MLX90333 Triaxis® Position Sensor Features and Benefits Absolute 3D Position Sensor Simple & Robust Magnetic Design Tria⊗is® Hall Technology Programmable Linear Transfer Characteristics (Alpha, Beta) Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 40 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications 3D Position Sensor Joystick 4-Way Scroll Key Joypad Man Machine Interface Device Linear Position Sensor Ordering Code Product Code Temperature Code MLX90333 S MLX90333 S MLX90333 E MLX90333 E MLX90333 E MLX90333 E MLX90333 E MLX90333 E MLX90333 K MLX90333 K MLX90333 K MLX90333 K MLX90333 K MLX90333 L MLX90333 L MLX90333 L MLX90333 L MLX90333 L MLX90333 L MLX90333 L MLX90333 L MLX90333 E MLX90333 E MLX90333 E MLX90333 E MLX90333 E MLX90333 E MLX90333 K MLX90333 K 3901090333 Rev. 007 Package Code DC DC DC DC DC DC DC DC DC DC DC DC DC DC DC DC DC DC DC GO GO GO GO GO GO GO GO GO GO Option Code BCH-000 BCH-000 BCH-000 BCH-000 BCH-100 BCH-100 BCT-000 BCT-000 BCH-000 BCH-100 BCH-100 BCT-000 BCT-000 BCH-000 BCH-000 BCT-000 BCT-000 BCH-100 BCH-100 BCH-000 BCH-000 BCH-000 BCH-000 BCH-100 BCH-100 BCT-000 BCT-000 BCH-000 BCH-000 Page 1 of 48 Packing Form Code RE TU RE TU RE TU RE TU RE TU RE RE TU RE TU RE TU RE TU TU RE RE TU RE TU RE TU RE TU Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor MLX90333 MLX90333 MLX90333 MLX90333 MLX90333 MLX90333 MLX90333 MLX90333 Legend: Temperature Code: Package Code: K K K K L L L L GO GO GO GO GO GO GO GO Packing Form: Ordering example: MLX90333LGO-BCH-000-TU 3901090333 Rev. 007 RE TU RE TU TU RE RE TU L for Temperature Range -40°C to 150°C K for Temperature Range -40°C to 125°C S for Temperature Range -20°C to 85°C E for Temperature Range -40°C to 85°C GO for TSSOP16 DC for SOIC8 AAA-xxx: Die version xxx-000: Standard version xxx-100: SPI version RE for Reel, TU for Tube Option Code: BCH-100 BCH-100 BCT-000 BCT-000 BCH-100 BCH-100 BCT-000 BCT-000 Page 2 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 1. Functional Diagram 3V3 Reg Rev.Pol. & OverVolt. VDD VSS DSP 12 D MUX VY G A -1 5 VX 14 Tria is™ x1 A OUT 1 (Analog/PWM) µC D VZ ROM - F/W RAM x1 EEP ROM OUT 2 (Analog/PWM) Figure 1 - Block Diagram (Analog & PWM) DSP Rev.Pol. VDD VX G A -1 5 MUX VY 14 Triais™ 3V3 Reg /SS µC D VZ SERIAL PROTOCOL SCLK MOSI/MISO ROM - F/W RAM EEP ROM VSS Figure 2 - Block Diagram (Serial Protocol) 3901090333 Rev. 007 Page 3 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 1. Description The MLX90333 is a monolithic sensor IC featuring the Tria⊗is® Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is® Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end step). The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (BX, BY and BZ). This allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel generation of non-contacting joystick position sensors which are often required for both automotive and industrial applications (e.g. man-machine interface). Furthermore, the capability of measuring BX, BY and BZ allows the MLX90333 to be considered as universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear travel can be sensed with the MLX90333 once included in a specific magnetic design. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2) angular information are computed from the three (3) vector components of the flux density (i.e. BX, BY and BZ). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog, PWM and Serial Protocol. Figure 3 - Typical application of MLX90333 3901090333 Rev. 007 Page 4 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS ............................................................................................................................................ 1 ORDERING CODE ........................................................................................................................................ 1 1. DESCRIPTION ....................................................................................................................................... 4 2. GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 7 3. PINOUT .................................................................................................................................................. 7 4. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 8 5. DETAILED DESCRIPTION.................................................................................................................... 8 6. MLX90333 ELECTRICAL SPECIFICATION ....................................................................................... 14 7. MLX90333 ISOLATION SPECIFICATION .......................................................................................... 16 8. MLX90333 TIMING SPECIFICATION ................................................................................................. 16 9. MLX90333 ACCURACY SPECIFICATION ......................................................................................... 17 10. MLX90333 MAGNETIC SPECIFICATION .......................................................................................... 18 11. MLX90333 CPU & MEMORY SPECIFICATION ................................................................................. 18 12. MLX90333 END-USER PROGRAMMABLE ITEMS ........................................................................... 19 13. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS .............................................................. 21 13.1. OUTPUT CONFIGURATION ......................................................................................................................... 21 13.2. OUTPUT MODE .......................................................................................................................................... 21 13.2.1. Analog Output Mode ............................................................................................................................ 21 13.2.2. PWM Output Mode ............................................................................................................................... 21 13.2.3. Serial Protocol Output Mode ............................................................................................................... 22 13.2.4. Switch Out ............................................................................................................................................ 22 13.3. OUTPUT TRANSFER CHARACTERISTIC....................................................................................................... 22 13.3.1. The Polarity and Modulo Parameters .................................................................................................. 23 13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) ...................................................................... 24 13.3.3. LNR Parameters ................................................................................................................................... 