 pF use 1 MHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 1.9 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Capacitance Tolerances ±5%, ±10%, ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic -1500 ±250 ppm/°C Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 15 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Capacitance Tolerances ±10%, ±20%, +80%, -20% Operating Temperature Range -55°C to +125°C Temperature Characteristic ±15% (0 VDC) Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 2.5% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C HOW TO ORDER HV 01 AVX Style Size See Dimensions chart AVX Styles: HV01 THRU HV06 A C 105 Voltage Temperature Capacitance 1K = A Coefficient Code 2K = G C0G = A (2 significant digits 3K = H X7R = C + number of zeros) 4K = J N1500 = 4 10 pF = 100 5K = K 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 M A N 650 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Does not apply Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% N1500: J = ±5% K = ±10% M = ±20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. 59 High Voltage DIP Leaded (HV Style) Surface Mount and Thru-Hole HV Styles CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A E 0.254 (0.010) TYP. B RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style HV01 HV02 HV03 HV04 HV05 HV06 60 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 61 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 53.3 39.1 27.2 10.2 6.35 53.3 (2.100) (1.540) (1.070) (0.400) (0.250) (2.100) D ±.635 (±0.025) 10.5 20.3 10.5 10.2 6.35 29.0 (0.415) (0.800) (0.415) (0.400) (0.250) (1.140) E (max.) 54.9 40.7 28.2 11.2 7.62 54.9 (2.160) (1.600) (1.130) (0.440) (0.300) (2.160) No. of Leads per side 4 8 4 4 3 11 High Voltage DIP Leaded (HV Style) Surface Mount and Thru-Hole HV Styles Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm HV01 _ _ _ _ _ _ AN120 HV02 _ _ _ _ _ _ AN120 HV03 _ _ _ _ _ _ AN120 HV04 _ _ _ _ _ _ AN120 HV05 _ _ _ _ _ _ AN120 HV06 _ _ _ _ _ _ AN120 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007 .0048 .0013 .240 .066 .028 .018 .015 N1500 .140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012 .0078 .0022 .380 .100 .046 .030 .026 .060 --- 3.00 .700 .440 .200 .170 C0G X7R 1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm HV01 _ _ _ _ _ _ AN240 HV02 _ _ _ _ _ _ AN240 HV03 _ _ _ _ _ _ AN240 HV04 _ _ _ _ _ _ AN240 HV05 _ _ _ _ _ _ AN240 HV06 _ _ _ _ _ _ AN240 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0082 .0036 .0018 .0014 .0096 .0027 .480 .130 .056 .036 .031 N1500 .280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025 .015 .0044 .760 .210 .092 .060 .052 .120 --- 6.00 1.40 .880 .400 .340 C0G X7R 2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.15mm HV01 _ _ _ _ _ _ AN360 HV02 _ _ _ _ _ _ AN360 HV03 _ _ _ _ _ _ AN360 HV04 _ _ _ _ _ _ AN360 HV05 _ _ _ _ _ _ AN360 HV06 _ _ _ _ _ _ AN360 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022 .014 .0040 .720 .200 .084 .055 .047 N1500 .420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037 .023 .0066 1.10 .310 .130 .090 .078 X7R .180 --- 9.00 2.10 1.30 .600 .510 C0G 3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm HV01 _ _ _ _ _ _ AN480 HV02 _ _ _ _ _ _ AN480 HV03 _ _ _ _ _ _ AN480 HV04 _ _ _ _ _ _ AN480 HV05 _ _ _ _ _ _ AN480 HV06 _ _ _ _ _ _ AN480 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV C0G .340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029 .019 .0054 .960 .260 .110 .073 .062 N1500 .560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050 .031 .0088 1.50 .420 .180 .120 .100 .240 --- X7R 4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160 --- --- --- 12.0 2.80 1.70 .800 .68 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm HV01 _ _ _ _ _ _ AN650 HV02 _ _ _ _ _ _ AN650 HV03 _ _ _ _ _ _ AN650 HV04 _ _ _ _ _ _ AN650 HV05 _ _ _ _ _ _ AN650 HV06 _ _ _ _ _ _ AN650 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV C0G .430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037 .024 .0068 1.20 .330 .140 .092 .078 N1500 .700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063 .039 .011 1.90 .530 .230 .150 .130 .300 --- 15.0 3.50 2.20 1.00 .850 X7R 5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210 --- --- --- 61 High Voltage Leaded (CH Style) Radial, Dual-in-Line & ‘L’ Lead SMT 330 pF to 2.7 μF 1kV to 5kV -55ºC to +125ºC 1B/C0G and 2C1/X7R Dielectrics This range of radial, dual-in-line for both through hole and surface mount products is intended for use in high voltage power supplies and voltage multiplier circuits. The multilayer ceramic construction offers excellent volumetric efficiency compared with other high voltage dielectrics. They are suitable for both high reliability and industrial applications. ELECTRICAL SPECIFICATIONS Temperature Coefficient CECC 30 000, (4.24.1) 1B/C0G: A Temperature Coefficient - 0 ± 30ppm/ºC 2C1/X7R: C Temperature Characteristic - ± 15% (0v dc) Dielectric Withstanding Voltage 25°C 130% rated voltage for 5 seconds Life Test (1000 hrs) CECC 30000 (4.23) 1B/C0G & 2C1/X7R: 120% rated voltage at +125ºC. Capacitance Test 25ºC 1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz <100 pF) 2C1/X7R: Measured at 1 VRMS max at 1KHz Aging 1B/C0G: Zero 2C1/X7R: 2.5%/decade hour Dissipation Factor 25°C 1B/C0G: 0.15% max at 1KHz, 1 VRMS (1MHz for <100 pF) 2C1/X7R: 2.5% max at 1KHz, 1 VRMS Insulation Resistance 1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF, whichever is less DUAL-IN-LINE 3.8 (0.149) max. W max. W max. 2.0 (0.079) max. L max. L max. 13 (0.512) ±1.0 (0.039) 3.8 (0.149) max. S ±0.5 (0.020) L1 2.54 (0.100) ±0.5 (0.200) L2 2.54 (0.100) ±0.5 (0.200) L2 S ±0.5 (0.020) L1 DIMENSIONS millimeters (inches) L (max) Style CH41 CH51 CH61 CH76 CH91 2.54 (0.100) ±0.5 (0.200) 9.2 10.7 14.9 21.6 24.0 (0.362) (0.421) (0.587) (0.850) (0.944) W (max) 8.7 10.7 13.6 16.6 40.6 S (nom) (0.342) (0.421) (0.535) (0.654) (1.598) 8.2 10.2 14.0 20.3* 20.3* (0.323) (0.400) (0.551) (0.800) (0.800) No. of Leads per side 3 4 5 6 14 Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) *Tolerance ± 0.8 HOW TO ORDER CH Style Code 41 A 104 K Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance A = 1kV G = 2kV H = 3kV J = 4kV K = 5kV 62 C A = C0G C = X7R A Specification Code 8 0 Finish Code Lead Dia. Code Lead Space Code Lead Style Code 0 = Standard A = Standard 0 = Dual in line straight 7 = Dual in line ‘L’ style (2 significant C0G: J = ±5% A = Non customized 8 = Varnish digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% A 7 High Voltage Leaded (CV Style) Chip Assemblies VERTICALLY MOUNTED RADIAL PRODUCT Part Number format (CVxxxxxxxxxxxA2) Typical Part Number CV51AC154MA80A2 T Max. DIMENSIONS L Max. H Max. millimeters (inches) Style L (max) H (max) T (max) S (nom) CV41 CV51 CV61 CV76 CV91 10.6 (0.417) 11.9 (0.469) 16.5 (0.650) 22.7 (0.893) 22.7 (0.893) 8.70 (0.343) 10.7 (0.421) 13.6 (0.536) 16.6 (0.654) 40.6 (1.598) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 8.20 (0.323) 10.2 (0.402) 15.2 (0.599) 21.2* (0.835) 21.2* (0.835) 25 (0.984) ±3 (0.118) Lead Dia. See Table Lead Dia (nom) 0.70 (0.028) 0.90 (0.035) 0.90 (0.035) 0.90 (0.035) 1.20 (0.047) *Tolerance ± 0.8mm (0.031) S ±0.5 (0.020) HOW TO ORDER CV Style Code 51 A C 154 M Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance A = 1kV G = 2kV H = 3kV J = 4kV K = 5kV A = C0G C = X7R A Specification Code (2 significant C0G: J = ±5% A = Non customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% 8 0 A Finish Code Lead Dia. Code Lead Space Code 8 = Varnish 0 = Standard A = Standard 2 Lead Style Code 63 High Voltage Leaded (CH/CV Style) Chip Assemblies 1B/C0G ULTRA STABLE CERAMIC CV41-CH41 Styles Cap pF 330 CV51-CH51 Styles CV61-CH61 Styles CV76-CH76 Styles CV91-CH91 Styles K 390 J K 470 J K 560 J K 680 J K 820 H J 1000 H J K K 1200 H J K 1500 H J K 1800 G H 2200 G H 2700 G 3300 G G H 3900 G G H 4700 J K J H G K J K J K J K K G H J 5600 A G H J 6800 A G G H 8200 A G G H J K 10000 A G G H J K 12000 A A G H J K 15000 A A G G K J K G H J J 18000 A G H 22000 A A G H 27000 A A G H 33000 A A G 39000 A G 47000 A A G 56000 A A G 68000 A A G 82000 A G 100000 A H G G 120000 A 150000 A 180000 A 220000 A 270000 A 330000 A NB Figures in cells refer to size within ordering information 64 High Voltage Leaded (CH/CV Style) Chip Assemblies 2C1/X7R STABLE CERAMIC CV41-CH41 Styles CV51-CH51 Styles CV61-CH61 Styles CV76-CH76 Styles CV91-CH91 Styles Cap nF 1.2 K 1.3 K 1.5 J K 2.2 J K 2.7 J K 3.3 J 3.9 J 4.7 H 5.6 6.8 K K J J K H J K H J K H J 8.2 G 10 G H J K 12 G H J 15 G H J H K K K 18 A G H J 22 A 27 A G H J K G H J 33 A K G H J 39 A A G K H J 47 A A G H J K 56 A A G H J K 68 A A G H J G K K 82 A A G H J 100 A A A G H J 120 A A A G H J 150 A A G H 180 A A A G 220 A A A G 270 A G A A 330 A A 390 A A A 470 A A A 560 A A A 680 A A 820 A A 1000 A A H G 1200 A 1500 A 1800 A 2200 A 2700 A NB Figures in cells refer to size within ordering information 65 High Voltage MLC Radials (SV Style) Application Information on High Voltage MLC Capacitors High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC radial leaded capacitors meet these performance characteristics. The added advantage of these capacitors lies in special internal design minimizing the electric field stresses within the MLC. These special design criteria result in significant reduction of partial discharge activity within the dielectric and having, therefore, a major impact on longterm reliability of the product. The SV high voltage radial capacitors are conformally coated with high insulation resistance, high dielectric strength epoxy eliminating the possibility of arc flashover. The SV high voltage radial MLC designs exhibit low ESRs at high frequency. The same criteria governing the high voltage design carries the added benefits of extremely low ESR in relatively low capacitance and small packages. These capacitors are designed and are ideally suited for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. C0G Dielectric X7R Dielectric General Specifications General Specifications Capacitance Range 10 pF to .15 μF (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤100 pF use 1 MHz) Capacitance Tolerances ±5%; ±10%; ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic 0 ± 30 ppm/°C Voltage Ratings 600 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤100 pF use 1 MHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min. or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C 66 Capacitance Range 100 pF to 2.2 μF (+25°C, 1.0 ±0.2 Vrms at 1kHz) Capacitance Tolerances ±10%; ±20%; +80%, -20% Operating Temperature