NBSG86A 2.5V/3.3VSiGe Differential Smart Gate with Output Level Select The NBSG86A is a multi−function differential Logic Gate which can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1 MUX. This device is part of the GigaComm™ family of high performance Silicon Germanium products. The device is housed in a low profile 4x4 mm, 16−pin, flip−chip BGA or a 3x3 mm 16 pin QFN package. Differential inputs incorporate internal 50 W termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS* input is used to program the peak−to−peak output amplitude between 0 and 800 mV in five discrete steps. The NBSG86A employs input default circuitry so that under open input conditions (Dx, Dx, VTDx, VTDx, VTSEL) the outputs of the device will remain stable. • SG 86A LYW FCBGA−16 BA SUFFIX CASE 489 ÇÇ ÇÇ 16 1 QFN−16 MN SUFFIX CASE 485G • Maximum Input Clock Frequency > 8 GHz Typical • MARKING DIAGRAM* 1 Features • • • • http://onsemi.com SG 86A ALYWG G Maximum Input Data Rate > 8 Gb/s Typical 165 ps Typical Propagation Delay 40 ps Typical Rise and Fall Times Selectable Swing PECL Output with Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V Selectable Swing NECL Output with NECL Inputs with Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V Selectable Output Level (0 V, 200 mV, 400 mV, 600 mV, or 800 mV Peak−to−Peak Output) 50 W Internal Input Termination Resistors • • Pb−Free Packages are Available July, 2006 − Rev. 10 *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. *Output Level Select © Semiconductor Components Industries, LLC, 2006 A = Assembly Location L = Wafer Lot Y = Year W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) 1 Publication Order Number: NBSG86A/D NBSG86A 1 A B 2 3 4 VTD1 D1 D1 VTD1 SEL VTSEL VTD0 D0 16 VCC OLS 1 SEL 2 15 D0 VTD0 14 13 Exposed Pad (EP) 12 VEE 11 Q Q NBSG86A C SEL OLS VEE Q D VTD0 D0 D0 VTD0 SEL 3 10 Q VTSEL 4 9 VCC Figure 1. BGA−16 Pinout (Top View) 5 6 VTD1 D1 7 8 D1 VTD1 Figure 2. QFN−16 Pinout (Top View) Table 1. Pin Description Pin BGA QFN Name I/O C2 1 OLS (Note 3) Input C1 2 SEL ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Select Logic Input. B1 3 SEL ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Select Logic Input. B2 4 VTSEL − Common Internal 50 W Termination Pin for SEL/SEL. See Table 7. (Note 1) A1 5 VTD1 − Internal 50 W termination pin. See Table 7. (Note 1) A2 6 D1 ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Input 1. Internal 75 kW to VEE. A3 7 D1 ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Input 1. Internal 75 kW to VEE and 36.5 kW to VCC. A4 8 VTD1 − Internal 50 W Termination Pin. See Table 7. (Note 1) B3 9 VCC − Positive Supply Voltage (Note 2) B4 10 Q RSECL Output Noninverted Differential Output. Typically Terminated with 50 W Resistor to VTT = VCC − 2 V. C4 11 Q RSECL Output Inverted Differential Output. Typically Terminated with 50 W Resistor to VTT = VCC − 2 V C3 12 VEE − Negative Supply Voltage (Note 2) D4 13 VTD0 − Internal 50 W Termination Pin. See Table 7. (Note 1) D3 14 D0 ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Input 0. Internal 75 kW to VEE and 36.5 kW to VCC. D2 15 D0 ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Input 0. Internal 75 kW to VEE. D1 16 VTD0 − Internal 50 W Termination Pin. See Table 7. (Note 1) N/A − EP − Exposed Pad. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat−sinking conduit. Description Input Pin for the Output Level Select (OLS). See Table 2. 1. In the differential configuration when the input termination pins (VTDx, VTDx, VTSEL) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self−oscillation. 2. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. 3. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2 kW resistor should be connected from OLS pin to VEE. http://onsemi.com 2 NBSG86A Table 2. OUTPUT LEVEL SELECT OLS Q/Q VPP OLS Sensitivity VCC OLS 800 mV OLS − 75 mV VCC − 0.4 V 200 mV OLS $ 150 mV VCC − 0.8 V 600 mV OLS $ 100 mV VCC − 1.2 V 0 OLS $ 75 mV VEE (Note 4) 400 mV OLS $ 100 mV Float 600 mV N/A 4. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2.0 kW resistor should be connected from OLS to VEE. 50 W VTD0 D0 R1 R2 D0 R1 VTD0 50 W Q 50 W Q VTD1 D1 R1 R2 D1 50 W R1 VTD1 50 W 50 W VTSEL SEL SEL Figure 3. Logic Diagram 50 W VTD0 VT or VBB Table 3. AND/NAND TRUTH TABLE (Note 5) D0 VCC VTD0 b *b D0 D1 SEL Q 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 D0 50 W Q 50 W Q VTD1 D1 5. D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. D1 VTD1 50 W 50 W 50 W VEE VCC VTSEL SEL b SEL Figure 4. Configuration for AND/NAND Function http://onsemi.com 3 NBSG86A 50 W VTD0 D0 Table 4. OR/NOR TRUTH TABLE** D0 b or b D0 D1 SEL Q 0 1 0 0 VTD1 0 1 1 1 VCC D1 1 1 0 1 VT or VBB D1 1 1 1 1 VTD0 50 W Q 50 W Q 50 W VTD1 50 W 50 W ** D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. VTSEL b SEL SEL Figure 5. Configuration for OR/NOR Function 50 W VTD0 D0 Table 5. XOR/XNOR TRUTH TABLE** D0 VTD0 50 W Q 50 W Q D1 SEL Q 0 1 0 0 D1 0 1 1 1 D1 1 0 0 1 1 0 1 0 50 W 50 W XOR b D0 VTD1 VTD1 b 50 W ** D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. VTSEL b SEL SEL Figure 6. Configuration for XOR/XNOR Function 50 W VTD0 D0 D0 Table 6. 2:1 MUX TRUTH TABLE** VTD0 50 W Q SEL 50 W Q 1 D1 0 D0 VTD1 D1 Q ** D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. D1 VTD1 50 W 50 W 50 W VTSEL SEL SEL Figure 7. Configuration for 2:1 MUX Function http://onsemi.com 4 NBSG86A Table 7. Interfacing Options INTERFACING OPTIONS CONNECTIONS CML Connect VTD0, VTD1, VTSEL and VTD0, VTD1 to VCC LVDS Connect VTD0, VTD1, VTD0 and VTD1 together. Leave VTSEL open. AC−COUPLED Bias VTD0, VTD1, VTSEL and VTD0, VTD1 Inputs within (VIHCMR) Common Mode Range RSECL, PECL, NECL Standard ECL Termination Techniques LVTTL, LVCMOS An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V for LVTTL and VCC/2 for LVCMOS inputs. Table 8. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistors (R1) 75 kW Internal Input Pullup Resistor (R2) 37.5 kW Human Body Model Machine Model Charged Device Model > 1 KV > 50 V > 4 KV 16−FCBGA 16−QFN Level 3 Level 1 ESD Protection Moisture Sensitivity (Note 6) Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 364 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 6. For additional information, see Application Note AND8003/D. Table 9. MAXIMUM RATINGS (Note 7) Symbol Parameter Condition 1 Condition 2 Rating Units VCC Positive