24 13.3.4. CLAMPING Parameters ...................................................................................................................... 25 13.3.5. DEADZONE Parameter ....................................................................................................................... 25 13.4. IDENTIFICATION ........................................................................................................................................ 26 13.5. SENSOR FRONT-END ................................................................................................................................. 26 13.5.1. HIGHSPEED Parameter ...................................................................................................................... 26 13.5.2. GAINMIN and GAINMAX Parameters ................................................................................................ 27 13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters .............................................................. 27 13.6. FILTER .................................................................................................................................................... 28 13.6.1. Hysteresis Filter ................................................................................................................................... 28 13.6.2. FIR Filters ............................................................................................................................................ 28 13.6.3. IIR Filters ............................................................................................................................................. 29 13.7. PROGRAMMABLE ENHANCED “JOYSTICK’ ANGLE CORRECTION ................................................................. 30 13.7.1. Enhanced “Joystick “Angle Formula................................................................................................... 31 13.8. PROGRAMMABLE DIAGNOSTIC SETTINGS ................................................................................................. 31 13.8.1. OUTxDIAG Parameter......................................................................................................................... 31 13.8.2. RESONFAULT Parameter ................................................................................................................... 31 13.8.3. EEHAMHOLE Parameter .................................................................................................................... 32 13.9. LOCK......................................................................................................................................................... 32 13.9.1. MLXLOCK Parameter ......................................................................................................................... 32 3901090333 Rev. 007 Page 5 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 13.9.2. LOCK Parameter ................................................................................................................................. 32 14. MLX90333 SELF DIAGNOSTIC .......................................................................................................... 33 15. SERIAL PROTOCOL ........................................................................................................................... 35 15.1. INTRODUCTION ......................................................................................................................................... 35 15.2. SERIAL PROTOCOL MODE ................................................................................................................... 35 15.3. MOSI (MASTER OUT SLAVE IN) ............................................................................................................... 35 15.4. MISO (MASTER IN SLAVE OUT) ............................................................................................................... 35 15.5. SS (SLAVE SELECT) .................................................................................................................................. 35 15.6. MASTER START-UP ................................................................................................................................... 35 15.7. SLAVE START-UP ...................................................................................................................................... 35 15.8. TIMING ...................................................................................................................................................... 36 15.9. SLAVE RESET ............................................................................................................................................ 37 15.10. FRAME LAYER .......................................................................................................................................... 37 15.10.1. Frame Type Selection ....................................................................................................................... 37 15.10.2. Data Frame Structure ...................................................................................................................... 37 15.10.3. Timing............................................................................................................................................... 37 15.10.4. Data Structure .................................................................................................................................. 38 15.10.5. Angle Calculation ............................................................................................................................. 38 15.10.6. Error Handling ................................................................................................................................. 38 16. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 39 16.1. 16.2. 16.3. 16.4. ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE....................................................... 39 PWM LOW SIDE OUTPUT WIRING ............................................................................................................ 39 ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE .................................................... 40 SERIAL PROTOCOL .................................................................................................................................... 40 17. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 42 18. ESD PRECAUTIONS ........................................................................................................................... 42 19. PACKAGE INFORMATION ................................................................................................................. 43 19.1. 19.2. 19.3. 19.4. 19.5. 19.6. SOIC8 - PACKAGE DIMENSIONS ............................................................................................................... 