Range -55°C to +125°C Temperature Characteristic ±15% (0 VDC) Voltage Ratings 600 VDC thru 5000 VDC (+125°C) Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms at 1kHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C High Voltage MLC Radials (SV Style) L L T H H H + 3.683 (0.145) 31.75 (1.25) MIN 31.75 (1.250) min. LD LD S S SV01 thru SV17 SV52 thru SV59 and SV63 thru SV67 HIGH VOLTAGE RADIAL LEAD HOW TO ORDER SV01 AVX Style A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = C A S G W H J K AVX Styles: SV01 THRU SV67 A 102 K Temperature Coefficient C0G = A X7R = C Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80 -20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. DIMENSIONS AVX Style Length (L) max A A * Leads Test A = Tin/Lead Level A = Standard R = RoHS Compliant B = Hi-Rel* Packaging (See Note 1) Note 1: No suffix signifies bulk packaging which is AVX standard packaging. Use suffix “TR1” if tape and reel is required. Parts are reel packaged per EIA-468. *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467. (Except partial discharge testing is not performed and DWV is at 120% rated voltage). millimeters (inches) Height (H) Thickness (T) Lead Spacing max max ±.762 (.030) (S) LD (Nom) TAPE & REEL QUANTITY RoHS SV01 6.35 (0.250) 5.59 (0.220) 5.08 (0.200) 4.32 (0.170) 0.64 (0.025) SV02/SV52 8.13 (0.320) 7.11 (0.280) 5.08 (0.200) 5.59 (0.220) 0.64 (0.025) Part SV01 Pieces 1000 Part SV01 Available Yes SV03/SV53 9.40 (0.370) 7.62 (0.300) 5.08 (0.200) 6.99 (0.275) 0.64 (0.025) SV02/SV52 1000 SV02/SV52 Yes SV04/SV54 11.4 (0.450) 5.59 (0.220) 5.08 (0.200) 7.62 (0.300) 0.64 (0.025) SV03/SV53 1000 SV03/SV53 Yes SV05/SV55 11.9 (0.470) 10.2 (0.400) 5.08 (0.200) 9.52 (0.375) 0.64 (0.025) SV04/SV54 1000 SV04/SV54 Yes SV06/SV56 14.0 (0.550) 7.11 (0.280) 5.08 (0.200) 10.16 (0.400) 0.64 (0.025) SV05/SV55 1000 SV05/SV55 Yes 0.64 (0.025) SV06/SV56 500 SV06/SV56 Yes 0.64 (0.025) SV07/SV57 500 SV07/SV57 Yes 0.64 (0.025) SV08/SV58 500 SV08/SV58 Yes SV09/SV59 500 SV09/SV59 Yes SV10 N/A SV10 No SV11 N/A SV11 No SV12 N/A SV12 No SV13/SV63 1000 SV13/SV63 Yes SV07/SV57 SV08/SV58 SV09/SV59 SV10 14.5 (0.570) 12.7 (0.500) 17.0 (0.670) 15.2 (0.600) 19.6 (0.770) 18.3 (0.720) 26.7 (1.050) 12.7 (0.500) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 12.1 (0.475) 14.6 (0.575) 17.1 (0.675) 22.9 (0.900) 0.64 (0.025) SV11 31.8 (1.250) 15.2 (0.600) 5.08 (0.200) 27.9 (1.100) 0.64 (0.025) SV12 36.8 (1.450) 18.3 (0.720) 5.08 (0.200) 33.0 (1.300) 0.64 (0.025) SV13/SV63 7.62 (0.300) 9.14 (0.360) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020) SV14/SV64 10.2 (0.400) 11.7 (0.460) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020) SV14/SV64 1000 SV14/SV64 Yes SV15/SV65 12.7 (0.500) 14.2 (0.560) 5.08 (0.200) 10.2 (0.400) 0.64 (0.025) SV15/SV65 500 SV15/SV65 Yes SV16/SV66 22.1 (0.870) 16.8 (0.660) 5.08 (0.200) 20.1 (0.790) 0.81 (0.032) SV16/SV66 500 SV16/SV66 Yes SV17/SV67 23.6 (0.930) 19.8 (0.780) 6.35 (0.250) 20.3 (0.800) 0.81 (0.032) SV17/SV67 400 SV17/SV67 Yes 67 High Voltage MLC Radials (SV Style) CAPACITANCE VALUE C0G Style SV01 SV02/SV52 SV03/SV53 SV04/SV54 SV05/SV55 SV06/SV56 SV07/SV57 SV08/SV58 SV09/SV59 SV10 SV11 SV12 SV13/SV63 SV14/SV64 SV15/SV65 SV16/SV66 SV17/SV67 600/630V min./max. 100 pF / 1500 pF 100 pF / 6800 pF 100 pF /0.012 μF 100 pF / 3900 pF 1000 pF /0.027 μF 100 pF /0.012 μF 1000 pF /0.056 μF 1000 pF /0.082 μF 1000 pF /0.150 μF 1000 pF /0.100 μF 1000 pF /0.150 μF 0.01 μF /0.220 μF 100 pF /0.018 μF 1000 pF /0.039 μF 1000 pF /0.056 μF 1000 pF /0.120 μF 1000 pF /0.150 μF SV01 SV02/SV52 SV03/SV53 SV04/SV54 SV05/SV55 SV06/SV56 SV07/SV57 SV08/SV58 SV09/SV59 SV10 SV11 SV12 SV13/SV63 SV14/SV64 SV15/SV65 SV16/SV66 SV17/SV67 1000 pF /0.018 μF 1000 pF /0.082 μF 1000 pF /0.180 μF 1000 pF /0.056 μF 0.01 μF /0.470 μF 0.01 μF /0.180 μF 0.01 μF /0.820 μF 0.01 μF / 1.20 μF 0.10 μF / 1.80 μF 0.01 μF / 1.50 μF 0.10 μF / 2.20 μF 0.10 μF / 3.90 μF 0.01 μF /0.270 μF 0.01 μF /0.470 μF 0.01 μF /0.680 μF 0.01 μF / 1.80 μF 0.01 μF / 2.20 μF 1000V 1500V 2000V 2500V 3000V 4000V 5000V min./max. min./max. min./max. min./max. min./max. min./max. min./max. 100 pF / 1000 pF 100 pF / 4700 pF 100 pF / 8200 pF 100 pF / 2700 pF 1000 pF / 0.018 μF 100 pF / 0.010 μF 1000 pF / 0.033 μF 1000 pF / 0.047 μF 1000 pF / 0.082 μF 1000 pF / 0.056 μF 1000 pF / 0.082 μF 0.01 μF / 0.15 μF 100 pF / 0.012 μF 1000 pF / 0.022 μF 1000 pF / 0.033 μF 1000 pF / 0.082 μF 1000 pF / 0.10 μF 10 pF / 330 pF 100 pF / 1500 pF 100 pF / 2700 pF 10 pF / 820 pF 100 pF / 6800 pF 100 pF / 3300 pF 1000 pF / 0.015 μF 1000 pF / 0.022 μF 1000 pF / 0.039 μF 1000 pF / 0.022 μF 1000 pF / 0.039 μF 1000 pF / 0.056 μF 100 pF / 4700 pF 100 pF / 8200 pF 1000 pF /0.015 μF 1000 pF /0.039 μF 1000 pF /0.056 μF 10 pF / 220 pF 10 pF / 1000 pF 100 pF / 1800 pF 10 pF / 560 pF 100 pF / 4700 pF 100 pF / 2200 pF 100 pF /0.010 μF 1000 pF /0.015 μF 1000 pF /0.022 μF 1000 pF /0.012 μF 1000 pF /0.022 μF 1000 pF /0.033 μF 100 pF / 2700 pF 100 pF / 5600 pF 100 pF / 0.01 μF 1000 pF /0.027 μF 1000 pF /0.039 μF 10 pF / 120 pF 10 pF / 680 pF 10 pF /1000 pF 10 pF / 270 pF 100 pF /2700 pF 10 pF /1200 pF 100 pF /5600 pF 100 pF /0.010 μF 1000 pF /0.015 μF 100 pF /8200 pF 1000 pF /0.015 μF 1000 pF /0.022 μF 100 pF /1800 pF 100 pF /3300 pF 100 pF /5600 pF 1000 pF /0.015 μF 1000 pF /0.022 μF 1000 pF / 0.012 μF 1000 pF / 0.047 μF 1000 pF / 0.082 μF 1000 pF / 0.033 μF 0.01 μF / 0.22 μF 0.01 μF / 0.10 μF 0.01 μF / 0.39 μF 0.01 μF / 0.68 μF 0.10 μF / 1.00 μF 0.01 μF / 0.82 μF 0.10 μF / 1.2 μF 0.10 μF / 2.20 μF 0.01 μF / 0.10 μF 0.01 μF / 0.18 μF 0.01 μF / 0.33 μF 0.01 μF / 1.0 μF 0.01 μF / 1.2 μF 100 pF / 5600 pF 1000 pF / 0.015 μF 1000 pF / 0.018 μF 100 pF / 6800 pF 1000 pF / 0.056 μF 1000 pF / 0.033 μF 0.01 μF / 0.10 μF 0.01 μF / 0.18 μF 0.01 μF / 0.27 μF 0.01 μF / 0.22 μF 0.01 μF / 0.39 μF 0.01 μF / 0.56 μF 1000 pF / 0.033 μF 1000 pF / 0.068 μF 0.01 μF / 0.10 μF 0.01 μF / 0.27 μF 0.01 μF / 0.39 μF 100 pF / 3900 pF 100 pF / 6800 pF 1000 pF / 0.01 μF 100 pF / 3900 pF 1000 pF /0.027 μF 1000 pF /0.012 μF 1000 pF /0.047 μF 1000 pF /0.082 μF 0.01 μF / 0.12 μF 0.01 μF / 0.10 μF 0.01 μF / 0.18 μF 0.01 μF / 0.27 μF 1000 pF /0.012 μF 1000 pF /0.022 μF 1000 pF /0.033 μF 0.01 μF / 0.12 μF 0.01 μF / 0.15 μF 10 pF 10 pF 10 pF 10 pF 100 pF 10 pF 100 pF 100 pF 100 pF 100 pF 100 pF 1000 pF 100 pF 100 pF 100 pF 100 pF 1000 pF / 82 pF / 560 pF / 680 pF / 180 pF / 1500 pF / 820 pF / 3900 pF / 6800 pF / 8200 pF / 5600 pF / 8200 pF /0.015 μF / 1000 pF / 1800 pF / 2700 pF / 8200 pF /0.012 μF 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 10 pF 10 pF 100 pF 100 pF 100 pF — / 150 pF / 390 pF / 100 pF /1000 pF / 470 pF /2200 pF /3300 pF /4700 pF /3300 pF /4700 pF /8200 pF / 470 pF / 820 pF /1800 pF /4700 pF /6800 pF 10 pF 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF 100 pF 10 pF 10 pF 100 pF 100 pF 100 pF — / 100 pF / 220 pF / 68 pF / 560 pF / 390 pF /1200 pF /2200 pF /3300 pF /2200 pF /3300 pF /5600 pF / 390 pF / 680 pF /1200 pF /3300 pF /4700 pF X7R — — 100 pF /3900 pF 100 pF / 2700 pF 100 pF /6800 pF 100 pF / 4700 pF 100 pF /2200 pF 100 pF / 1800 pF 1000 pF /0.018 μF 1000 pF /0.012 μF 100 pF /8200 pF 100 pF / 6800 pF 1000 pF /0.033 μF 1000 pF /0.027 μF 1000 pF /0.068 μF 1000 pF /0.047 μF 0.01 μF / 0.10 μF 1000 pF /0.068 μF 1000 pF /0.082 μF 1000 pF /0.056 μF 0.01 μF / 0.15 μF 0.01 μF / 0.10 μF 0.01 μF / 0.22 μF 0.01 μF / 0.15 μF 1000 pF / 0.01 μF 100 pF / 6800 pF 1000 pF /0.018 μF 1000 pF /0.015 μF 1000 pF /0.027 μF 1000 pF /0.022 μF 0.01 μF / 0.10 μF 1000 pF /0.068 μF 0.01 μF / 0.12 μF 1000 pF /0.082 μF — — 100 pF /1800 pF 100 pF / 820 pF 100 pF /4700 pF 100 pF /2700 pF 1000 pF / 0.01 μF 1000 pF /0.018 μF 1000 pF /0.027 μF 1000 pF /0.022 μF 1000 pF /0.039 μF 1000 pF /0.056 μF 100 pF /2700 pF 100 pF /5600 pF 1000 pF /8200 pF 1000 pF /0.027 μF 1000 pF /0.039 μF — — — — — 100 pF /1200 pF 100 pF /6800 pF 1000 pF /0.012 μF 1000 pF /0.018 μF 1000 pF /0.022 μF 1000 pF /0.027 μF 1000 pF /0.033 μF — — 100 pF /4700 pF 1000 pF /0.018 μF 1000 pF /0.027 μF Note: Contact factory for other voltage ratings or values. AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS Specification # 87046 87043 87040 87114 87047 87076 89044 87077 87070 Description C0G-1000 X7R-1000 X7R-2000 C0G-3000 X7R-3000 C0G-4000 X7R-4000 C0G-5000 X7R-5000 VDC VDC VDC VDC VDC VDC VDC VDC VDC Capacitance Range 10 100 100 10 100 10 100 10 100 pF pF pF pF pF pF pF pF pF - 0.025 μF 0.47 μF 0.22 μF 8200 pF 0.1 μF 6800 pF 0.056 μF 5600 pF 0.033 μF These specifications require group A and B testing per MIL-PRF-49467 Note: Customers may accept, at their discretion, a certificate of compliance with group B requirements in lieu of performing group B tests. 68 MLC Chip Capacitors Basic Construction A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and in manufacture, to produce it in the quality and quantities needed in today’s electronic equipment. Terminations • Standard Nickel Barrier Lead Free Tin Plate (RoHS Compliant) 5% minimum Lead Plated • Leach resistance to 90 seconds at 260°C • Solderable plated for dimensional control • Special materials as required Ceramic Layer Electrode End Terminations Terminated Edge Terminated Edge Margin Electrodes QUALITY STATEMENT AVX focus is customer satisfaction – Customer satisfaction in the broadest sense: Products, service, price, delivery, technical support, and all the aspects of a business that impact you, the customer. Our long term strategy is for continuous improvement which is defined by our Quality Vision 2000. This is a total quality management system developed by and supported by AVX corporate management. The foundation of QV2000 is built upon military and commercial standards and systems including ISO9001. QV2000 is a natural extension of past quality efforts with world class techniques for ensuring a total quality environment to satisfy our customers during this decade and into the 21st century. As your components supplier, we invite you to experience the quality, service, and commitment of AVX. 69 General Description EIA CODE Percent Capacity Change Over Temperature Range RS198 X7 X5 Y5 Z5 Temperature Range -55°C to +125°C -55°C to +85°C -30°C to +85°C +10°C to +85°C Code Percent Capacity Change D E F P R S T U V ±3.3% ±4.7% ±7.5% ±10% ±15% ±22% +22%, -33% +22%, - 56% +22%, -82% Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage. Cap. Change vs. A.C. Volts X7R Capacitance Change Percent Table 1: EIA and MIL Temperature Stable and General Application Codes 50 40 30 20 10 0 EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F. 12.5 25 37.5 Volts AC at 1.0 KHz 50 Figure 2 MIL CODE Temperature Range A B C -55°C to +85°C -55°C to +125°C -55°C to +150°C Typical Cap. Change vs. Temperature X7R Symbol Q R W X Y Z Cap. Change Zero Volts Cap. Change Rated Volts +15%, -15% +15%, -15% +22%, -56% +15%, -15% +30%, -70% +20%, -20% +15%, -50% +15%, -40% +22%, -66% +15%, -25% +30%, -80% +20%, -30% Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor. In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system. 