Power Supply VEE = 0 V 3.6 V VEE Negative Power Supply VCC = 0 V −3.6 V VI Positive Input Negative Input VEE = 0 V VCC = 0 V 3.6 −3.6 V V VINPP Differential Input Voltage |Dn − Dn| VCC − VEE w 2.8 V VCC − VEE < 2.8 V 2.8 |VCC − VEE| V V IIN Input Current Through RT (50 W Resistor) Static Surge 45 80 mA mA Iout Output Current Continuous Surge 25 50 mA mA TA Operating Temperature Range 16−FCBGA 16−QFN −40 to +70 −40 to +85 °C °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) (Note 8) 0 LFPM 500 LFPM 0 LFPM 500 LFPM 16 FCBGA 16 FCBGA 16 QFN 16 QFN 108 86 41.6 35.2 °C/W °C/W °C/W °C/W qJC Thermal Resistance (Junction−to−Case) 2S2P (Note 8) 2S2P (Note 9) 16 FCBGA 16 QFN 5.0 4.0 °C/W °C/W Tsol Wave Solder < 15 sec < 3 sec @ 248°C < 3 sec @ 260°C 225 265 265 °C Pb (BGA) Pb (QFN) Pb−Free (QFN) VI v VCC VI w VEE Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 7. Maximum Ratings are those values beyond which device damage may occur. 8. JEDEC standard multilayer board − 2S2P (2 signal, 2 power). 9. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad. http://onsemi.com 5 NBSG86A Table 10. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT VCC = 2.5 V; VEE = 0 V (Note 10) −40°C Symbol Characteristic 25°C 70°C(BGA)/85°C(QFN)** Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 23 30 39 23 30 39 23 30 39 mA VOH Output HIGH Voltage (Note 11) 1460 1510 1560 1490 1540 1590 1515 1565 1615 mV VOL Output LOW Voltage (Note 11) (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) 555 1235 775 1455 1005 705 1295 895 1505 1095 855 1385 1015 1585 1215 595 1270 810 1490 1040 745 1330 930 1540 1130 895 1420 1050 1620 1250 625 1295 840 1510 1065 775 1355 960 1560 1155 925 1445 1080 1640 1275 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 VOUTPP mV Output Voltage Amplitude mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) VIH Input HIGH Voltage (Single−Ended) (Note 13) D, D VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC− 1000* VCC mV VIL Input LOW Voltage (Single−Ended) (Note 14) D, D VEE VCC− 1400* VIH− 150 VEE VCC− 1400* VIH− 150 VEE VCC− 1400* VIH− 150 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12) 1.2 2.5 1.2 2.5 1.2 2.5 V RTIN Internal Input Termination Resistor 45 50 55 45 50 55 45 50 55 W IIH Input HIGH Current (@VIH) D, D SEL 30 5 100 50 30 5 100 50 30 5 100 50 mA IIL Input LOW Current (@VIL) D, D SEL 20 5 100 50 20 5 100 50 20 5 100 50 mA NOTE: GigaComm circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −0.965 V. 11. All loading with 50 W to VCC − 2.0 V. 12. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 13. VIH cannot exceed VCC. 14. VIL always w VEE. *Typicals used for testing purposes. **The device packaged in FCBGA−16 have maximum ambient temperature specification of 70°C and devices packaged in QFN−16 have maximum ambient temperature specification of 85°C. http://onsemi.com 6 NBSG86A Table 11. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT VCC = 3.3 V; VEE = 0 V (Note 15) −40°C 25°C 70°C(BGA)/85°C(QFN)*** Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 23 30 39 23 30 39 23 30 39 mA VOH Output HIGH Voltage (Note 16) 2260 2310 2360 2290 2340 2390 2315 2365 2415 mV VOL Output LOW Voltage (Note 16) (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) 1320 2030 1550 2260 1785 1470 2090 1670 2310 1875 1620 2180 1790 2390 1995 1360 2065 1585 2290 1820 1510 2125 1705 2340 1910 1660 2215 1825 2420 2030 1390 2090 1615 2315 1850 1540 2150 1735 2365 1940 1690 2240 1855 2445 2060 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 Symbol VOUTPP Characteristic mV Output Amplitude Voltage mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) VIH Input HIGH Voltage (Single−Ended) (Note 18) D, D VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC mV VIL Input LOW Voltage (Single−Ended) (Note 19) D, D VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 17) 1.2 3.3 1.2 3.3 1.2 3.3 V RTIN Internal Input Termination Resistor 45 50 55 45 50 55 45 50 55 W IIH Input HIGH Current (@VIH) D, D SEL 30 5 100 50 30 5 100 50 30 5 100 50 mA IIL Input LOW Current (@VIL) D, D SEL 20 5 100 50 20 5 100 50 20 5 100 50 mA NOTE: GigaComm circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.165 V. 16. All loading with 50 W to VCC − 2.0 V. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 18. VIH cannot exceed VCC. 19. VIL always w VEE. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. ***The device packaged in FCBGA−16 have maximum ambient temperature specification of 70°C and devices packaged in QFN−16 have maximum ambient temperature specification of 85°C. http://onsemi.com 7 NBSG86A Table 12. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT VCC = 0 V; VEE = −3.465 V to −2.375 V (Note 20) −40°C Symbol Characteristic 25°C 70°C(BGA)/85°C(QFN)*** Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 23 30 39 23 30 39 23 30 39 mA VOH Output HIGH Voltage (Note 21) −1040 −990 −940 −1010 −960 −910 −985 −935 −885 mV VOL Output LOW Voltage (Note 21) −3.465 V v VEE v −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE v −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) VOUTPP Output Voltage Amplitude −3.465 V v VEE v −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE v −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) mV −1980 −1270 −1750 −1040 −1515 −1830 −1210 −1630 −990 −1425 −1680 −1120 −1510 −910 −1305 −1940 −1235 −1715 −1010 −1480 −1790 −1175 −1595 −960 −1390 −1640 −1085 −1475 −880 −1270 −1910 −1210 −1685 −985 −1450 −1760 −1150 −1565 −935 −1360 −1610 −1060 −1445 −855 −1240 −1945 −1265 −1725 −1045 −1495 −1795 −1205 −1605 −995 −1405 −1645 −1115 −1485 −915 −1285 −1905 −1230 −1690 −1010 −1460 −1755 −1170 −1570 −960 −1370 −1605 −1080 −1450 −880 −1250 −1875 −1205 −1660 −990 −1435 −1725 −1145 −1540 −940 −1345 −1575 −1055 −1420 −860 −1225 mV 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 VIH Input HIGH Voltage (Single−Ended) (Note 23) D, D VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC mV VIL Input LOW Voltage (Single−Ended) (Note 24) D, D VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 22) 0.0 V RTIN Internal Input Termination Resistor 50 55 W IIH Input HIGH Current (@VIH) IIL Input LOW Current (@VIL) VEE+1.2 45 0.0 50 55 D, D SEL 30 5 D, D SEL 20 5 VEE+1.2 45 0.0 VEE+1.2 50 55 45 100 50 30 5 100 50 30 5 100 50 mA 100 50 20 5 100 50 20 5 100 50 mA NOTE: GigaComm circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained. 