43 SOIC8 - PINOUT AND MARKING ............................................................................................................... 43 SOIC8 - IMC POSITIONNING ..................................................................................................................... 44 TSSOP16 - PACKAGE DIMENSIONS .......................................................................................................... 45 TSSOP16 - PINOUT AND MARKING .......................................................................................................... 46 TSSOP16 - IMC POSITIONNING ................................................................................................................ 47 20. DISCLAIMER ....................................................................................................................................... 48 3901090333 Rev. 007 Page 6 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 2. Glossary of Terms − Abbreviations − Acronyms Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 3. Pinout1 Pin # SOIC-8 TSSOP-16 Analog / PWM Serial Protocol Analog / PWM Serial Protocol 1 VDD VDD VDIG1 VDIG1 2 Test 0 Test 0 VSS1 (Ground1) VSS1 (Ground1) 3 Not Used /SS VDD1 VDD1 4 Out 2 SCLK Test 01 Test 01 5 Out 1 MOSI / MISO Not Used /SS2 6 Test 1 Test 1 Out 22 SCLK2 7 VDIG VDIG Out 12 MOSI2 / MISO2 8 VSS (Ground) VSS (Ground) Test 12 Test 12 9 VDIG2 VDIG2 10 VSS2 (Ground2) VSS2 (Ground2) 11 VDD2 VDD2 12 Test 02 Test 02 13 Not Used /SS1 14 Out 21 SCLK1 15 Out 11 MOSI1 / MISO1 16 Test 11 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 15) 1 See Section 13.1 for the Out 1 and Out 2 configuration 3901090333 Rev. 007 Page 7 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 4. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD (overvoltage) + 20 V Reverse Voltage Protection − 10 V Positive Output Voltage (Analog or PWM) Both outputs OUT 1 & OUT 2 + 10 V + 14 V (200 s max − TA = + 25°C) Output Current (IOUT) ± 30 mA Reverse Output Voltage Both outputs OUT 1 & OUT 2 − 0.3 V Reverse Output Current Both outputs OUT 1 & OUT 2 − 50 mA Operating Ambient Temperature Range, TA − 40°C … + 150°C Storage Temperature Range, TS − 40°C … + 150°C Magnetic Flux Density ±4T Exceeding the absolute maximum ratings may cause permanent damage. maximum-rated conditions for extended periods may affect device reliability. Exposure to absolute- 5. Detailed Description As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is sensed through the Tria⊗is® sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC yellow disk on Figure 4). Bz Bz Bz Bz Figure 4 - Tria⊗is® sensor front-end (4 Hall plates + IMC disk) Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. The third component BZ is also sensed by those four (4) conventional Hall plates as shown above. 3901090333 Rev. 007 Page 8 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor In summary, along X-axis, the left Hall plate measures “BX⊥ - BZ” while the right Hall plate measures “-BX⊥ - BZ”. Similarly, along the Y-axis, the left Hall plate measures “BY⊥ - BZ” while the right Hall plate measures “-BY⊥ - BZ”. Through an appropriate signal processing, the Tria⊗is® sensor front-end reports the three (3) components of the applied magnetic flux density B i.e. BX, BY and BZ. Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components BX⊥ and BY⊥ are measured while BZ is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in each pair, the component BZ is measured while BX⊥ and BY⊥ are cancelled In a joystick based on a “gimbal” mechanism as shown on Figure 3 (left), the magnet (axial magnetization) moves on a hemisphere centered at the IC. The flux density is described through the following relationships: B X = COS (α ) ⋅ SIN ( β ) BY = SIN (α ) ⋅ COS ( β ) BZ = SIN (α ) ⋅ SIN ( β ) Those components are plotted on the Figure 5, Figure 6 and Figure 7. Figure 5 – Magnetic Flux Density – BX, BY, BZ 3901090333 Rev. 007 Page 9 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 400 Magnetic Flux Density (G) 300 200 100 0 -100 -200 -300 -400 0 45 90 135 180 Alpha (Deg) BX BY BZ Figure 6 – Magnetic Flux Density – β = 90 Deg – BX ∝ cos(α), BY = 0 & BZ ∝ sin(α) 400 Magnetic Flux Density (G) 300 200 100 0 -100 -200 -300 -400 0 45 90 135 180 Beta (Deg) BX BY BZ Figure 7 – Magnetic Flux Density – α = 0 Deg – BX = 0, BY ∝ cos(β) & BZ ∝ sin(β) Three (3) differential voltages corresponding to the three (3) components of the applied flux density are provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The amplitude of VZ is smaller than the other two (2) components VX and VY due to fact that the magnetic gain of the IMC only affects the components parallel to the IC surface. 3901090333 Rev. 007 Page 10 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 2000 ADC Input Voltages VX, VY & VZ (mV) 1500 1000 500 0 -500 -1000 -1500 -2000 0 45 90 135 180 Alpha (Deg) VX VY VZ Figure 8 – ADC Input Signals – β = 90 Deg – VX ∝ BX ∝ cos(α), VY = BY = 0 & VZ ∝ BZ ∝ sin(α) 2000 ADC Input Voltages VX, VY & VZ (mV) 1500 1000 500 0 -500 -1000 -1500 -2000 0 45 90 135 180 Beta (Deg) VX VY VZ Figure 9 – ADC Input Signals – α = 90 Deg – VX = BX = 0, VY ∝ BY ∝ cos(β) & VZ ∝ BZ ∝ sin(β) 3901090333 Rev. 007 Page 11 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the two (2) angular information from the three (3) raw signals (after socalled front-end compensation steps) through the following operations: k V α = ATAN Z Z VX k V β = ATAN Z Z VY where kZ is a programmable parameter. First of all, kZ is used to compensate the smaller amplitude of VZ vs. VX & VY. On the other hand, kZ allows also a targeted reduction of the linearity error through a normalization of the raw signals prior to performing the “ATAN” function. In a joystick based on a “ball & socket” joint as shown on Figure 3 (right), the magnet (axial magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular informations: (k V ) 2 + ( k V ) 2 Z Z t Y α = ATAN VX (k V ) 2 + (k V ) 2 Z Z t X β = ATAN VY where kZ and kt are programmable parameters. The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90333, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratios ″VZ/VX″ and ″VZ/VY″, the angular information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy vs. joystick based on conventional linear Hall sensors. Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital Serial Protocol (SP − 16 bits computed angular information available) 3901090333 Rev. 007 Page 12 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax Vout(β) = ClampLo Vout(β) = Voffset + Gain × β Vout(β) = ClampHi for β ≤ βmin for βmin ≤ β ≤ βmax for β ≥ βmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is used, a 5 point calibration is also available for further improvement of the linearity. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and dedicated software tools (DLL − User Interface). 