70 Capacitance Change Percent Symbol Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. +20 +10 0VDC 0 -10 -20 -30 -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 Temperature Degrees Centigrade Figure 3 General Description Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 4. If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after “last heat.” Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed. Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX’s SpiCalci software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com. Typical Curve of Aging Rate X7R +1.5 Effects of Mechanical Stress – High “K” dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high “K” dielectrics as coupling capacitors in extremely low level applications. Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is: Capacitance Change Percent 0 -1.5 -3.0 -4.5 Lo = Lt -6.0 -7.5 1 10 100 Characteristic C0G (NP0) X7R, X5R 1000 10,000 100,000 Hours Max. Aging Rate %/Decade None 2 where Lo = Lt = Vt = Vo = Vt Vo operating life test life test voltage operating voltage X Tt To Y Tt = test temperature and To = operating temperature in °C X,Y = see text Figure 4 Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8. 71 General Description A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is: C = .224 KA t C K A t capacitance (picofarads) dielectric constant (Vacuum = 1) area in square inches separation between the plates in inches (thickness of dielectric) .224 = conversion constant (.0884 for metric system in cm) Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level. Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum. Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume. Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group. Energy Stored – The energy which can be stored in a capacitor is given by the formula: RP = = = = E = 1⁄2CV2 E = energy in joules (watts-sec) V = applied voltage C = capacitance in farads Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor: I ideal = C dV dt where I = Current C = Capacitance dV/dt = Slope of voltage transition across capacitor Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can “sink” is determined by the above equation. 72 Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is: C = Capacitance L = Inductance Rp = Parallel Resistance Rs = Series Resistance L RS C Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is: Z= where R 2S + (XC - XL )2 Z = Total Impedance Rs = Series Resistance XC = Capacitive Reactance = XL = Inductive Reactance 1 2 π fC = 2 π fL The variation of a capacitor’s impedance with frequency determines its effectiveness in many applications. Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a “perfect” capacitor the current in the capacitor will lead the voltage by 90°. I (Ideal) I (Actual) Loss Angle Phase Angle ␦ f IR s V In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and: Power Factor (P.F.) = Cos f or Sine ␦ Dissipation Factor (D.F.) = tan ␦ for small values of ␦ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry. General Description Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection. E.S.R. C Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor. Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.) XC The watts loss are: Watts loss = (2 π fCV2 ) (D.F.) Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the “Q” or Quality factor of capacitors. Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today’s high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation: V = L di dt Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance R P shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm’s Law). Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil. Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the “reappearing voltage” which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions. Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures. di The dt seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage. Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, by-pass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation: 1 fres = 2 LC 73 Surface Mounting Guide MLC Chip Capacitors REFLOW SOLDERING Case Size D2 D1 D3 D4 D5 Dimensions in millimeters (inches) 0805 (LD05) 1206 (LD06) *1210 (LD10) *1808 (LD08) *1812 (LD12) *1825 (LD13) *2220 (LD20) *2225 (LD14) *HQCC *3640 (LD40) *HQCE D1 3.00 4.00 4.00 5.60 5.60 5.60 6.60 6.60 6.60 10.67 10.67 (0.120) (0.160) (0.160) (0.220) (0.220) (0.220) (0.260) (0.260) (0.260) (0.427) (0.427) D2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.52 1.52 (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.060) (0.060) D3 1.00 2.00 2.00 3.60 3.60 3.60 4.60 4.60 4.60 7.62 7.62 (0.040) (0.090) (0.090) (0.140) (0.140) (0.140) (0.180) (0.180) (0.180) (0.300) (0.300) D4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.52 1.52 millimeters (inches) D5 (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.060) (0.060) 1.25 1.60 2.50 2.00 3.00 6.35 5.00 6.35 6.35 10.16 10.16 (0.050) (0.060) (0.100) (0.080) (0.120) (0.250) (0.200) (0.250) (0.250) (0.400) (0.400) *AVX recommends reflow soldering only. Component Pad Design Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is: • Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this. • Pad overlap 0.5mm beneath component. • Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering. WAVE SOLDERING D2 D1 Case Size 0805 1206 D3 D4 D1 D2 D3 D4 D5 4.00 (0.15) 5.00 (0.19) 1.50 (0.06) 1.50 (0.06) 1.00 (0.04) 2.00 (0.09) 1.50 (0.06) 1.50 (0.06) 1.25 (0.05) 1.60 (0.06) Dimensions in millimeters (inches) D5 Component Spacing For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required. ≥1.5mm (0.06) ≥1mm (0.04) ≥1mm (0.04) 74 Preheat & Soldering The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second. For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C. For further specific application or process advice, please consult AVX. Cleaning Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor. Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse. Surface Mounting Guide Recommended Soldering Profiles REFLOW SOLDER PROFILES Maximum Reflow Profile With Care 250 Component Temperature / ºC AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJ-STD020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260ºC max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems. Recommended Reflow Profiles 275 Recommended Pb-Free Reflow Profile Preheat Preheat Reflow CoolCool Down Reflow Down Recommended SnPb Reflow Profile 225 200 175 150 125 100 75 Preheat 50 Reflow Cool Down 25 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 Time / secs Preheat: Wetting Force at 2nd Sec. (higher is better) 0.40 0.30 0.20 F [mN] The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125ºC may be rapid, but from that point (2-3)ºC/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180ºC). SnPb - Sn60Pb40 0.10 Sn - Sn60Pb40 0.00 Sn-Sn3.5Ag0.7Cu -0.10 Sn-Sn2.5Ag1Bi0.5Cu Reflow: -0.20 Sn-Sn0.7Cu In the reflow phase, the maximum recommended time > 230ºC is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250ºC, (see wetting balance chart opposite) but products are qualified to 260ºC max. Please reference individual product datasheets for maximum limits -0.30 Cool Down: Cool down should not be forced and 6ºC/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet. -0.40 200 210 220 230 240 250 260 270 Temperature of Solder [C] IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint. WAVE SOLDER PROFILES Preheat: This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated. Recommended Soldering Profiles 275 Component Temperature / ºC For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260ºC max recommended for SnPb systems. 225 Wave 175 Preheat 125 Wave Cool Down: Wave 75 Preheat Wave: 250ºC – 260ºC recommended for optimum solderability. Cool Down Preheat Cool Down Cool Down 25 0 50 100 150 200 250 300 350 400 Time / seconds As with reflow solder, cool down should not be forced and 6ºC/sec is recommended. Any air knives at the end of the 2nd wave should be heated. 75 Surface Mounting Guide MLC Chip Capacitors APPLICATION NOTES Wave 300 Storage Preheat Good solderability is maintained for at least twelve months, provided the components are stored in their “as received” packaging at less than 40°C and 70% RH. Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds. Leaching Solder Temp. Solderability Terminations will resist leaching for at least the immersion times and conditions shown below. Termination Type Nickel Barrier Solder Solder Tin/Lead/Silver Temp. °C 60/40/0 260 ± 5 Solder Temp. 250 200 220°C to 250°C 100 50 0 1 to 2 min 3 sec. max Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods. Lead-Free Reflow Profile Temperature °C 0 General 10 sec. max (Minimize soldering time) 300 250 200 150 100 50 0 0 100 The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above. The following should be noted by customers changing from lead based systems to the new lead free pastes. a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large. b) Resin color may darken slightly due to the increase in temperature required for the new pastes. c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified. Natural Cooling 1min 230°C to 250°C 150 Lead-Free Wave Soldering Preheat 1min T (Preheat chips before soldering) T/maximum 150°C Reflow 150 200 50 Immersion Time Seconds 30 ± 1 Recommended Soldering Profiles 300 Natural Cooling 250 Handling 50 100 150 • Pre-heating: 150°C ±15°C / 60-90s • Max. Peak Gradient 2.5°C/s • Peak Temperature: 245°C ±5°C • Time at >230°C: 40s Max. 200 250 Time (s) 300 Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors. Preheat It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second 76 Surface Mounting Guide MLC Chip Capacitors and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temper-ature differential increases. Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. POST SOLDER HANDLING Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don’t result in problems unless the stress is large enough to fracture the soldered connection. Ceramic capacitors are more susceptible to such stress because they don’t have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes. Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms: Cooling Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above. Cleaning Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors. Type A: Angled crack between bottom of device to top of solder joint. Type B: Fracture from top of device to bottom of device. Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping. 77 Surface Mounting Guide MLC Chip Capacitors COMMON CAUSES OF MECHANICAL CRACKING REWORKING OF MLCs The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken. A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components. Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards. Solder Tip Preferred Method - No Direct Part Contact Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow. However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300ºC. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor. Solder Tip Poor Method - Direct Contact with Part PCB BOARD DESIGN To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located. No Stress Relief for MLCs 78 Routed Cut Line Relieves Stress on MLC High Voltage MLC Chips For 600V to 5000V Applications High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies. Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4ºC per second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing. For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips). NEW 630V RANGE HOW TO ORDER 1808 AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640 *** A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = A C A S G W H J K 271 K A 1 Temperature Capacitance Code Capacitance Test Level Termination* Coefficient (2 significant digits Tolerance A = Standard 1 = Pd/Ag C0G = A + no. of zeros) C0G:J = ±5% T = Plated X7R = C Examples: K = ±10% Ni and Sn (RoHS Compliant) 10 pF = 100 M = ±20% 100 pF = 101 X7R:K = ±10% 1,000 pF = 102 M = ±20% 22,000 pF = 223 Z = +80%, 220,000 pF = 224 -20% 1 μF = 105 1 A Packaging Special 1 = 7" Reel Code 3 = 13" Reel A = Standard 9 = Bulk *Note: Terminations with 5% minimum lead (Pb) is available, see pages 81 and 82 for LD style. Leaded terminations are available, see pages 85 and 86. Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. *** AVX offers nonstandard chip sizes. Contact factory for details. W L T t DIMENSIONS millimeters (inches) SIZE (L) Length 0805 1206 1210* 1808* 1812* 1825* 2220* 2225* 3640* 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010) (W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25 (0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010) (T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) *Reflow Soldering Only 79 High Voltage MLC Chips For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 0805 10pF 330pF 10pF 180pF — — — — — — — — — — — — 1206 1210 1808 1812 1825 2220 2225 3640 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 10 pF 120 pF — — — — — — — — 100 pF 2700 pF 10 pF 1500 pF 10 pF 680 pF 10 pF 270 pF — — — — — — — — 100 pF 3300 pF 100 pF 2200 pF 10 pF 820 pF 10 pF 330 pF 10 pF 180 pF 10 pF 120 pF 10 pF 47 pF — — 100 pF 5600 pF 100 pF 3300 pF 10 pF 1800 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 330 pF 10 pF 150 pF — — 1000 pF 0.012 μF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 820 pF 10 pF 330 pF — — 1000 pF 0.012 μF 1000 pF 0.010 μF 100 pF 4700 pF 100 pF 2200 pF 100 pF 1500 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 220 pF 1000 pF 0.018 μF 1000 pF 0.010 μF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 1000 pF 0.047 μF 1000 pF 0.022 μF 100 pF 0.010 μF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF 100 pF 1200 pF 10 pF 820 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 80 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 0805 1206 1210 1808 1812 1825 2220 2225 3640 100pF 6800pF 100pF 1500pF — — — — — — — — — — — — 1000 pF 0.022 μF 100 pF 6800 pF 100 pF 2700 pF 10 pF 1500 pF — — — — — — — — 1000 pF 0.056 μF 1000 pF 0.015 μF 100 pF 5600 pF 100 pF 3300 pF — — — — — — — — 1000 pF 0.068 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF 10 pF 2200 pF 10 pF 1800 pF — — — — 1000 pF 0.120 μF 1000 pF 0.039 μF 100 pF 0.015 μF 100 pF 8200 pF 10 pF 5600 pF 10 pF 3900 pF — — — — 0.010 μF 0.270 μF 1000 pF 0.100 μF 1000 pF 0.056 μF 100 pF 0.022 μF 100 pF 0.015 μF 100 pF 0.010 μF — — — — 0.010 μF 0.270 μF 1000 pF 0.120 μF 1000 pF 0.056 μF 1000 pF 0.027 μF 100 pF 0.018 μF 100 pF 0.012 μF — — — — 0.010 μF 0.330 μF 1000 pF 0.150 μF 1000 pF 0.068 μF 1000 pF 0.033 μF 100 pF 0.022 μF 100 pF 0.015 μF — — — — 0.010 μF 0.560 μF 0.010 μF 0.220 μF 1000 pF 0.100 μF 1000 pF 0.027 μF 1000 pF 0.022 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF High Voltage MLC Chips Tin/Lead Termination “B” For 600V to 5000V Applications AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a “B” in the 12th position of the AVX Catalog Part Number. This fulfills AVX’s commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this “B” termination. Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4ºC per second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing. For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips). NEW 630V RANGE HOW TO ORDER LD08 A A Voltage Temperature AVX 600V/630V = C Coefficient Style 1000V = A C0G = A LD05 - 0805 1500V = S X7R = C LD06 - 1206 2000V = G LD10 - 1210 2500V = W LD08 - 1808 3000V = H LD12 - 1812 4000V = J LD13 - 1825 5000V = K LD20 - 2220 LD14 - 2225 LD40 - 3640 *** 271 K A Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20% Test Level A = Standard B 1 Termination Packaging B = 5% Min Pb 1 = 7" Reel 3 = 13" Reel 9 = Bulk A Special Code A = Standard Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. *** AVX offers nonstandard chip sizes. Contact factory for details. W L T DIMENSIONS t millimeters (inches) SIZE (L) Length LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225) LD40* (3640) 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010) (W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25 (0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010) (T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) * Reflow soldering only. 81 High Voltage MLC Chips Tin/Lead Termination “B” For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 600/630 min. max. min. 1000 max. min. 1500 max. min. 2000 max. min. 2500 max. min. 3000 max. LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640) 10pF 330pF 10pF 180pF — — — — — — — — 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 10 pF 120 pF — — — — 100 pF 2700 pF 10 pF 1500 pF 10 pF 680 pF 10 pF 270 pF — — — — 100 3300 100 2200 10 820 10 330 10 180 10 120 pF pF pF pF pF pF pF pF pF pF pF pF 100 5600 100 3300 10 1800 10 1000 10 470 10 330 pF pF pF pF pF pF pF pF pF pF pF pF 1000 pF 0.012 μF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 820 pF 1000 pF 0.012 μF 1000 pF 0.010 μF 100 pF 4700 pF 100 pF 2200 pF 100 pF 1500 pF 10 pF 1000 pF 1000 pF 0.018 μF 1000 pF 0.010 μF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 1000 pF 0.047 μF 1000 pF 0.022 μF 100 pF 0.010 μF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 82 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 0805 1206 1210 1808 1812 1825 2220 2225 3640 100pF 6800pF 100pF 1500pF — — — — — — — — — — — — 1000 pF 0.022 μF 100 pF 6800 pF 100 pF 2700 pF 10 pF 1500 pF — — — — — — — — 1000 pF 0.056 μF 1000 pF 0.015 μF 100 pF 5600 pF 100 pF 3300 pF — — — — — — — — 1000 pF 0.068 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF 10 pF 2200 pF 10 pF 1800 pF — — — — 1000 pF 0.120 μF 1000 pF 0.039 μF 100 pF 0.015 μF 100 pF 8200 pF 10 pF 5600 pF 10 pF 3900 pF — — — — 0.010 μF 0.270 μF 1000 pF 0.100 μF 1000 pF 0.056 μF 100 pF 0.022 μF 100 pF 0.015 μF 100 pF 0.010 μF — — — — 0.010 μF 0.270 μF 1000 pF 0.120 μF 1000 pF 0.056 μF 1000 pF 0.027 μF 100 pF 0.018 μF 100 pF 0.012 μF — — — — 0.010 μF 0.330 μF 1000 pF 0.150 μF 1000 pF 0.068 μF 1000 pF 0.033 μF 100 pF 0.022 μF 100 pF 0.015 μF — — — — 0.010 μF 0.560 μF 0.010 μF 0.220 μF 1000 pF 0.100 μF 1000 pF 0.027 μF 1000 pF 0.022 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF High Voltage MLC Chips FLEXITERM® For 600V to 3000V Applications High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies. To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®. The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns. HOW TO ORDER 1808 AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 *** A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = C C A S G W H 272 K Temperature Capacitance Code Capacitance Coefficient (2 significant digits Tolerance C0G: J = ±5% C0G = A + no. of zeros) K = ±10% X7R = C Examples: M = ±20% 10 pF = 100 100 pF = 101 X7R: K = ±10% M = ±20% 1,000 pF = 102 Z = +80%, 22,000 pF = 223 -20% 220,000 pF = 224 1 μF = 105 A Z Test Level Termination* Z = FLEXITERM® 100% Tin (RoHS Compliant) 1 A Packaging Special 1 = 7" Reel Code 3 = 13" Reel A = Standard 9 = Bulk Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. *** AVX offers nonstandard chip sizes. Contact factory for details. W L T t DIMENSIONS SIZE (L) Length 0805 2.01 ± 0.20 (0.079 ± 0.008) (W) Width 1.25 ± 0.20 (0.049 ± 0.008) (T) Thickness 1.30 Max. (0.051) (t) terminal min. 0.50 ± 0.25 max. (0.020 ± 0.010) millimeters (inches) 1206 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 1210* 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 1808* 4.57 ± 0.25 (0.180 ± 0.010) 2.03 ± 0.25 (0.080 ± 0.010) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 1812* 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 1825* 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.30 (0.252 ± 0.012) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 2220* 5.7 ± 0.40 (0.224 ± 0.016) 5.0 ± 0.40 (0.197 ± 0.016) 3.30 (0.130) 0.25 (0.010) 1.02 (0.040) 2225* 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) *Reflow Soldering Only 83 High Voltage MLC Chips FLEXITERM® For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.018 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE min. 600/630 max. min. 1000 max. min. 1500 max. min. 2000 max. min. 2500 max. min. 3000 max. min. 4000 max. min. 5000 max. 0805 10pF 330pF 10pF 180pF — — — — — — — — — — — — 1206 1210 1808 1812 1825 2220 2225 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 10 pF 120 pF — — — — — — — — 100 pF 2700 pF 10 pF 1500 pF 10 pF 680 pF 10 pF 270 pF — — — — — — — — 100 pF 3300 pF 100 pF 2200 pF 10 pF 820 pF 10 pF 330 pF 10 pF 180 pF 10 pF 120 pF 10 pF 47 pF — — 100 pF 5600 pF 100 pF 3300 pF 10 pF 1800 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 330 pF 10 pF 150 pF — — 1000 pF 0.012 