20. Input and output parameters vary 1:1 with VCC. 21. All loading with 50 W to VCC − 2.0 V. 22. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 23. VIH cannot exceed VCC. 24. VIL always w VEE. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. ***The device packaged in FCBGA−16 have maximum ambient temperature specification of 70°C and devices packaged in QFN−16 have maximum ambient temperature specification of 85°C. http://onsemi.com 8 NBSG86A Table 13. AC CHARACTERISTICS for FCBGA−16 VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V −40°C 25°C Min Typ Min Typ Min Typ 7 8 7 8 7 8 GHz fin v 7 GHz 550 740 500 720 450 700 mV Propagation Delay to Output Differential D/SEL → Q 110 160 210 115 165 215 120 170 220 5 15 5 15 5 15 ps 5 20 5 20 5 20 ps Symbol Characteristic fmax Maximum Frequency (See Figure 8) (Note 25) VOUTPP Output Voltage Amplitude (OLS = VCC) tPLH, tPHL tSKEW Duty Cycle Skew (Note 26) tSKEW Channel Skew tJITTER RMS Random Clock Jitter (See Figure 8) (Note 25) Max 70°C Max Max Unit ps Q → D/SEL ps fin v 7 GHz Peak−to−Peak Data Dependent Jitter fin v 7 Gb/s VINPP Input Voltage Swing/Sensitivity (Differential Configuration) (Note 27) tr tf Output Rise/Fall Times (20% − 80%) @ 1 GHz 0.5 1.5 0.5 12 75 1.5 0.5 12 2600 75 65 20 1.5 12 2600 75 65 20 2600 (Q, Q) mV ps 20 40 40 40 65 25. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 40 ps (20% − 80%). 26. tSKEW = |tPLH − tPHL| for a nominal 50% differential clock input waveform. See Figure 12. 27. VINPP (max) cannot exceed VCC − VEE. Table 14. AC CHARACTERISTICS for QFN−16 VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V −40°C Symbol Characteristic Min Typ 7 25°C Max Min Typ 8 7 85°C Max Min Typ Max 8 7 8 GHz 470 230 720 420 540 180 700 390 mV mV 115 165 215 120 170 220 Unit fmax Maximum Frequency (See Figure 8) (Note 28) VOUTPP Output Voltage Amplitude (OLS = VCC) fin v 7 GHz fin = 8 GHz 590 270 730 440 tPLH, tPHL Propagation Delay to Output Differential D/SEL → Q 110 160 210 tSKEW Duty Cycle Skew (Note 29) 5 15 5 15 5 15 ps tSKEW Channel Skew 5 20 5 20 5 20 ps tJITTER RMS Random Clock Jitter (See Figure 8) (Note 31) ps Q → D/SEL ps fin v 7 GHz Peak−to−Peak Data Dependent Jitter (Note 32) fin v 7 Gb/s VINPP Input Voltage Swing/Sensitivity (Differential Configuration) (Note 30) tr tf Output Rise/Fall Times (20% − 80%) @ 1 GHz 0.5 0.5 12 75 (Q, Q) tr tf 1.5 1.5 0.5 12 2600 75 60 65 30 17 1.5 12 2600 75 60 65 30 17 2600 mV ps 30 17 45 35 45 35 45 35 60 65 28. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 40 ps (20% − 80%). 29. tSKEW = |tPLH − tPHL| for a nominal 50% differential clock input waveform. See Figure 12. 30. VINPP (max) cannot exceed VCC − VEE. 31. Additive RMS jitter with 50% duty cycle clock signal at 7 GHz. 32. Additive Peak−to−Peak data dependent jitter with NRZ PRBS 231−1 data rate at 7 Gb/s. http://onsemi.com 9 NBSG86A 9 OLS = VCC 800 700 8 7 OLS = VCC − 0.8 V, OLS = FLOAT 600 6 500 5 *OLS = VEE 400 4 300 3 OLS = VCC − 0.4 V 200 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE (mV) 900 2 100 1 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 0 10 INPUT FREQUENCY (GHz) Figure 8. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for 2:1 MUX Mode (VCC − VEE = 2.5 V @ 25C; Repetitive 1010 Input Data Pattern) 800 9 8 OLS = VCC 700 600 7 OLS = VCC − 0.8 V OLS = FLOAT 6 5 500 *OLS = VEE 400 300 4 3 OLS = VCC − 0.4 V 200 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE (mV) 900 2 100 1 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 0 10 INPUT FREQUENCY (GHz) Figure 9. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for 2:1 MUX Mode (VCC − VEE = 3.3 V @ 25C; Repetitive 1010 Input Data Pattern) *When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. http://onsemi.com 10 NBSG86A 300 200 100 IOLS (mA) 0 −100 −200 −300 −400 −500 −600 −700 VCC VCC − 400 VCC − 800 VCC − 1200 VEE VOLS (mV) Figure 10. Typical OLS Input Current vs. OLS Input Voltage (VCC − VEE = 3.3 V @ 25C) 1000 VCC − 75 VOUTPP (mV) 800 VCC − 700 VCC − 900 600 VEE + 100 400 VCC − 250 VCC − 550 200 VCC − 1125 VCC − 1275 0 VCC VCC − 400 VCC − 800 VCC − 1200 OLS (mV) Figure 11. OLS Operating Area http://onsemi.com 11 VEE NBSG86A D VINPP(D) = VIH(D) − VIL(D) VINPP(D) = VIH(D) − VIL(D) D Q VOUTPP(Q) = VOH(Q) − VOL(Q) VOUTPP(Q) = VOH(Q) − VOL(Q) Q tPHL tPLH Figure 12. AC Reference Measurement Q Z = 50 W D Receiver Device Driver Device Q Z = 50 W D 50 W 50 W V TT V TT = V CC − 2.0 V Figure 13. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 − Termination of ECL Logic Devices) ORDERING INFORMATION Package Type Shipping† NBSG86ABA 4x4 mm FCBGA−16 100 Units / Tray (Contact Sales Representative) NBSG86ABAR2 4x4 mm FCBGA−16 100 / Tape & Reel 3x3 mm QFN−16 123 Units / Rail NBSG86AMNG 3x3 mm QFN−16 (Pb−Free) 123 Units / Rail NBSG86AMNR2 3x3 mm QFN−16 3000 / Tape & Reel 3x3 mm QFN−16 (Pb−Free) 3000 / Tape & Reel Device NBSG86AMN NBSG86AMNR2G Board Description NBSG86ABAEVB NBSG86ABA Evaluation Board †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 12 NBSG86A PACKAGE DIMENSIONS FCBGA−16 BA SUFFIX PLASTIC 4 X 4 (mm) BGA FLIP CHIP PACKAGE CASE 489−01 ISSUE O LASER MARK FOR PIN 1 IDENTIFICATION IN THIS AREA −X− D M −Y− K E M 0.20 3X e 4 3 2 FEDUCIAL FOR PIN A1 IDENTIFICATION IN THIS AREA 1 A 3 B b 16 X C D S VIEW M−M 0.15 M Z X Y 0.08 M Z 5 0.15 Z A A2 A1 16 X 4 −Z− 0.10 Z DETAIL K ROTATED 90 _ CLOCKWISE http://onsemi.com 13 NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z. 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. DIM A A1 A2 b D E e S MILLIMETERS MIN MAX 1.40 MAX 0.25 0.35 1.20 REF 0.30 0.50 4.00 BSC 4.00 BSC 1.00 BSC 0.50 BSC NBSG86A PACKAGE DIMENSIONS 16 PIN QFN CASE 485G−01 ISSUE C PIN 1 LOCATION ÇÇ ÇÇ ÇÇ D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG A B E DIM A A1 A3 b D D2 E E2 e K L 0.15 C TOP VIEW 0.15 C (A3) 0.10 C A 16 X 0.08 C SIDE VIEW SEATING PLANE A1 C SOLDERING FOOTPRINT* D2 16X 0.575 0.022 e L 5 NOTE 5 EXPOSED PAD 8 4 MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.18 0.30 3.00 BSC 1.65 1.85 3.00 BSC 1.65 1.85 0.50 BSC 0.18 TYP 0.30 0.50 3.25 0.128 0.30 0.012 EXPOSED PAD 9 E2 16X K 12 1 16 16X 1.50 0.059 3.25 0.128 13 b 0.10 C A B 0.05 C e BOTTOM VIEW 0.50 0.02 NOTE 3 0.30 0.012 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. GigaComm is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NBSG86A/D