3901090333 Rev. 007 Page 13 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 6. MLX90333 Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Nominal Supply Voltage Supply Current(2) POR Level Symbol Test Conditions VDD Idd Min Typ Max Units 4.5 5 5.5 V 8.5 13.5 11 16 mA mA 2.7 3 V 8 20 mA mA 12 12 24 15 15 45 mA mA mA 10 10 ∞(5) ∞(5) kΩ kΩ 3 %VDD mode(3) Slow Fast mode(3) VDD POR Supply Under Voltage 2 Output Current Both outputs OUT 1 & OUT 2 Iout Analog Output mode PWM Output mode -8 -20 Output Short Circuit Current Both outputs OUT 1 & OUT 2 Ishort Vout = 0 V Vout = 5 V Vout = 14 V (TA = 25°C) Output Load Both outputs OUT 1 & OUT 2 RL Pull-down to Ground Pull-up to 5V(4) Analog Saturation Output Level Both outputs OUT 1 & OUT 2 Vsat_lo Pull-up load RL ≥ 10 kΩ Vsat_hi Pull-down load RL ≥ 5 kΩ Digital Saturation Output Level Both outputs OUT 1 & OUT 2 VsatD_lo Pull-up Low Side RL ≥ 10 kΩ Push-Pull (IOUT = -20mA) VsatD_hi Push-Pull (IOUT = 20mA) Diag_lo Pull-down load RL ≥ 5 kΩ Pull-up load RL ≥ 10 kΩ Diag_hi Pull-down load RL ≥ 5 kΩ Pull-up load RL ≥ 5 kΩ BVSSPD Broken VSS& Pull-down load RL ≤ 10 kΩ Active Diagnostic Output Level Both outputs OUT 1 & OUT 2 Passive Diagnostic Output Level BVSSPU Both outputs OUT 1 & OUT 2 (Broken Track Diagnostic) (6) BVDDPD Clamped Output Level Both outputs OUT 1 & OUT 2 Broken VSS(6) & Pull-up load RL ≥ 1kΩ 1 1 96 %VDD 1.5 97 %VDD 1 1.5 96 98 Broken VDD(6) & Pull-down load RL ≥ 1kΩ %VDD %VDD 4(6) 99 %VDD 100 0 %VDD %VDD 1 %VDD BVDDPU Broken VDD & Pull-up load to 5V Clamp_lo Programmable 0 100 %VDD(7) Clamp_hi Programmable 0 100 %VDD(7) No Broken Track diagnostic %VDD 2 For the dual version, the supply current is multiplied by 2 section 13.5.1 for details concerning Slow and Fast mode 4 Applicable for output in Analog and PWM (Open-Drain) modes 5 RL < ∞ for output in PWM mode 6 For detailed information, see also section 14 7 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) 3 See 3901090333 Rev. 007 Page 14 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor As an illustration of the previous table, the MLX90333 fits the typical classification of the output span described on the Figure 10. 100 % 90 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High 80 % Output Level 70 % 60 % Linear Range 50 % 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Clamping Low Diagnostic Band (Low) Figure 10 - Output Span Classification 3901090333 Rev. 007 Page 15 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 7. MLX90333 Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistance Test Conditions Between 2 dies Min Typ Max Units 4 MΩ 8. MLX90333 Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Symbol Test Conditions Min Typ Max Units Main Clock Frequency Ck Slow mode(8) Fast mode(8) 7 20 Sampling Rate CT Slow mode(8) Fast mode(8) 600 200 1000 330 µs µs Step Response Time Ts Slow mode(8), Filter=5(9) Fast mode(8), Filter=0(9) 400 4 600 ms µs MHz MHz Watchdog Wd See Section 14 5 ms Start-up Cycle Tsu Slow and Fast mode(8) 15 ms Analog Output Slew Rate PWM Frequency COUT = 42 nF COUT = 100 nF FPWM PWM Output Enabled 200 100 100 V/ms 1000 Hz Digital Output Rise Time Both outputs OUT 1 & OUT 2 Mode 5 – 10nF, RL = 10 kΩ Mode 7 – 10nF, RL = 10 kΩ 120 2.2 µs µs Digital Output Fall Time Both outputs OUT 1 & OUT 2 Mode 5 – 10nF, RL = 10 kΩ Mode 7 – 10nF, RL = 10 kΩ 1.8 1.9 µs µs Maximum Field amplitude Change(10) (%) vs. Field Frequency(Hz) AGC 90%(11) Slow mode(8) - Field Freq> 40Hz Field Freq= 20Hz ( ) Fast mode 8 -Field Freq> 150Hz Field Freq= 50Hz AGC 64% (90333BCT only) Slow mode(8) -Field Freq> 80Hz Field Freq=50Hz Fast mode(8) - Field Freq> 250Hz Field Freq=50Hz -10 -30 -12 -30 10 30 12 30 % % % % -22 -30 -30 -60 22 30 30 60 % % % % 8 See section 13.5.1 for details concerning Slow and Fast mode See section 13.6 for details concerning Filter parameter 10 Ex.: Magnetic field amplitude change in case of vibration. 11 Automatic Gain Control – see Section 13.5.2 for more information. 9 3901090333 Rev. 007 Page 16 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 9. MLX90333 Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Symbol RADC ADC Resolution on the raw signals X, Y and Z Test Conditions Slow Mode(12) Fast Mode(12) Offset on the Raw Signals X, Y X0, Y0, Z0 TA = 25°C and Z Mismatch on the Raw Signals X, Y and Z Magnetic Angle Phase error Typ Max 15 14 Units bits bits -60 60 LSB15 SMISMXY SMISMXZ SMISMYZ TA = 25°C Between X and Y Between X and Z(13) Between Y and Z(13) -1 -30 -30 1 30 30 % % % ORTHXY ORTHXZ ORTHYZ TA = 25°C Between X and Y Between X and Z Between Y and Z -0.3 -10 -10 0.3 10 10 Deg Deg Deg Thermal Offset Drift at the DSP input (excl. DAC and output stage) Temperature suffix K Temperature suffix L -60 -90 +60 +90 LSB15 LSB15 Thermal Offset Drift of the DAC and Output Stage Temperature suffix K Temperature suffix L - 0.3 - 0.4 + 0.3 + 0.4 %VDD %VDD Temperature suffix K Temperature suffix L - 0.3 - 0.5 + 0.3 + 0.5 % % ∆SMISMXZ Temperature suffix K ∆SMISMYZ Temperature suffix L -1 - 1.5 +1 + 1.5 % % +4 1 %VDD/LSB LSB LSB Thermal Offset Drift #1 on the raw signals X, Y and Z(14) Thermal Offset Drift #2 (to be considered only for the analog output mode) Thermal Drift of Sensitivity Mismatch Min ∆SMISMXY Analog Output Resolution RDAC Output stage Noise 12 bits DAC (Theoretical – Noise free) INL DNL Clamped Output 0.025 -4 -1 0 0.05 %VDD MLX90333 Accuracy Specification continues… … MLX90333 Accuracy Specification Noise pk-pk(15) Gain = 14, Slow mode, Filter=5 5 10 LSB15 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed. 13 The mismatch between X and Z (Y and Z) can be reduced through the calibration of the 2 parameters kZ and kt as described in the formulas page 12 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical). 14 To evaluate the error affecting the computed angle i.e. “ATAN” function (See section 5), it is important to take into account the actual value of the factor kZ as it amplifies the signal VZ and consequently its drift too. 15 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 13.6). 12 3901090333 Rev. 007 Page 17 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor Gain = 14, Fast mode, Filter=0 Ratiometry Error -0.1 PWM Output Resolution RPWM 12 bits (Theoretical – Jitter free) PWM Jitter JPWM Gain = 11, FPWM = 250 Hz – 800Hz Serial Output Resolution RSPI Theoretical – Jitter free 10. 10 20 LSB15 0 0.1 %VDD 0.025 %DC/LSB 5 16 LSB12 bits MLX90333 Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Symbol Magnetic Flux Density Min Typ Max Units BX, BY(16) 20 50 70(17) mT Magnetic Flux Density BZ(16) 24 75 140 mT Magnet Temperature Coefficient TCm -2400 0 ppm/°C GainIMC 1.2 IMC Gain(18) 11. Test Conditions 1.4 1.8 MLX90333 CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz. Parameter Symbol Test Conditions Min Typ Max Units ROM 10 kB RAM 256 B EEPROM 128 B 16 The condition must be fulfilled for at least one field BX, BY or BZ. Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 18 This is the magnetic gain linked to the Integrated Magneto Concentrator structure. It applies to BX and BY and not to BZ. This is the overall variation. Within one lot, the part to part variation is typically ± 10% versus the average value of the IMC gain of that lot. 17 3901090333 Rev. 007 Page 18 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 12. MLX90333 End-User Programmable Items Parameter MAINMODE Outputs Mode PWMPOL1 PWMPOL2 PWM_Freq 3-Points ALPHA_POL ALPHA_MOD180 ALPHA_DP ALPHA_DEADZONE ALPHA_S0 ALPHA_X ALPHA_Y ALPHA_S1 BETA_POL BETA_MOD180 BETA_DP BETA_DEADZONE BETA_S0 BETA_X BETA_Y BETA_S1 CLAMP_LOW CLAMP_HIGH 2D XYZ KZ KT(19) FIELDTHRES_LOW FIELDTHRES_HIGH DERIVGAIN FILTER FILTER A1 FILTER A2 FILTERFIRST FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 HIGHSPEED GAINMIN 19 20 Comments Select Outputs Configuration Define the output stages mode PWM Polarity (Out 1) PWM Polarity (Out 2) PWM Frequency 4 segments transfer curve for single angle output Revert the Sign of Alpha Modulo Operation (180deg) on Alpha Alpha Discontinuity Point Alpha Dead Zone Initial Slope Alpha X Coordinate Alpha Y Coordinate Alpha S Coordinate Revert the Sign of Beta Modulo Operation (180deg) on Beta Beta Discontinuity Point Beta Dead Zone Beta Dead Zone Beta X Coordinate Beta Y Coordinate Beta S Coordinate Clamping Low Clamping High SPI Only Filter coefficient A1 for FILTER=6 Filter coefficient A2 for FILTER=6 BCH STD/IP1 0 2 0 0 1000h 0 0 1 0 0 4000h 4000h 8000h 4000h 0 1 0 0 4000h 4000h 8000h 4000h 0% 100% 0 0 B3h 80h 0h 0h 40h 3 6600h 2A00h 0 0 MLX MLX MLX 1 17d(20) MLX 0 0 Default Values BCH BCT SPI STD/IP1 0 0 N/A 2 N/A 0 N/A 0 N/A 1000h 0 0 0 0 1 1 0 0 0 0 4000h 4000h 4000h 4000h 8000h 8000h 4000h 4000h 0 0 1 1 0 0 0 0 4000h 4000h 4000h 4000h 8000h 8000h 4000h 4000h 0% 0% 100% 100% 0 0 0 0 B3h N/A 80h 0h 0h 0h 0h 40h 40h 0 3 6600h 6600h 2A00h 2A00h 0 0 0 0 MLX MLX MLX MLX MLX MLX 1 1 37d 38d MLX MLX 0 0 0 0 # bit 2 3 1 1 16 1 1 1 8 6 16 16 16 16 1 1 6 8 16 16 16 16 16 16 1 1 8 8 8 8 8 8 16 16 1 8 16 16 16 16 16 16 1 8 Only applicable for 90333BCH CUSTUMERID2 = 29d for MLX90333SDC–BCH–STANDARD 3901090333 Rev. 007 Page 19 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor GAINMAX End-User Programmable Items continues... … End-User Programmable Items EEHAMHOLE Diagn mode RESONFAULT MLXLOCK LOCK Extra end-User Programmable Items 90333BCT AGCRADIUSTARGET(21) Define Gain target 64% / 90% ADC SWTHRES Angle Trigger level for switch on out2 SWLOW Switch Low level output on out2 SWHIGH Switch high level output on out2 SWHYST Switch hysteresis CodePWMLATCH Enable synchronized % DC update OUT1DIAG Active Diagnostic Output 1 behavior OUT2DIAG Active Diagnostic Output 2 behavior CodeKTALPHA “Joystick” ALPHA angle correction parameter CodeKTBETA “Joystick” BETA angle correction parameter CodeORTHZXALPHA Front-end “Joystick” angle correction parameter CodeORTHZYALPHA Front-end “Joystick” angle correction parameter CodeORTHZXBETA Front-end “Joystick” angle correction parameter CodeORTHZYBETA Front-end “Joystick” angle correction parameter CodeENHORTH Enable enhanced Front-end “Joystick” angle correction 21 41d 41d 41d 8 3131h 1h 0h 0h 0h N/Ah 0h 1h 3131h 0h 0h 0h 16 2 1 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 FFFFh 40h FFh 0 1 0 0 80h 80h 0 0 0 0 1 16 8 8 8 1 1 1 8 8 8 8 8 8 N/A N/A 0 1 Option to use same ADC target as 90333BCH. Default value equals lowered % ADC target 3901090333 Rev. 007 Page 20 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 13. Description of End-User Programmable Items 13.1. Output Configuration The parameter MAINMODE defines the output stages configuration MAINMODE OUT1 OUT2 0 ALPHA BETA 1 BETA ALPHA 2 ALPHA ALPHA DERIVATE / SWITCH(22) 3 BETA BETA DERIVATE / SWITCH(22) 13.2. Output Mode The MLX90333 outputs type is defined by the Output Mode parameter. Parameter Value Description Analog Output Mode 2 Analog Rail-to-Rail PWM Output Mode 5 7 Low Side (NMOS) Push-Pull Serial N/A Low Side (NMOS) 13.2.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 13.2.2. PWM Output Mode If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD. The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter: • • PWMPOL1 (PWMPOL2) = 0 for a low level at 100% PWMPOL1 (PWMPOL2) = 1 for a high level at 100% The PWM frequency is selected by the PWM_Freq parameter. PWM Frequency Code Oscillator Mode Low Speed 22 Pulse-Width Modulation Frequency (Hz) 100 200 500 1000 35000 17500 7000 3500 Derivate = BCH , Switch = BCT 3901090333 Rev. 007 Page 21 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor High Speed - 50000 20000 10000 For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz. 13.2.3. Serial Protocol Output Mode The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. The frame layer type is defined by the parameter XYZ as described in the next table. Parameter Value XYZ 0 1 Description Regular SPI Frame Alpha, Beta X,Y, Z Frame See the dedicated Serial Protocol section for a full description (Section 15). 13.2.4. Switch Out Parameter Value Unit SWTHRES 0…100 % SWHYST 0 … 0.39 % SWLOW 0…100 % SWHIGH 0…100 % The output level on out2 is changed from SWLOW to SWHIGH when the output value is greater than the value stored in the SWTHRES parameter. The SWHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital output value is greater than SWTHRES+SWHYST. It is deactivated if the digital output value is less than SWTHRES-SWHYST. If the Switch feature is not used in the application, the output pin needs to be connected to the ground and disabled in EEPROM. 13.3. Output Transfer Characteristic Parameter Value 3-Points 0 1 Description Regular Alpha, Beta Output (2 times 2 segments) Alpha (or Beta) Single Output (1 time 4 segments) The 3-Points parameters allow the user to use the 3-points mapping (4 segments). This mode can only be used for Mainmode equals 2 and 3. • 3-Points = 0, the parameters list is described as bellow (Angle Alpha and Beta): 3901090333 Rev. 007 Parameter Value ALPHA_POL BETA_POL 0 1 Page 22 of 48 Unit Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor • ALPHA_MOD180 BETA_MOD180 0 1 ALPHA_DP BETA_DP 0 … 359.9999 deg ALPHA_X BETA_X 0 … 359.9999 deg ALPHA_Y BETA_Y 0 … 100 % ALPHA_S0 ALPHA_S1 BETA_S0 BETA_S1 CLAMP_LOW 0 … 17 %/deg 0 … 100 % CLAMP_HIGH 0 … 100 % ALPHA_DEADZONE BETA_DEADZONE 0 … 359.9999 deg 3-Points = 1, the parameters list is described as bellow (Alpha or Beta): Parameter Value ALPHA_POL 0 CCW 1 CW Unit DP LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y LNR_S0 LNR_A_S LNR_B_S LNR_C_S 0 … 359.9999 deg 0 … 359.9999 deg 0 … 100 % 0 … 17 %/deg -17… 0 … 17 %/deg CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % DEADZONE 0 … 359.9999 deg 13.3.1. The Polarity and Modulo Parameters The angle Alpha is defined as the arctangent of Z/X and Beta as the arctangent of Z/Y. It is possible to invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”. The MLX90333 can also be insensitive ALPHA_MOD180/BETA_MOD180 to “1”. 