μF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 820 pF 10 pF 330 pF — — 1000 pF 0.012 μF 1000 pF 0.010 μF 100 pF 4700 pF 100 pF 2200 pF 100 pF 1500 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 220 pF 1000 pF 0.018 μF 1000 pF 0.010 μF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.33 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 84 min. max. min. max. min. max. min. max. min. max. min. max. 0805 100pF 6800pF 100pF 1500pF — — — — — — — — 1206 1210 1808 1812 1825 2220 2225 1000 pF 0.022 μF 100 pF 6800 pF 100 pF 2700 pF 10 pF 1500 pF — — — — 1000 pF 0.056 μF 1000 pF 0.015 μF 100 pF 5600 pF 100 pF 3300 pF — — — — 1000 pF 0.068 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 2300 pF 10 pF 2200 pF 10 pF 1800 pF 1000 pF 0.120 μF 1000 pF 0.039 μF 100 pF 0.015 μF 100 pF 8200 pF 10 pF 5600 pF 10 pF 2200 pF 0.010 μF 0.270 μF 1000 pF 0.100 μF 1000 pF 0.056 μF 100 pF 0.022 μF 100 pF 0.015 μF 100 pF 0.010 pF 0.010 μF 0.270 μF 1000 pF 0.120 μF 1000 pF 0.056 μF 1000 pF 0.027 μF 100 pF 0.018 μF 100 pF 0.012 μF 0.010 μF 0.330 μF 1000 pF 0.150 μF 1000 pF 0.068 μF 1000 pF 0.033 μF 100 pF 0.022 μF 100 pF 0.015 μF High Voltage MLC Leaded Chips For 600V to 5000V Applications HOW TO ORDER 1825 AVX Style 1825 2225 3640 A A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = C A S G W H J K 271 K A V 00N Temperature Capacitance Code Capacitance Test Level Finish Lead Style Coefficient (2 significant digits Tolerance A = Standard V = Uncoated 00N = Straight Lead C0G = A + no. of zeros) C0G:J = ±5% W = Epoxy Coated 00J = Leads Formed In X7R = C Examples: K = ±10% 00L = Leads Formed Out 10 pF = 100 M = ±20% 100 pF = 101 X7R:K = ±10% 1,000 pF = 102 M = ±20% 22,000 pF = 223 Z = +80%, 220,000 pF = 224 -20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Capacitors may require protective surface coating to prevent external arcing. B D A 1.397 (0.055) ±0.254 (0.010) E “N” STYLE LEADS 6.35 (0.250) MIN. 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) RAD. (TYP.) B A D 1.397 (0.055) ±0.254 (0.010) E “J” STYLE LEADS 0.254 (0.010) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) C 1.905 (0.075) ±0.635 (0.025) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. B A D 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) E “L” STYLE LEADS 0.254 (0.010) TYP. 1.778 (0.070) ±0.254 (0.010) 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 1.905 (0.075) ±0.635 (0.025) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. DIMENSIONS millimeters (inches) Style A (max.) B (max.) 1825 2225 3640 2.54 (0.100) For “N” Style Leads, “B” Dimension = 4.19 (0.165) For “J” & “L” Leads, “B” Dimension = 4.58 (0.180) C ±.635 (±0.025) 5.08 (0.200) 6.35 (0.250) 10.2 (0.400) D ±.635 (±0.025) 6.35 (0.250) 6.35 (0.250) 10.2 (0.400) E (max.) 6.86 (0.270) 7.62 (0.300) 11.2 (0.440) No. of Leads per side 3 3 4 Note: For W (Epoxy Coated) part add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E 85 High Voltage MLC Leaded Chips For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.15% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 1825 min. 600/630 max. min. 1000 max. min. 1500 max. min. 2000 max. min. 2500 max. min. 3000 max. min. 4000 max. min. 5000 max. 1000 pF 0.012 μF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 8200 pF 10 pF 330 pF — — 2225 1000 pF 0.018 μF 1000 pF 0.010 μF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 3640 1000 pF 0.047 μF 1000 pF 0.022 μF 100 pF 0.010 μF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF 100 pF 1200 pF 10 pF 820 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 100 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 86 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 1825 2225 3640 0.010 μF 0.270 μF 1000 pF 0.100 μF 1000 pF 0.056 μF 100 pF 0.022 μF 100 pF 0.015 μF 100 pF 0.010 μF — — — — 0.010 μF 0.330 μF 1000 pF 0.150 μF 1000 pF 0.068 μF 1000 pF 0.033 μF 100 pF 0.022 μF 100 pF 0.015 μF — — — — 0.010 μF 0.560 μF 0.010 μF 0.220 μF 1000 pF 0.100 μF 1000 pF 0.027 μF 1000 pF 0.022 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF Hi-Q® High RF Power MLC Surface Mount Capacitors For 600V to 7200V Applications PRODUCT OFFERING Hi-Q®, high RF power, surface mount MLC capacitors from AVX Corporation are characterized with ultra-low ESR and dissipation factor at high frequencies. They are designed to handle high power and high voltage levels for applications in RF power amplifiers, inductive heating, high magnetic field environments (MRI coils), medical and industrial electronics. HOW TO ORDER HQCC AVX Style HQCC HQCE A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = 7200V = A C A S G W H J K M 271 A J Temperature Capacitance Code Coefficient (2 significant digits C0G = A + no. of zeros) Examples: 4.7 pF = 4R7 10 pF = 100 100 pF = 101 1,000 pF = 102 T Test Level Termination* Capacitance A = Standard 1 = Pd/Ag Tolerance T = Plated C = ±0.25pF (<13pF) Ni and Sn D = ±0.50pF (<25pF) (RoHS Compliant) F = ±1% (⭓25pF) J = 5% Min Pb G = ±2% (⭓13pF) J = ±5% K = ±10% M = ±20% 1 A Packaging Special 1 = 7" Reel Code 3 = 13" Reel A = Standard 9 = Bulk Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. DIMENSIONS STYLE (L) Length (W) Width (T) Thickness Max. (t) terminal millimeters (inches) HQCC 5.84 ± 0.51 (0.230 ± 0.020) 6.35 ± 0.51 (0.250 ± 0.020) 3.3 max. (0.130 max.) 0.64 ± 0.38 (0.025 ± 0.015) L HQCE 9.4 ± 0.51 (0.370 ± 0.020) 9.9 ± 0.51 (0.390 ± 0.020) 3.3 max. (0.130 max.) 0.64 ± 0.38 (0.025 ± 0.015) W T t DIELECTRIC PERFORMANCE CHARACTERISTICS Capacitance Range Capacitance Tolerances Dissipation Factor 25°C Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance Dielectric Strength 3.3pF to 6,800pF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1MHz) ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20% 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1MHz) -55°C to +125°C C0G: 0 ± 30 ppm/°C (-55°C to +125°C) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 7200VDC 100K MΩ min. @ +25°C and 500VDC 10K MΩ min. @ +125°C and 500VDC Minimum 120% of rated WVDC HIGH VOLTAGE CAPACITANCE VALUES (pF) 600/630 WDC 1000 WVDC 1500 WVDC 2000 WVDC 2500 WVDC 3000 WVDC 4000 WVDC 5000 WVDC 7200 WVDC min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max. HQCC 2,200 - 2,700 1,500 - 1,800 820 - 1,200 470 - 680 330 - 390 3.3 - 270 3.3 - 6.8 HQCE 3.3 - 6,800 3.3 - 4,700 3.3 - 2,700 3.3 - 1,800 3.3 - 1,000 3.3 - 680 3.3 - 390 3.3 - 180 3.3 - 100 Style 87 Hi-Q® High RF Power Ribbon Leaded MLC Capacitors Hi-Q®, High RF Power, Ribbon Leaded MLC Capacitors from AVX Corporation are characterized with ultra-low ESR and dissipation factor at high frequencies. The HQL-style parts are constructed using nonmagnetic materials. They are designed to handle high power and high voltage levels for applications in RF power amplifiers, inductive heating, high magnetic field environments (MRI coils), medical and industrial electronics. HOW TO ORDER HQLC AVX Style HQLC HQLE A Voltage 600V/630 = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = 7200V = C A S G W H J K M A 271 J A A Temperature Coefficient C0G = A Capacitance Code (2 significant digits + no. of zeros) Examples: 4.7 pF = 4R7 10 pF = 100 100 pF = 101 1,000 pF = 102 Capacitance Tolerance C = ±0.25pF (<13pF) D = ±0.50pF (<25pF) F = ±1% (⭓25pF) G = ±2% (⭓13pF) J = ±5% K = ±10% M = ±20% Test Level A = Standard Lead Style A = Axial Ribbon M = Microstrip Capacitance Range (pF) Style HQLC HQLE 600/630 WVDC 1000 WVDC 1500 WVDC 2000 WVDC min./max. min./max. min./max. min./max. 2200 - 2700 1500 - 1800 820 - 1200 470 - 680 3.3 - 6800 3.3 - 4700 3.3 - 2700 3.3 - 1800 2500 WVDC min./max. 330 - 390 3.3 - 1000 3000 WVDC 4000 WVDC min./max. min./max. 3.3 - 270 3.3 - 6.8 3.3 - 680 3.3 - 390 5000 WVDC min./max. min./max. DIELECTRIC PERFORMANCE CHARACTERISTICS Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristics Voltage Ratings Insulation Resistance Dielectric Strength 88 7200 WVDC 3.3pF to 6,800pF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000pF use 1MHz) ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20% 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000pF use 1MHz) -55°C to +125°C C0G: 0 ± 30 ppm/°C (-55°C to +125°C) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 7200VDC 100K MΩ min. @ +25°C and 500VDC 10K MΩ min. @ +125°C and 500VDC Minimum 120% of rated WVDC 3.3 - 180 3.3 - 100 Hi-Q® High RF Power Ribbon Leaded MLC Capacitors Microstrip Leads (Lead Style “M”) DIMENSIONS millimeters (inches) Unit L LL Size ±0.51 (0.020) Min. HQLC 5.72 (0.225) 12.7 (0.500) HQLE 9.40 (0.370) 19.1 (0.750) W ±0.64 (0.025) 6.35 (0.250) 10.2 (0.400) WL ±0.38 (0.015) 6.10 (0.240) 8.89 (0.350) H ±0.64 (0.025) 3.68 (0.145) 3.68 (0.145) HL ±0.38 (0.015) 0.64 (0.025) 0.64 (0.025) TL Ref. 0.10 (0.004) 0.25 (0.010) Note: Side to side lead alignment shall be within ±0.25 (0.010) Axial Ribbon Leads (Lead Style “A”) ±0.51 (0.020) DIMENSIONS millimeters (inches) Unit L LL Size ±0.51 (0.020) Min. HQLC 5.72 (0.225) 12.7 (0.500) HQLE 9.40 (0.370) 19.1 (0.750) W ±0.64 (0.025) 6.35 (0.250) 10.2 (0.400) WL ±0.38 (0.015) 6.10 (0.240) 8.89 (0.350) H ±0.64 (0.025) 3.18 (0.125) 3.18 (0.125) TL Ref. 0.10 (0.004) 0.25 (0.010) Note: Side to side lead alignment shall be within ±0.25 (0.010) 89 Hi-Q® High RF Power MLC Capacitors PERFORMANCE CHARACTERISTICS Typical ESR vs. Capacitance HQCC and HQLC Typical Series Resonant Frequency vs. Capacitance HQCC and HQLC 10000 1.000 1000 0.100 ESR (Ω) Frequency (MHz) 13.56 MHz 64 MHz 250 MHz 500 MHz 100 0010 10 10 1 100 1000 10000 0.001 Capacitance (pF) 1 10 100 1000 10000 Capacitance (pF) Typical Quality Factor vs. Capacitance HQCC and HQLC Maximum RMS Current vs. Capacitance HQCC and HQLC 1.00E+05 100.0 Quality Factor (-) 1.00E+04 Maximum RMS Current (A) 13.56 MHz 64 MHz 250 MHz 500 MHz 1.00E+03 1.00E+02 1.00E+01 1.00E+00 1.0 13.56 MHz 64 MHz 250 MHz 500 MHz 0.1 1 10 100 Capacitance (pF) 90 10.0 1000 10000 1 10 100 Capacitance (pF) 1000 10000 Hi-Q® High RF Power MLC Capacitors PERFORMANCE CHARACTERISTICS Typical Series Resonant Frequency vs. Capacitance HQCE and HQLE Typical ESR vs. Capacitance HQCE and HQLE 10000 1.000 1000 0.100 ESR (Ω) Frequency (MHz) 13.56 MHz 64 MHz 250 MHz 500 MHz 100 0.010 10 1 10 100 1000 10000 0.001 Capacitance (pF) 1 10 100 1000 10000 Capacitance (pF) Maximum RMS Current vs. Capacitance HQCE and HQLE Typical Quality Factor vs. Capacitance HQCE and HQLE 1.00E+05 100.0 Quality Factor (-) 1.00E+04 Maximum RMS Current (A) 13.56 MHz 64 MHz 250 MHz 500 MHz 1.00E+03 1.00E+02 1.00E+01 1.00E+00 10.0 1.0 13.56 MHz 64 MHz 250 MHz 500 MHz 0.1 1 10 100 Capacitance (pF) 1000 10000 1 10 100 1000 10000 Capacitance (pF) 91 Tip & Ring Multilayer Ceramic Chip Capacitors AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip Capacitors are designed as a standard telecom filter to block -48 Volts DC telephone line voltage and pass subscriber’s AC signal pulse (16 to 25Hz, 70 to 90Vrms). The typical ringing signal is seen on figure on page 93. The ringer capacitors replace large leaded film capacitors and are ideal for telecom/modem applications. Using AVX “Tip & Ring” capacitors not only saves valuable real estate on the board and reduces the weight of overall product, but also features standard surface mounting capabilities, so critical to new and compact designs. The AVX “Tip & Ring” capacitors are offered in standard EIA sizes and standard values. They offer excellent high frequency performance, low ESR and improved temperature performance over film capacitors. HOW TO ORDER 1812 P C 104 K A T AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 Voltage 250 VDC Telco Rating Temp Coefficient X7R Capacitance Code (2 significant digits + no. of zeros) Examples: 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance K = ±10% M = ±20% Test Level A = Standard 1 A Packaging Termination 1 = 7" Reel T = Plated 3 = 13" Reel Ni and Sn (RoHS Compliant) 9 = Bulk Z = FLEXITERM® 100% Tin (RoHS Compliant) Special Code A = Standard Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. W L T t DIMENSIONS Style 0805 millimeters (inches) 1206 1210* 1808* 1812* 1825* 2220* 2225* (L) Length 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010) (W)Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25 (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010) (T) Thickness (t) terminal 1.30 max. (0.051 max.) 1.78 max. (0.070 max.) 1.78 max. (0.070 max.) 2.00 max. (0.080 max.) 2.00max. (0.080 max.) 2.00 max. (0.080 max.) 2.00 max. (0.080 max.) 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) *Reflow Soldering Only 92 1.50 max. (0.059 max.) Tip & Ring Multilayer Ceramic Chip Capacitors CAPACITANCE RANGE (μF) Size min. max. 0805 0.0010 0.027 1206 0.0010 0.082 1210 0.0010 0.22 1808 0.010 0.27 1812 0.10 0.47 1825 0.33 1.0 2220 0.47 1.0 2225 0.47 1.2 “TIP & RING” GRAPH 250V Tip & Ring 0 -48V -250V 200ms/div -400ms 1.6s PERFORMANCE CHARACTERISTICS Capacitance Range 1000 pF to 1.2 μF Capacitance Tolerances ±10%, ±20% Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz) Operating Temperature Range Temperature Characteristic (25°C, 1.0 ±0.2 Vrms at 1kHz) -55°C to +125°C X7R ±15% (0 VDC) Voltage Rating 250 VDC Telco rating Insulation Resistance 1000 megohm-microfarad min. Dielectric Strength Minimum 200% rated voltage for 5 seconds at 50 mA max. current 93 Tip & Ring Tin/Lead Termination “B” Multilayer Ceramic Chip Capacitors AVX Corporation will support customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a “B” in the 12th position of the AVX Catalog Part Number. This fulfills AVX’s commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this “B” termination. AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip Capacitors are designed as a standard telecom filter to block -48 Volts DC telephone line voltage and pass subscriber’s AC signal pulse (16 to 25Hz, 70 to 90 VRMS). The typical ringing signal is seen on figure on page 95. The ringer capacitors replace large leaded film capacitors and are ideal for telecom/modem applications. Using AVX “Tip and Ring” capacitors not only saves valuable real estate on the board and reduces the weight of the overall product, but also features standard surface mounting capabilities, so critical to new and compact designs. The AVX “Tip & Ring” capacitors are offered in standard EIA sizes and standard values. They offer excellent high frequency performance, low ESR and improved temperature performance over film capacitors. HOW TO ORDER A LD12 P C 104 K AVX Style LD05 - 0805 LD06 - 1206 LD10 - 1210 LD08 - 1808 LD12 - 1812 LD13 - 1825 LD20 - 2220 LD14 - 2225 Voltage 250 VDC Telco Rating Temperature Coefficient X7R Capacitance Code (2 significant digits + no. of zeros) Examples: 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance K = ±10% M = ±20% B Test Termination Level B = 5% Min Pb A = Standard X = FLEXITERM® 5% min. Pb 1 A Packaging 1 = 7" Reel 3 = 13" Reel 9 = Bulk Special Code A = Standard Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. W L T t DIMENSIONS STYLE (SIZE) (L) Length (W)Width (T) Thickness (t) terminal LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225) 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010) 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25 (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010) 1.30 max. (0.051 max.) 1.50 max. (0.059 max.) 1.78 max. (0.070 max.) 1.78 max. (0.070 max.) 2.00 max. (0.080 max.) 2.00max. (0.080 max.) 2.00 max. (0.080 max.) 2.00 max. (0.080 max.) 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) *Reflow Soldering Only 94 millimeters (inches) Tip & Ring Tin/Lead Termination “B” Multilayer Ceramic Chip Capacitors CAPACITANCE RANGE (μF) STYLE (SIZE) min. max. LD05 (0805) 0.0010 0.027 LD06 (1206) 0.0010 0.082 LD10 (1210) 0.0010 0.22 LD08 (1808) 0.010 0.27 LD12 (1812) 0.10 0.47 LD13 (1825) 0.33 1.0 LD20 (2220) 0.47 1.0 LD14 (2225) 0.47 1.2 “TIP & RING” GRAPH 250V Tip & Ring 0 -48V -250V 200ms/div -400ms 1.6s PERFORMANCE CHARACTERISTICS Capacitance Range 1000 pF to 1.2 μF Capacitance Tolerances ±10%, ±20% Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz) Operating Temperature Range (25°C, 1.0 ±0.2 Vrms at 1kHz) -55°C to +125°C Temperature Characteristic X7R ±15% (0 VDC) Voltage Rating 250 VDC Telco rating Insulation Resistance 1000 megohm-microfarad min. Dielectric Strength Minimum 200% rated voltage for 5 seconds at 50 mA max. current 95 MLC Chips Packaging of Chip Components AUTOMATIC INSERTION PACKAGING TAPE & REEL QUANTITIES All tape and reel specifications are in compliance with EIA481 or IEC-286-3. Tape Size 8mm Component Pitch P1 4.00 12mm 4.00 24mm 8.00 1812 1825 2220 2225 (LD12) (LD13) (LD20) (LD14) 8.00 16.00 HQCC 3640 (LD40) HQCE 0805 (LD05) 1206 (LD06) 1210 (LD10) 1808 (LD08) Qty. per Reel/7" Reel 2000 2000 1000 500 N/A Qty. per Reel/13" Reel 10,000 4000 4000 2000 1000 Note: Lower quantity per reel may be used at the discretion of AVX. REEL DIMENSIONS DIMENSIONS millimeters (inches) Tape Size A Max. B* Min. C D* Min. N Min. W1 W2 Max. W3 8mm 330 (12.992) 1.5 (0.059) 13.0±0.20 (0.512±0.008) 20.2 (0.795) 50 (1.969) +1.5 -0.0 (0.331 +.059) -0.0 14.4 (0.567) 7.9 Min. (0.311) 10.9 Max. (0.429) 12mm 330 (12.992) 1.5 (0.059) 13.0±0.20 (0.512±0.008) 20.2 (0.795) 50 (1.969) +2.0 12.4 -0.0 (0.488 +.079) -0.0 18.4 (0.724) 11.9 Min. (0.469) 15.4 Max. (0.606) 20.2 (0.795) 60 (2.362) +2.0 24.4 -0.0 (0.961 +.079) -0.0 30.4 (1.197) 23.9 Min. (0.941) 27.4 Max. (1.079) Metric dimensions will govern. +0.5 English measurements rounded and for reference only.13.0 24mm 96 360 (14.173) 1.5 (0.059) -0.2 (0.512 +.020) -.008 8.4 MLC Chips Packaging of Chip Components P0 T2 T D0 P2 10 PITCHES CUMULATIVE TOLERANCE ON TAPE ±0.2mm (±0.008) EMBOSSMENT DEFORMATION BETWEEN EMBOSSMENTS Chip Orientation E1 A0 F TOP COVER TAPE B1 T1 W B0 K0 S1 E2 CENTER LINES OF CAVITY P1 MAX. CAVITY SIZE - SEE NOTE 1 B1 IS FOR TAPE READER REFERENCE ONLY INCLUDING DRAFT CONCENTRIC AROUND B0 D1 FOR COMPONENTS 2.00 mm x 1.20 mm AND LARGER (0.079 x 0.047) User Direction of Feed 8mm, 12mm & 24mm Embossed Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size D0 8mm 12mm 24mm 1.50 (0.059 +0.10 -0.0 +0.004 -0.0 millimeters (inches) E1 ) P0 1.75 ± 0.10 4.0 ± 0.10 (0.069 ± 0.004) (0.157 ± 0.004) S1 Min. T Max. T1 0.60 (0.024) 0.60 (0.024) 0.10 (0.004) Max. VARIABLE DIMENSIONS Tape Size B1 Max. D1 Min. 8mm 4.35 (0.171) 1.00 (0.039) 12mm 8.20 (0.323) 12mm Double Pitch 24mm E2 Min. millimeters (inches) F P1 R Min. See Note 2 T2 Max. W Max. A0 B0 K0 6.25 3.50 ± 0.05 4.00 ± 0.10 2.00 ± 0.05 (0.246) (0.138 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002) 25.0 (0.984) 2.50 (0.098) 8.30 (0.327) See Note 1 1.50 (0.059) 10.25 5.50 ± 0.05 4.00 ± 0.10 2.00 ± 0.05 (0.404) (0.217 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002) 30.0 (1.181) 6.50 (0.256) 12.3 (0.484) See Note 1 8.20 (0.323) 1.50 (0.059) 10.25 5.50 ± 0.05 8.00 ± 0.10 2.00 ± 0.05 (0.404) (0.217 ± 0.002) (0.315 ± 0.004) (0.079 ± 0.002) 30.0 (1.181) 6.50 (0.256) 12.3 (0.484) See Note 1 20.10 (0.791) 1.50 (0.059) 22.25 11.5 ± 0.10 16.00 ± 0.10 2.00 ± 0.10 (0.876) (0.453 ± 0.004) (0.630 ± 0.004) (0.079 ± 0.004) 30.0 (1.181) 12.00 (0.472) 24.3 (0.957) See Note 1 NOTES: 1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that: a) the component does not protrude beyond the sealing plane of the cover tape. b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed. c) rotation of the component is limited to 20º maximum (see Sketches D & E). d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F). P2 2. Tape with or without components shall pass around radius “R” without damage. 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556. 