3901090333 Rev. 007 to the Page 23 of 48 field polarity by setting the Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor z β y α x 13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places the origin at any location of the trigonometric circle (see Figure 13). For a Joystick Application, Melexis recommends to set the DP to zero. 13.3.3. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angles (Alpha and Beta) and the output signals. The shape of the MLX90333 transfer function from the digital angle values to the output voltages is described by the drawing below (See Figure 11). Four segments can be programmed but the clamping levels are necessarily flat (3-Points = 0). 100% C Clamping High AlphaOut CLAMPHIGH ALPHA_S1 B ALPHA_Y ALPHA_S0 A Clamping Low CLAMPLOW 0% 0° ALPHA_X Alpha 360° Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta) In the case of one single angle output (3-Points = 1), the shape of the MLX90333 transfer function from the digital angle values to the output voltage is described by the drawing below (See Figure 12). Six 3901090333 Rev. 007 Page 24 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor segments can be programmed but the clamping levels are necessarily flat. 100 % Clamping High CLAMPHIGH C Slope LNR_C_S LNR_C_Y B Slope LNR_B_S LNR_B_Y A Slope LNR_A_S LNR_A_Y Slope LNR_S0 Clamping Low CLAMPLOW 0% LNR_A_X 0 LNR_B_X LNR_C_X 360 (Deg.) Figure 12 – Digital Angle (Alpha) Transfer Characteristic for Single Angle Output 13.3.4. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg. 13.3.5. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 13). When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 13.8.2). In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will generate a “deadzone” fault, unless DEADZONE=0. 3901090333 Rev. 007 Page 25 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor z 90° Programmable 0°point α 0° 180° x Programmable Forbidden Zone Figure 13 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta) 13.4. Identification Parameter Value MELEXSID1 MELEXSID2 MELEXSID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 Unit Identification number: 48 bits freely useable by Customer for traceability purpose. 13.5. Sensor Front-End Parameter Value Unit HIGHSPEED 0 = Slow mode 1 = Fast mode GAINMIN 0 … 41 GAINMAX 0 … 41 FIELDTHRES_LOW 0 … 100 % FIELDTHRES_HIGH 0 … 100 % 13.5.1. HIGHSPEED Parameter The HIGHSPEED parameter defines the main frequency for the DSP. • HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. • HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For better noise performance, the Slow Mode must be enabled. 3901090333 Rev. 007 Page 26 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 13.5.2. GAINMIN and GAINMAX Parameters The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on Max(|VX|, |VY|, |VZ|) = |Amplitude| = Radius and it targets an amplitude of 90% of the ADC input span. In MLX90333BCT, this default target is changed to 64% but can be set to 90% by enabling the parameter AGCRADIUSTARGET. The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range, the outputs are set in diagnostic low. 13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters The strength of the applied field is constantly calculated in a background process. The value of this field can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). FIELDTHRES_LOW & FIELDTHRES_HIGH define the boundaries within the actual field strength (Radius) is allowed to vary. Outside this range, the outputs are set in diagnostic low. 3901090333 Rev. 007 Page 27 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 13.6. FILTER Parameter Value Unit FHYST 0 … 11 ; step 0.04 deg FILTER 0… 6 FILTERFIRST 0 1 The MLX90333 includes 3 types of filters: • Hysteresis Filter: programmable by the FHYST parameter • Low Pass FIR Filters controlled with the Filter parameter • Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2 Note: if the parameter FILTERFIRST is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 13.6.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. 13.6.2. FIR Filters The MLX90333 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described below: yn = 1 j ∑ ai j ∑a x i n −i i =0 i =0 The characteristics of the filters no 0 to 5 is given in the Table 1. Filter No (j) Type Coefficients a0… a5 Title 90% Response Time (CT) 99% Response Time (CT) Efficiency RMS (dB) Efficiency P2P (dB) 0 Disable N/A No Filter 1 1 0 0 1 2 3 4 Finite Impulse Response 110000 121000 133100 111100 Extra Light Light 2 3 4 4 2 3 4 4 2.9 4.0 4.7 5.6 2.9 3.6 5.0 6.1 5 122210 5 5 6.2 7.0 Table 1 - FIR Filters Selection Table 3901090333 Rev. 007 Page 28 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor FIR and HYST Filters : Step response Comparative Plot 40000 x(n) [0..65535] Scale 38000 fir(n) hyst(n) 36000 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response 40200 x(n) fir(n) hyst(n) 40150 [0..65535] Scale 40100 40050 40000 39950 39900 39850 39800 0 50 100 150 Milliseconds Figure 14 - Step Response and Noise Response for FIR (No 3) and FHYST=10 13.6.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is given in Figure 15. Only the parameter A1 and A2 are configurable (See Table 2). b0 = 1 x(n) y(n) Z-1 Z-1 b1 = 2 -a1 Z-1 Z-1 b2 = 1 -a2 Figure 15 - IIR Diagram 3901090333 Rev. 007 Page 29 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor Filter No Type Title 90% Response Time (CT) Efficiency RMS (dB) Efficiency P2P (dB) Coefficient A1 Coefficient A2 11 9.9 12.9 26112 10752 16 11.4 14.6 28160 12288 6 2nd Order Infinite Impulse Response (IIR) Medium & Strong 26 40 52 13.6 15.3 16.2 17.1 18.8 20 29120 30208 31296 12992 13952 14976 100 >20 >20 31784 15412 Table 2 - IIR Filter Selection Table The Figure 16 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2. IIR Filter - Gaussian White Noise Response 40200 [0…65535] Scale 40150 x(n) 40100 y(n) 40050 40000 39950 39900 39850 39800 0 50 100 150 Time Figure 16 - Noise Response for the IIR Filter 13.7. Programmable enhanced “joystick’ angle correction23 Parameter KTALPHA KTBETA ORTHZXALPHA ORTHZYALPHA ORTHZXBETA ORTHZYBETA ENHORTH 23 Value Unit [0..200] / 128 LSB [-128…127] / 256 LSB Disable = 0 Enable = 1 Only applicable for 90333BCT 3901090333 Rev. 007 Page 30 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 13.7.1. Enhanced “Joystick “Angle Formula (k V ) 2 + (k (V − ORTHzy * V ))2 Z Z t Y z VX − ORTHzx * Vz (k V ) 2 + (k (Vx − ORTHzx *V )) 2 Z Z t z V y − ORTHzy *Vz α = ATAN β = ATAN The enhanced “joystick” angle function is enabled by parameter ENORTH. Parameters are automatically calculated when using the 90333BCT/ 9 points solver to optimize the shape of Betaout vs Alphaout in accordance to the mechanical boundaries of the Joystick 13.8. Programmable Diagnostic Settings Parameter OUT1DIAG OUT2DIAG RESONFAULT EEHAMHOLE Value DIAGLOW = 0 DIAGHIGH = 1 DIAGLOW = 0 DIAGHIGH = 1 Disable = 0 Enable = 1 Enable = 0 Disable = 3131h 13.8.1. OUTxDIAG Parameter This OUT1DIAG, OUT2DIAG parameters define the behavior of the output in case of a diagnostic situation. 13.8.2. RESONFAULT Parameter This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the parameter is set to 1. It is recommended to set it to “1” to activate the self diagnostic modes (See section 14). Note that in the User Interface (MLX90333UI), the RESONFAULT is a cluster of the following two bits, i.e. the 2 bits are both disabled or both enabled: • DRESONFAULT: disable the reset in case of a fault. • DOUTINFAULT: disable output in diagnostic low in case of fault. It is recommended to set both EEPROM parameters to “0” to activate the self diagnostic modes 3901090333 Rev. 007 Page 31 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 13.8.3. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the CRC check and memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. Melexis strongly recommends to set the parameter to 0 (enable memory recovery). The parameter is set automatically to 0 by the solver function “MemLock”. 13.9. Lock Parameter Value 0 1 0 1 MLXLOCK LOCK 13.9.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 13.9.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore. Note that the lock bit should be set by the solver function “MemLock”. 3901090333 Rev. 007 Page 32 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 14. MLX90333 Self Diagnostic The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Action ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Effect on Outputs Diagnostic low(25) CPU Reset (24) Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Immediate Diagnostic low Diagnostic low Calibration Data CRC Error (Start-Up) Hamming Code Recovery Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone Alpha Dead Zone Beta CPU Reset Immediate Diagnostic low CPU Reset Immediate Diagnostic low Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and No CPU Reset If recovery Immediate Diagnostic low Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Immediate Diagnostic low ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Field Clipping (Radius < FIELDTHRES_LOW or Radius > FIELDTHRES_HIGH) Rough Offset Clipping (RO is < 0d or > 127d) Gain Clipping (Gain < GAINMIN or GAIN > GAINMAX) DAC Monitor (Digital to Analog converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset MLX90333 Fault Mode continues… 24 All the outputs are already in Diagnostic low (start-up) Start-Up Time is increased by 3 ms if successful recovery See 13.8.3 Immediate recovery if the “dead zone” is left Immediate Diagnostic low Immediate Diagnostic low (50 % - 100 %) No magnet / field too high See also 13.5.2 Immediate Diagnostic low Immediate Diagnostic low See also 13.5.2 Immediate Diagnostic low CPU reset means 1. 2. 3. 4. 25 Remark All the outputs are already in Diagnostic low - (start-up) Core Reset (same as Power-On-Reset). It induces a typical start up time. Periphery Reset (same as Power-On-Reset) Fault Flag/Status Lost The reset can be disabled by clearing the RESONFAULT bit (See 13.8.2) Refer to section 6 for the Diagnostic Output Level specifications 3901090333 Rev. 007 Page 33 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor …MLX90333 Fault Mode Fault Mode Action ADC Monitor (Analog to Digital Converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Undervoltage Mode At Start-Up, wait Until VDD > 3V. During operation, CPU Reset after 3 ms debouncing Effect on Outputs Immediate Diagnostic low Remark ADC Inputs are Shorted - VDD < POR level => Outputs high impedance Firmware Flow Error CPU Reset - POR level < VDD < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode VDD > 7 V CPU Reset Immediate Diagnostic low Intelligent Watchdog (Observer) 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection Set Output High Impedance (Analog) 100% Hardware detection VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(25) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Broken VSS CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Broken VDD CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High 3901090333 Rev. 007 Page 34 of 48 No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. 100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 4% VDD (temperature suffix K) - contact Melexis for temperature suffix L No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 15. Serial Protocol 15.1. Introduction The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. The serial protocol of the MLX90333 is a three wires protocol (/SS, SCLK, MOSI-MISO): • • • /SS pin is a 5 V tolerant digital input SCLK pin is a 5 V tolerant digital input MOSI-MISO pin is a 5 V tolerant open drain digital input/output The basic knowledge of the standard SPI specification is required for the good understanding of the present section. 15.2. SERIAL PROTOCOL Mode • • CPHA = 1 CPOL = 0 even clock changes are used to sample the data active-Hi clock The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the bit at the Master’s input stage. 15.3. MOSI (Master Out Slave In) The Master sends a command to the Slave to get the angle information. 15.4. MISO (Master In Slave Out) The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90333. 15.5. /SS (Slave Select) The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error. 15.6. Master Start-Up /SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer. 15.7. Slave Start-Up The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90333 will cope with any signal from the Master while starting up. 3901090333 Rev. 007 Page 35 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 15.8. Timing To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive. t6 t1 t1 t7 t1 t1 t1 t4 t2 t9 t5 SCLK MOSI/ MISO /SS 1 Startbyte Timings 26 Min(26) Byte 0 Byte 1 Max t1 2.3 µs / 6.9 µs - t2 12.5 µs / 37.5 µs - t4 2.3 µs / 6.9 µs - t5 300 µs / 1500 µs - t5 0µs t6 2.3 µs / 6.9 µs - t7 15 µs / 45 µs - t9 - <1 µs TStartUp - < 10 ms / 16 ms - Byte 2 Byte 7 Remarks No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte. t2 the minimum time between any other byte Time between last clock and /SS=high=chip de-selection Minimum /SS = Hi time where it’s guaranteed that a frame resynchronizations will be started. Maximum /SS = Hi time where it’s guaranteed that NO frame resynchronizations will be started. The time t6 defines the minimum time between /SS = Lo and the first clock edge t7 is the minimum time between the StartByte and the Byte0 Maximum time between /SS = Hi and MISO Bus High-Impedance Minimum time between reset-inactive and any master signal change Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode) 3901090333 Rev. 007 Page 36 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 15.9. Slave Reset On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5). 15.10. Frame Layer 15.10.1. Frame Type Selection See the programmable parameter XYZ in section 13.2.3 to select between the Alpha, Beta Frame and the X, Y, Z Frame. 