4. B1 dimension is a reference dimension for tape feeder clearance only. Top View, Sketch "F" Component Lateral Movements 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum Side or Front Sectional View Sketch “D” Top View Sketch “E” 97 Single-In-Line Packages (SIP) Capacitor Arrays SIP-style, MLC ceramic capacitor arrays are Single-In-Line, conformally coated packages. These capacitor networks incorporate multiple capacitors into a single substrate and, therefore, offer excellent TC tracking. The utilization of SIP capacitor arrays minimizes board real estate and reduces component count in the assembly. Various circuit configurations and capacitance/voltage values are available. Dimensions in millimeters (inches) Length (Max.) Length = [# of Leads x 2.54 (0.100)] + 1.27 (0.050) i.e., 10 Lead SIP = 26.67 (1.050) 3.429 (0.135) Max. 7.62 (0.300) Max. 0.254 (0.010) Typ. 3.81 (0.150) Min. 0.508 (0.020) Typ. 1.524 (0.060) Typ. 2.54 (0.100) Typ. 1 2 3 4 5 6 7 8 9 10 CIRCUIT CONFIGURATION "A" ONE END LEAD GROUND 98 1 2 3 4 5 6 7 8 9 10 CIRCUIT CONFIGURATION "B" ADJACENT LEAD PAIR CAPS 1 2 3 4 5 6 7 8 9 10 CIRCUIT CONFIGURATION "C" BOTH END LEADS GROUND Single-In-Line Packages (SIP) Capacitor Arrays HOW TO ORDER SP AVX Style A 1 1 A 561 K A A Circuit Lead Style Voltage Temperature Coefficient Capacitance Code Capacitance Tolerance Test Level Number of Leads See Page 98 (A, B, C) 50V = 5 100V = 1 C0G = A X7R = C Z5U = E (2 significant digits + no. of zero) 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 10 μF = 106 100 μF = 107 C0G: K = ±10% A = Standard M = ±20% X7R: K = ±10% M = ±20% Z = +80%,-20% Z5U: M = ±20% Z = +80%,-20% P = GMV (+100,-0%) 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 A = 10 B = 11 C = 12 D = 13 E = 14 *For dimensions, voltages, or capacitance values not specified, please contact factory. Maximum Capacitance* 50V 2200 pF 0.10 μF 0.39 μF C0G X7R Z5U 100V 1500 pF 0.033 μF 0.10 μF AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS SPECIFICATION # DESCRIPTION CIRCUIT LEADS 87112 BX-100 VDC A 8 87116 C0G-100 VDC A 8 CAPACITANCE RANGE 1000 pF - 0.1 μF 10 pF - 820 pF 87119 BX-100 VDC C 10 87120 C0G-100 VDC C 10 1000 pF - 0.1 μF 87122 BX-100 VDC B 8 1000 pF - 0.1 μF 88019 BX-100 VDC A 10 1000 pF - 0.1 μF 89086 C0G-100 VDC B 8 10 pF - 1000 pF 10 pF - 820 pF 99 Discoidal MLC Feed-Through Capacitors and Filters DC Style (US Preferred Sizes) / XB Style (European Preferred Sizes) XF Style (Feed-Through Discoidal) APPLICATION INFORMATION ON DISCOIDAL LOWEST CAPACITANCE IMPEDANCES TO GROUND OD* ID T Max. These surfaces are metallized .127 (0.005). minimum wide except for DC61, DC26 and DC63 where metallized surfaces are .127 (0.005) maximum. A discoidal MLC capacitor has very low impedance associated with its ground path since the signal is presented with a multi-directional path. These electrode paths, which can be as many as 100, allow for low ESR and ESL which are the major elements in impedance at high frequencies. The assembled discoidal element or feed-thru allows signal to be fed in through a chassis or bulkhead, conditioned as it passes through the discoidal, and isolated by the chassis and discoidal from the original signal. An example of this application would be in an AFT circuit where the AC noise signal would be required to be stripped from the DC control signal. Other applications include single line EMI/RFI suppression, L-C filter construction, and coaxial shield bypass filtering. The shape of the discoidal lends itself to filter construction. The short length allows compact construction where L-C construction is desired. The size freedom associated with this element allows almost any inside/ outside diameter combination. By allowing the inside diameter to equal the center insulator diameter of a coaxial signal line and special termination techniques, this device will allow bypass filtering of a floating shield to ground. Discoidal capacitors are available in three temperature coefficients (C0G, X7R, Z5U) and a variety of sizes, the most standard of which appear in this catalog. INSERTION LOSS 0 *Tol. = +-.254 (0.010) or 3%, whichever is greater -10 SINGLE CHIP -20 AVX’s DC Series 50V, 100V, 200V, C0G and X7R parts are capable of meeting the requirements of MIL-PRF-31033. (dB) -30 -40 DISCOIDAL -50 -60 -70 -80 0 ELECTRICAL SPECIFICATIONS 100 200 300 400 500 600 700 800 900 1000 f (MHz) Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz X7R: 25°C, 1.0±0.2 Vrms at 1KHz Z5U: 25°C, 0.5 Vrms max at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1K MΩ or 100 MΩ-μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test)* C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. 500V rated units will be tested at 750 VDC Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) HOW TO ORDER DC61 5 A AVX Voltage Temperature Style 50V = 5 Coefficient See Pages 100V = 1 C0G = A 101-102 200V = 2 X7R = C 500V = 7 Z5U = E 561 Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 For dimensions, voltages or values not specified, please consult factory. 100 K A Capacitance Test Tolerance Level C0G: J = ±5% A = Standard K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z5U: M = ±20% Z = +80 -20% P = GMV 5 Termination 5 = Silver (AVX Standard) 1 06 Inside Maximum Diameter Thickness See Pages 06 = 1.52 (0.060) 102-104 10 = 2.54 (0.100) Discoidal MLC Feed-Through Capacitors and Filters DC Style SIZE AND CAPACITANCE SPECIFICATIONS EIA Characteristic C0G DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72 Outside Diameter (OD)* 2.54 (0.100) 3.43 (0.135) 3.81 (0.150) 4.83 (0.190) 5.33 (0.210) 5.97 (0.235) 6.73 (0.265) 8.13 (0.320) 8.51 (0.335) 8.89 (0.350) 9.40 (0.370) 9.78 (0.385) 12.70 (0.500) 15.24 (0.600) 16.26 (0.640) Thickness Maximum 1.52 (0.060) 1.52 (0.060) 1.52 (0.060) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 1,2 1,2,3 1,2,3,4 1,2,3 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 (T) Inside Diameter No. (ID) Voltage cap. in pF 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 AVX Style Dimensions: millimeters (inches) 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10,000 12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000 100,000 120,000 150,000 180,000 220,000 270,000 330,000 390,000 470,000 560,000 680,000 *Outside Diameter: Tolerance is ±0.254 (0.010) or 3% whichever is greater Inside Diameter: +.127 +.005 1 = .635 -.051 (.025 -.002) +.127 +.005 2 = .762 -.051 (.030 -.002) +.127 +.005 3 = .914 -.051 (.036 -.002) +.127 +.005 4 = 1.07 -.051 (.042 -.002) 5 = 1.27±.127 (0.050±.005) 6 = 1.52±.127 (0.060±.005) 7 = 1.73±.127 (0.068±.005) 101 Discoidal MLC Feed-Through Capacitors and Filters DC Style SIZE AND CAPACITANCE SPECIFICATIONS EIA Characteristic X7R DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72 Outside Diameter (OD)* 2.54 (0.100) 3.43 (0.135) 3.81 (0.150) 4.83 (0.190) 5.33 (0.210) 5.97 (0.235) 6.73 (0.265) 8.13 (0.320) 8.51 (0.335) 8.89 (0.350) 9.40 (0.370) 9.78 (0.385) 12.70 (0.500) 15.24 (0.600) 16.26 (0.640) Thickness Maximum 1.52 (0.060) 1.52 (0.060) 1.52 (0.060) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 1,2 1,2,3 1,2,3,4 1,2,3 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 (T) Inside Diameter No. (ID) Voltage cap. in pF 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 AVX Style Dimensions: millimeters (inches) 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10,000 12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000 100,000 120,000 150,000 180,000 220,000 270,000 330,000 390,000 470,000 560,000 680,000 820,000 1.0 μF 1.2 μF 1.5 μF 1.8 μF 2.2 μF 2.7 μF 3.3 μF 3.9 μF 6.8 μF *Outside Diameter: Tolerance is ±0.254 (0.010) or 3% whichever is greater 102 Inside Diameter: +.127 +.005 1 = .635 -.051 (.025 -.002) +.127 +.005 2 = .762 -.051 (.030 -.002) +.127 +.005 3 = .914 -.051 (.036 -.002) +.127 +.005 4 = 1.07 -.051 (.042 -.002) 5 = 1.27±.127 (0.050±.005) 6 = 1.52±.127 (0.060±.005) 7 = 1.73±.127 (0.068±.005) Discoidal MLC Feed-Through Capacitors and Filters DC Style SIZE AND CAPACITANCE SPECIFICATIONS EIA Characteristic Z5U 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 200 Voltage cap. in pF 50 5,6,7 1,2,3,4 100 1,2,3 50 1,2,3,4 200 1,2,3 100 1,2 Inside Diameter No. (ID) 50 2.54 (0.100) 200 2.54 (0.100) 100 2.54 (0.100) 50 2.54 (0.100) 200 2.54 (0.100) 100 2.54 (0.100) 50 2.54 (0.100) 200 2.54 (0.100) 100 2.54 (0.100) 50 2.54 (0.100) 200 2.54 (0.100) 100 2.54 (0.100) 50 1.52 (0.060) 200 1.52 (0.060) 100 1.52 (0.060) (T) 50 Thickness Maximum 200 16.26 (0.640) 100 15.24 (0.600) 50 12.70 (0.500) 200 9.78 (0.385) 100 9.40 (0.370) 50 8.89 (0.350) 200 8.51 (0.335) 100 DC72 8.13 (0.320) 50 DC73 6.73 (0.265) 200 DC05 5.97 (0.235) 100 DC71 5.33 (0.210) 50 DC02 4.83 (0.190) 200 DC70 3.81 (0.150) 100 DC32 3.43 (0.135) 50 DC69 2.54 (0.100) 200 DC67 Outside Diameter (OD)* 100 DC66 50 DC65 200 DC04 100 DC63 50 DC26 200 DC61 100 AVX Style Dimensions: millimeters (inches) 1800 2200 2700 3300 3900 4700 5600 6800 8200 10,000 12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000 100,000 120,000 150,000 180,000 220,000 270,000 330,000 390,000 470,000 560,000 680,000 820,000 1.0 μF 1.2 μF 1.5 μF 1.8 μF 2.2 μF 2.7 μF 3.3 μF 3.9 μF 4.7 μF 5.6 μF 6.8 μF 8.2 μF 10.0 μF 12.0 μF 15.0 μF Inside Diameter: *Outside Diameter: Tolerance is ±0.254 (0.010) or 3% whichever is greater +.127 +.005 1 = .635 -.051 (.025 -.002) +.127 +.005 2 = .762 -.051 (.030 -.002) +.127 +.005 3 = .914 -.051 (.036 -.002) +.127 +.005 4 = 1.07 -.051 (.042 -.002) 5 = 1.27±.127 (0.050±.005) 6 = 1.52±.127 (0.060±.005) 7 = 1.73±.127 (0.068±.005) 103 Discoidal MLC Feed-Through Capacitors and Filters Discoidal XB / Feed-through XF – C0G HOW TO ORDER XB 06 Z AVX Style Size Class XB XF 03 04 06 07 08 09 10 14 15 C = NP0 Z = X7R G 0104 K -- Voltage Capacitance Tolerance Packaging EIA code on 3 or 4 digits J = 5% K = 10% M = 20% -- : bulk D = 63 E = 100 F = 160 G = 250 I = 400 J = 500 (optional) REFERENCES Type bm Terminations Reference Silver palladium XB..C•....• -- Mechanical Characteristics OD CECC 30600 ID Tinned silver palladium bm e XB..C•....• MB MIL 11015 D Conformance Ø OD Silver palladium to XF..C•....• -- CK12 TYPE 20 (0.787) min. e 20 (0.787) min. Tinned silver palladium XF..C•....• MB DIMENSIONS Size 03 04 08 millimeters (inches) OD ID XB/XF XB/XF...MB XB XB...MB 3.8 ± 0.3 4.1 ± 0.4 0.7 ± 0.15 > 0.4 (0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006) (> 0.016) 3.8 ± 0.3 — 1.2 ± 0.15 — (0.150 ± 0.012) (0.047 ± 0.006) 7.9 ± 0.3 8.2 ± 0.4 0.8 ± 0.15 > 0.5 (0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006) (> 0.020) bm min 0.1 (0.004) 0.1 (0.004) 0.2 (0.008) ELECTRICAL CHARACTERISTICS Dielectric Class Temperature Coefficient Climatic Category Operating Temperature Rated Voltage (UR) Test Voltage (Ue) Tangent of Loss Angle C < 50 pF C0G 0 ± 30 ppm/°C -55 / 125 / 56 -55 +125°C 50 to 400V 2.5 UR C ≥ 50 pF Insulation Resistance tg δ < 15(10-4) Ri ≥ 100 GΩ 104 tg δ < 1.5 + 7 )10-4 ( 150 CR Ø (XF) 0.5 (0.020) — 0.6 (0.024) e min 1 1 1 max See table on page 105 Discoidal MLC Feed-Through Capacitors and Filters Discoidal XB / Feed-through XF – C0G RATED VOLTAGE – RATED CAPACITANCES Size 10 pF 15 pF 22 pF 33 pF 47 pF 68 pF 100 pF 150 pF 220 pF 330 pF 470 pF 680 pF 1000 pF 1500 pF 2200 pF 3300 pF 4700 pF 6800 pF 10 nF 15 nF 22 nF 33 nF 47 nF 68 nF 100 nF Thickness emax mm (inches) D D F 1.4 (0.055) 1.8 (0.071) 1.4 (0.055) 160 50/63 CR 50/63 Capacitance 03 04 08 Rated Voltage - UR (V)/Ur code • other values, please contact us • for tinned types, add 0.5 (0.020) to emax 105 Discoidal MLC Feed-Through Capacitors and Filters Discoidal XB / Feed-through XF – X7R REFERENCES Type Terminations Reference Silver palladium XB..Z•....• -- Tinned silver palladium XB..Z•....• MB Mechanical Characteristics bm OD ID bm e CECC 30700 MIL 11015 D Conformance Ø OD Silver palladium to XF..Z•....• -- CK12, CK13, CK14 TYPES 20 (0.787) min. e 20 (0.787) min. Tinned silver palladium XF..Z•....• MB DIMENSIONS Size 03 04 06 07 08 09 10 14 15 OD XB/XF XB/XF...MB 3.8 ± 0.3 4.1 ± 0.4 (0.150 ± 0.012) (0.161 ± 0.016) 3.8 ± 0.3 — (0.150 ± 0.012) 6.4 ± 0.3 6.7 ± 0.4 (0.252 ± 0.012) (0.264 ± 0.016) 7.3 ± 0.3 7.6 ± 0.4 (0.287 ± 0.012) (0.299 ± 0.016) 7.9 ± 0.3 8.2 ± 0.4 (0.311 ± 0.012) (0.323 ± 0.016) 8.4 ± 0.4 8.7 ± 0.5 (0.331 ± 0.016) (0.343 ± 0.020) 9.6 ± 0.4 9.9 ± 0.5 (0.378 ± 0.016) (0.390 ± 0.020) 14.0 ± 0.5 14.3 ± 0.6 (0.551 ± 0.020) (0.563 ± 0.024) 15.0 ± 0.5 15.3 ± 0.6 (0.591 ± 0.020) (0.602 ± 0.024) millimeters (inches) ID XB 0.7 ± 0.15 (0.028 ± 0.006) 1.2 ± 0.15 (0.047 ± 0.006) 1.7 ± 0.15 (0.067 ± 0.006) 1.7 ± 0.15 (0.067 ± 0.006) 0.8 ± 0.15 (0.031 ± 0.006) 1.6 ± 0.3 (0.063 ± 0.012) 1.2 ± 0.15 (0.047 ± 0.006) 1.7 ± 0.3 (0.067 ± 0.012) 2.3 ± 0.3 (0.091 ± 0.012) XB...MB > 0.4 (> 0.016) — > 0.5 (> 0.020) > 0.5 (> 0.020) > 0.5 (> 0.020) > 0.5 (> 0.020) > 0.9 (> 0.035) > 0.9 (> 0.035) > 0.9 (> 0.035) bm min 0.1 (0.004) 0.1 (0.004) 0.2 (0.008) 0.2 (0.008) 0.2 (0.008) 0.2 (0.008) 0.2 (0.008) 0.2 (0.008) 0.2 (0.008) ELECTRICAL CHARACTERISTICS Dielectric Class Temperature Coefficient Climatic Category Operating Temperature Rated Voltage (UR) Test Voltage (Ue) Tangent of Loss Angle Insulation Resistance C ≤ 10 nF C > 10 nF 106 X7R ΔC/C ≤ ± 15% (-55 +125°C) -55 / 125 / 56 -55 +125°C 50 to 400V 2.5 UR tg δ ≤ 250(10-4) Ri ≥ 100 GΩ Ri xC ≥ 1000s Ø (XF) 0.5 (0.020) — 0.6 (0.024) 0.6 (0.024) 0.6 (0.024) 0.6 (0.024) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) e min 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) 1.0 (0.039) max See table on page 107 Discoidal MLC Feed-Through Capacitors and Filters Discoidal XB / Feed-through XF – X7R RATED VOLTAGE – RATED CAPACITANCES Size G I D E 400 F 250 50/63 D E 160 400 I 100 250 F G 160 D E 14-15 100 I 10 50/63 F G 50/63 G D E 400 250 F 250 160 D E 160 100 D 100 50/63 50/63 50/63 CR UR- 08-09 (V)/Code UR 400 Capacitance 250 07 160 06 100 03-04 F G I 100 pF 150 pF 220 pF 330 pF 470 pF 680 pF 1000 pF 1500 pF 2200 pF 3300 pF 4700 pF 6800 pF 10 nF 15 nF 22 nF 33 nF 47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 470 nF 680 nF 1 μF 1.5 μF 2.2 μF 3.3 μF 4.7 μF emax mm (inches) 1.4 (0.055) 2 2 2 2 3 3 3 3 3 1.8 3 1.8 3 3 3 3 3 3 3 3.5 3.5 3.5 3.5 3.5 (0.079) (0.079) (0.079) (0.079) (0.118) (0.118) (0.118) (0.118) (0.118) (0.071) (0.118) (0.071) (0.118) (0.118) (0.118) (0.118) (0.118) (0.118) (0.118) (0.138) (0.138) (0.138) (0.138) (0.138) • other values, please contact us • for tinned types, add 0.5 (0.020) to emax 107 Filtered Arrays XD... Type FEATURES • • • • To be used beneath a connector Provide an EMI filtered signal line between electronic modules Effective insertion loss from 1MHz up to ~ 1GHz Surface mount compatible HOW TO ORDER XD 06 Z F 0153 AVX Style XD Size Class Voltage Capacitance 03 06 07 C = NP0 Z = X7R F = 200 J = 500 EIA code on 3 or 4 digits K -- Tolerance Packaging NP0 X7R F = ±1% G = ±2% J = ±5% K = ±10% J = ±5% K = ±10% M = ±20% SUFFIX Burn-in 100% 168H = T5 Burn-in 100% 48H = T3 No burn-in = -- STYLE & DIMENSIONS D L P L P d bm tm millimeters (inches) TYPES L P XD07 (4 capacitors) XD06 (4 capacitors) XD03 (2 capacitors) 7.00 ± 0.15 (0.275 ± 0.006) 6.00 ± 0.15 (0.236± 0.006) 6.00 x 3.00 ± 0.15 (0.236 x 0.118 ± 0.006) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) D 1.70 (0.067 1.70 (0.067 1.70 (0.067 ± ± ± ± ± ± d 0.15 0.006) 0.15 0.006) 0.15 0.006) 1.00 (0.039 1.00 (0.039 1.0 (0.039 ± ± ± ± ± ± 0.10 0.0039) 0.10 0.0039) 0.10 0.0039) bm maxi Thickness maxi 0.3 2mm 0.3 2mm 0.3 1.5mm Terminations: Silver – Palladium – Platinum, on 4 or only 2 sides of the array CAPACITANCE vs VOLTAGE TABLE Cap. Range (each cap.) 200VDC X7R 500VDC 200VDC NP0 500VDC XD07... 33nF → 120nF 4.7nF → 18nF 470pF → 1500pF 220pF → 620pF XD06... 15nF → 68nF 2.2nF → 10nF 220pF → 750pF 120pF → 330pF XD03... 8.2nF → 39nF 1nF → 4.7nF 180pF → 390pF 82pF → 180pF ELECTRICAL CHARACTERISTICS Dielectric Class Temperature Coefficient Climatic Category Rated Voltage (UR) Test Voltage (Ue) Tangent of Loss Angle - DF Insulation Resistance 108 X7R ΔC/C ≤ ± 15% (-55 +125°C) 55 / 125 / 56 200 VDC 500VDC 2 x UR 1.5 x UR tg δ ≤ 250(10-4) C ≤ 10nF = Ri ≥ 100 GΩ C > 10nF = Ri x C ≥ 1000s NP0 0 ± 30ppm/°C 55 / 125 / 56 200VDC 2 x UR tg δ ≤ 15(10-4) Ri ≥ 100 GΩ 500VDC 1.5 x UR Baseline Management A Dedicated Facility / BS9100 Requirements Baseline Products — A Selection of Options As a matter of course, AVX maintains a level of quality control that is sufficient to guarantee whatever reliability specifications are needed. However, AVX goes further. There are over 65 quality control and inspection operations that are available as options to a customer. Any number may be requested and written into a baseline process. The abbreviated list that follows indicates the breadth and thoroughness of available Q.C. services at AVX: Ultrasonic Scanning Destructive Physical Analysis (DPA) X-Ray Bondability Testing Sorting and Matching to Specification Limits Temperature and Immersion Cycling Load/Humidity Life Testing Dye Penetration Evaluation 100% Ceramic Sheet Inspection Voltage Conditioning Termination Pull Testing Pre-encapsulation Inspection Within the “specials” area, AVX accommodates a broad variety of customer needs. The AVX facilities are capable of developing and producing the most reliable and advanced MLCs available anywhere in the world today. Yet it is equally adept at making volume “custom” components that may differ only in markings or lead placement from the standard catalog part. Stretching the Limits Advanced Products are developed to meet the extraordinary needs of specific applications. Requirements may include: low ESR, low ESL, voltages up to 10’s of thousands, advanced decoupling designs for frequencies up to 10’s of megahertz, temperatures up to 200°C, extremely high current discharge, ability to perform in high radiation or toxic atmospheres, or minimizing piezoelectric effect in high vibration environments. In addition, solving customer packaging problems, aside from addressing circuit problems, is available. Special lead frames for high current or special mounting requirements are examples. Multiple ceramic chip package designs per customer requirements are also available. Advanced Products always begin with a joint development program involving AVX and the customer. In undersea cable components, for example, capacitance and impedance ratings had to be maintained within 1% over the multi-year life of the system. In this case, Advanced Products not only met the parametric requirements of the customer, but accelerated life testing of 3,500 units indicated an average life expectancy of over 100,000 years. PROCUREMENT OF COMPONENTS OF BS9100 (CH/CV RANGE 50-500V) The manufacturing facilities have IS09001 approval. Customers requiring BS9100 approved components are requested to follow these steps: 1. The customer shall submit a specification for the required components to AVX for approval. Once agreed a Customer Detail Specification (CDS) number will be allocated by AVX to this specification. This number with its current revision must be quoted at the time of order placement. 2. If the customer has no specification, then AVX will supply a copy of the standard CDS for the customer’s approval and signature. As in 1 above, when agreed this CDS number must be quoted at order entry. In the event of agreement not being reached the component cannot be supplied to BS9100. For assistance contact: EMAP Specification Engineering Dept. AVX Ltd. Coleraine, Northern Ireland Telephone ++44 (0)28703 44188, Fax ++44 (0)28703 55527 Baseline Program Management Baseline Program Management has been AVX’s forte over the years. This is both a product and a service function designed to provide the customer the full capabilities of AVX in meeting their program requirements. AVX has had Baseline and Program Management in the following major systems: —AT&T Undersea Cable —Minuteman —Peacekeeper —STC Undersea Cable —CIT Undersea Cable —Raytheon-Hawk Missile —Trident —Small Missile Program —Northrop - Peacekeeper —Sparrow Program —Space Station —European Space Agency (ESA) —Commercial Satellite Program —Arianne 4 & 5 —EuroFighter (Typhoon) —EH101 (Merlin) AVX technical personnel stand ready to answer any questions and provide any information required on your programs from the most exotic Hi-Rel part to the simplest variation on a standard. Put the experience, technology and facilities of the leading company in multilayer ceramics to work for you. No other source offers the unique combination of capability and commitment to advanced application specific components. PACKAGING Unless otherwise stated in the appropriate data sheet parts are supplied in a waffle pack. 109 Advanced Application Specific Products Examples of Special Packaging and Custom Lead Configurations from Advanced Products Custom Lead Configurations. . . optimum 3D packaging, high current applications and high reliability stress relief mounting. Custom Packaging. . . eliminate reliability concerns with multiple component assembly. Many other innovations are available from Advanced Products. Let them apply these ideas to your application specific programs. AMERICAS EUROPE ASIA-PACIFIC ASIA-KED (KYOCERA Electronic Devices) AVX Myrtle Beach, SC Tel: 843-448-9411 AVX Limited, England Tel: +44-1252-770000 AVX/Kyocera (S) Pte Ltd., Singapore KED Hong Kong Ltd. Tel: +852-2305-1080/1223 Tel: +65-6286-7555 AVX Northwest, WA AVX S.A.S., France Tel: 360-699-8746 Tel: +33-1-69-18-46-00 AVX/Kyocera, Asia, Ltd., Hong Kong AVX Midwest, IN AVX GmbH, Germany Tel: +852-2363-3303 Tel: 317-861-9184 Tel: +49-8131-9004-0 AVX Mid/Pacific, CA AVX SRL, Italy AVX/Kyocera Yuhan Hoesa, South Korea Tel: 408-988-4900 Tel: +39-02-614-571 Tel: +82-2785-6504 AVX Northeast, MA AVX Czech Republic Tel: 617-479-0345 Tel: +420-57-57-57-521 AVX/Kyocera HK Ltd., Taiwan KED Hong Kong Ltd. Shenzen Tel: +86-755-3398-9600 KED Company Ltd. Shanghai Tel: +86-21-3255-1833 KED Hong Kong Ltd. Beijing Tel: +86-10-5869-4655 Tel: +886-2-2656-0258 AVX Southwest, CA AVX/ELCO UK Tel: 949-859-9509 Tel: +44-1638-675000 AVX/Kyocera (M) Sdn Bhd, Malaysia AVX Canada ELCO Europe GmbH Tel: +60-4228-1190 Tel: 905-238-3151 Tel: +49-2741-299-0 AVX South America AVX S.A., Spain Tel: +55-11-4688-1960 AVX/Kyocera International Trading Co. Ltd., Shanghai Tel: +34-91-63-97-197 Tel: +86-21-6215-5588 AVX Benelux AVX/Kyocera Asia Ltd., Shenzen Tel: +65-6509-0328 Tel: +86-755-3336-0615 Kyocera Corporation Japan AVX/Kyocera International Trading Co. Ltd., Beijing Tel: +81-75-604-3449 Tel: +31-187-489-337 KED Taiwan Ltd. Tel: +886-2-2950-0268 KED Korea Yuhan Hoesa, South Korea Tel: +82-2-783-3604/6126 KED (S) Pte Ltd. Singapore Tel: +86-10-6588-3528 AVX/Kyocera India Liaison Office Tel: +91-80-6450-0715 Contact: A KYOCERA GROUP COMPANY http://www.avx.com S-AP0M510-C