15.10.2. Data Frame Structure The Figure 17 gives the timing diagram for the SPI Frame. The latch point for the angle measurement is at the last clock before the first data frame byte. Latch point /SS SCLK MOSI F F F F F F F F F F F F F F F F F F F F F F MISO F F D A T A D A T A D A T A S U M F F D A T A XYZ 0 1 Alpha X Beta Y Error Z Figure 17 - Timing Diagram for the SPI Frame A data frame consists of: Data Frame XYZ = 0 1 start byte XYZ = 1 FFh 2 data bytes (LSByte first) Alpha X 2 data bytes (LSByte first) Beta Y 2 data bytes (LSByte first) Error Code Z 1 SUM byte 8 LSB of the sum of the transmitted bytes 15.10.3. Timing There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined. 3901090333 Rev. 007 Page 37 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 15.10.4. Data Structure The DATA could be a valid angle/field component or an error condition. DATA: Angle/ Field Component A[15:0] with (Span)/216 Less Significant Byte msb A7 A6 A5 A4 A3 Most Significant Byte A2 A1 lsb A0 msb A15 A14 A13 A12 A11 A10 lsb A8 A9 DATA: Error Less Significant Byte msb E7 E6 E5 E4 E3 BIT E0 E1 E2 E3 E4 NAME F_ADCMONITOR F_ADCSATURA F_GAINTOOLOW E5 E6 F_GAINTOOHIGH F_NORMTOOLOW E7 E8 F_FIELDTOOLOW F_FIELDTOOHIGH E9 E10 E11 E12 E13 E14 E15 F_ROCLAMP F_DEADZONEALPHA F_DEADZONEBETA E2 Most Significant Byte E1 lsb E0 msb E15 E14 E13 E12 E11 E10 E9 lsb E8 ADC Failure ADC Saturation (Electrical failure or field too strong) The gain code is strictly less than EE_GAINMIN The gain code is strictly greater than EE_GAINMAX Goes high when the fast norm (the max of absolute x,y,z) is below 30% The norm (Square root) is strictly less than EE_FIELDLOW The norm (Square root) is strictly greater than EE_FIELDHIGH Analog Chain Rough Offset Compensation: Clipping The angle ALPHA lies in the deadzone The angle BETA lies in the deadzone 15.10.5. Angle Calculation All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave: • • Slow Mode: every 1.5 ms at most. Fast Mode: every 350 µs at most. The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset. 15.10.6. Error Handling In case of any errors listed in section 15.10.4, the Serial protocol will be initialized and the error condition can be read by the master. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent). 3901090333 Rev. 007 Page 38 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 16. Recommended Application Diagrams 16.1. Analog Output Wiring with the MLX90333 in SOIC Package ECU 5V Vdd 8 1 Vdd C1 100nF GND Vss MLX90333 Test 1 NotUsed C2 100nF Vdig C3 100nF ADC Test 2 5 4 Out 2 C6 4.7nF R1 10k Out 1 Out 1 R2 10k C4 100nF Out 2 C5 4.7nF Figure 18 – Recommended wiring for the MLX90333 in SOIC8 package 16.2. PWM Low Side Output Wiring ECU 5V Vdd 8 1 Vdd C1 100nF GND Vss MLX90333 Test 1 NotUsed C2 100nF Vdig ADC 5 PWM 1 PWM 1 C6 4.7nF 5V Test 2 4 PWM 2 C3 4.7nF R1 1k R2 1k C4 4.7nF PWM 2 C5 4.7nF Figure 19 – Recommended wiring for a PWM Low Side Output configuration 3901090333 Rev. 007 Page 39 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 16.3. Analog Output Wiring with the MLX90333 in TSSOP Package ECU VDD1 VDD1 GND1 C31 100nF 16 C1 100nF GND1 GND1 1 C2 100nF VDIG1 VSS1 OUT1_1 VDD1 OUT2_1 OUT1_1 C4 100nF MLX90333 C62 100nF VDD2 VSS2 OUT2_1 VDD2 VDD2 GND2 10K 4.7nF ADC 9 8 OUT2_2 OUT1_2 C32 100nF GND2 VDIG2 C5 100nF C61 100nF GND2 OUT1_2 OUT2_2 Figure 20 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die). 16.4. Serial Protocol Generic schematics for single slave and dual slave applications are described. SPI Master GND 8 1 Vdd 5V C1 100nF Vdd _SS _SS Vss MLX90333 Test 0 R4 C2 100nF Vdig SCLK R5 Test 1 SCLK MOSI MISO _MOSI 5 4 /SS R3 MOSI R1 R2 3.3V/5V Figure 21 – MLX90333 − Single Die − Serial Protocol Mode 3901090333 Rev. 007 Page 40 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor µCtrl Pull-up 90316 Supply Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) (V) (V) (V) 5V µCtrl w/o O.D. w/o 3.3V 5V 5V 5V 100 1000 20,000 1000 5V µCtrl w/o O.D. w/ 3.3V 5V 3.3V 5V 150 1000 N/A 1000 3.3V µCtrl w/o O.D. (27) 3.3V 3.3V 5V 150 1000 N/A N/A 5V µCtrl w/ O.D. w/o 3.3V (28) 5V 5V 5V 100 1000 20,000 1000 3.3V µCtrl w/ O.D. 3.3V 3.3V 5V 150 1000 N/A N/A Table 3 - Resistor Values for Common Specific Applications Application Type 27 28 R5 (Ω) MOS Type 20,000 20,000 N/A 20,000 N/A BS170 BS170 BS170 N/A N/A µCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series) µCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR ) 3901090333 Rev. 007 Page 41 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 17. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Iron Soldering THD’s (Through Hole Devices) • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/Quality_soldering.aspx) as well as trim&form recommendations (http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx). Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx 18. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090333 Rev. 007 Page 42 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 19. Package Information 19.1. SOIC8 - Package Dimensions 1.27 TYP NOTES: 3.81 3.99** 4.80 4.98* 5.80 6.20** All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.19 0.25 0° 8° 0.100 0.250 0.36 0.46*** 0.41 1.27 Out 1 MOSI/MISO Test 1 Vdig Vss 19.2. SOIC8 - Pinout and Marking 8 Marking : Part Number MLX90333 (3 digits) Die Version (3 digits) 5 TOP 333Bxx M12345 Xy-E Xy-E WW Out 2 SCLK \SS Test 0 YY Split lot number (Optional ) + “-E” Week Date code (2 digits) Year Date code (2 digits) 4 Vdd 3901090333 Rev. 007 Bxx M12345 Lot number: “M” + 5 digits Bottom 1 333 Page 43 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 19.3. SOIC8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 3 0.46 +/- 0.06 4 1.96 2.26 SIN 3901090333 Rev. 007 Page 44 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 19.4. TSSOP16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 0.50 0.75 0O 8O 1.0 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090333 Rev. 007 Page 45 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 19.5. TSSOP16 - Pinout and Marking 16 1 Test1_1 Vdig_1 Vss_1 Out1_1/MOSI/MISO_1 Vdd_1 Out2_1/SCLK_1 333Bxx M12345 Xy-E Test0_1 _SS_2 _SS_1 Test0_2 Marking : Part Number MLX90316 (3 digits) Die Version (3 digits) 9 Vdd_2 Vss_2 8 Out2_2/SCLK_2 Out1_2/MOSI/MISO_2 Test1_2 Vdig_2 333 Top Bxx M12345 Lot number: “M” + 5 digits Xy-E Bottom YY Split lot number (Optional ) + “-E” WW Week Date code (2 digits) Year Date code (2 digits) 3901090333 Rev. 007 Page 46 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 19.6. TSSOP16 - IMC Positionning CW COS 2 16 9 Die 1 Die 2 SIN 2 SIN 1 0.30 +/- 0.06 CCW 1.95 2.45 1 8 1.84 2.04 COS 1 2.76 2.96 3901090333 Rev. 007 Page 47 of 48 Data Sheet Jul/2013 MLX90333 Tria⊗ ⊗is® Position Sensor 20. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2013 Melexis NV. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: Phone: +32 1367 0495 E-mail: [email protected] 3901090333 Rev. 007 America: Phone: +1 248 306 5400 E-mail: [email protected] Page 48 of 48 Data Sheet Jul/2013