StrongIRFET™ IRL7472L1TRPbF DirectFET® N-Channel Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters Benefits Optimized for Logic Level Drive Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Lead-Free, RoHS Compliant VDSS 40V RDS(on) typ. max @ VGS = 10V 0.34m RDS(on) typ. max @ VGS = 4.5V ID (Package Limited) 0.52m S S D S G S Standard Pack IRL7472L1PbF Direct FET Large Can (L8) Quantity Tape and Reel 4000 1.6 375A S S D S DirectFET™ ISOMETRIC Orderable Part Number IRL7472L1TRPbF 700 ID = 195A 1.4 Limited by package 600 1.2 1.0 0.8 TJ = 125°C 0.6 0.4 0.2 500 400 300 200 100 TJ = 25°C 0.0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 Form ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) Package Type 0.70m S L8 Base part number 0.45m 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature 2016-8-9 IRL7472L1TRPbF Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TA = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 25°C IDM PD @TC = 25°C PD @TA = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) VGS TJ TSTG Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Thermal Resistance Symbol Parameter Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Case RJC Junction-to-PCB Mounted RJA-PCB VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Used double sided cooling , mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). 2 Units 456 A 68 375 1500 341 3.8 0.025 ± 20 -55 to + 175 Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance Max. 645 A W W/°C V °C 308 765 mJ See Fig.15,16, 23a, 23b A mJ Typ. ––– 12.5 20 ––– 1.0 Max. 40 ––– ––– 0.44 ––– Units °C/W Min. Typ. Max. Units Conditions 40 ––– ––– V VGS = 0V, ID = 250µA ––– 30 ––– mV/°C Reference to 25°C, ID = 5.0mA ––– 0.34 0.45 VGS = 10V, ID = 195A m ––– 0.52 0.70 VGS = 4.5V, ID = 98A 1.0 1.7 2.5 V VDS = VGS, ID = 250µA ––– ––– 1.0 VDS = 40V, VGS = 0V µA ––– ––– 150 VDS = 40V, VGS = 0V, TJ = 125°C ––– ––– 100 VGS = 20V nA ––– ––– -100 VGS = -20V ––– 1.0 ––– TC measured with thermocouple mounted to top (Drain) of part. Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 2016-8-9 IRL7472L1TRPbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter gfs Forward Transconductance Qg Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge Qsync Total Gate Charge Sync. (Qg - Qgd) td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Coss eff. (ER) Effective Output Capacitance (Energy Related) Coss eff. (TR) Effective Output Capacitance (Time Related) Diode Characteristics Symbol Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) VSD Diode Forward Voltage dv/dt Peak Diode Recovery trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current Min. 232 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 220 95 87 133 68 176 174 137 20082 2436 1594 2855 3544 Max. Units Conditions ––– S VDS = 10V, ID = 195A 330 ID = 195A ––– VDS = 20V nC ––– VGS = 4.5V ––– ID = 195A, VDS =0V, VGS = 4.5V ––– VDD = 20V ––– ID = 30A ns ––– RG = 2.7 ––– VGS = 4.5V ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 10kHz ––– VGS = 0V, VDS = 0V to 32V ––– VGS = 0V, VDS = 0V to 32V Min. Typ. Max. Units ––– ––– 341 ––– ––– 1500 ––– ––– 1.2 V ––– 1.3 ––– V/ns ––– ––– ––– ––– ––– 57 58 103 114 3.1 ––– ––– ––– ––– ––– Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ= 25°C, IS =195A, VGS = 0V D A G S TJ =175°C, IS =195A, VDS = 40V TJ = 25° C VR = 34V, ns TJ = 125°C IF = 195A TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C Notes: Package limit current based on source connection technology Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.016mH, RG = 50, IAS = 195A, VGS =10V. ISD ≤ 195A, di/dt ≤ 984A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1.0mH, RG = 50, IAS = 39A, VGS =10V. Silicon limit current based on maximum allowable junction temperature TJmax. 3 2016-8-9 IRL7472L1TRPbF 10000 10000 1000 BOTTOM VGS 15V 10V 6.0V 5.0V 4.5V 4.0V 3.5V 3.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 6.0V 5.0V 4.5V 4.0V 3.5V 3.0V 100 3.0V 10 1000 BOTTOM 100 10 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 1 0.01 0.1 1 10 0.01 100 Fig 3. Typical Output Characteristics 10 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(A) 1 Fig 4. Typical Output Characteristics 10000 1000 TJ = 175°C TJ = 25°C 100 10 VDS = 10V 60µs PULSE WIDTH 1.0 ID = 195A VGS = 10V 1.7 1.4 1.1 0.8 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics 100000 VGS, Gate-to-Source Voltage (V) Ciss 10000 Coss Crss 1000 1 10 Fig 6. Normalized On-Resistance vs. Temperature 14 VGS = 0V, f = 10 KHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 0.1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 3.0V ID= 195A 12 VDS = 32V VDS = 20V 10 8 6 4 2 0 0 60 120 180 240 300 360 420 480 540 600 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage 2016-8-9 IRL7472L1TRPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 TJ = 175°C 100 TJ = 25°C 10 1000 100µsec 100 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.1 1 VSD , Source-to-Drain Voltage (V) 10 VDS , Drain-to-Source Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 2.0 50 Id = 5.0mA 1.8 1.6 48 1.4 47 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) DC 0.1 0.2 49 1msec Limited by Package 46 45 44 1.2 1.0 0.8 0.6 43 0.4 42 0.2 0.0 41 -60 -20 20 60 100 140 -5 180 TJ , Temperature ( °C ) 0 5 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) R DS (on), Drain-to -Source On Resistance (m) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy 1.8 Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.5V Vgs = 6.0V Vgs = 8.0V Vgs = 10V 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 2016-8-9 IRL7472L1TRPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 350 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 195A EAR , Avalanche Energy (mJ) 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 2016-8-9 IRL7472L1TRPbF 20 IF = 117A VR = 34V 18 2.0 16 TJ = 25°C TJ = 125°C 14 1.5 IRRM (A) VGS(th), Gate threshold Voltage (V) 2.5 ID = 250µA 1.0 ID = 1.0mA ID = 1.0A 12 10 8 6 0.5 4 2 0.0 100 -60 -40 -20 0 20 40 60 80 100120140160180 200 300 400 500 600 diF /dt (A/µs) TJ , Temperature ( °C ) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 20 18 16 IF = 117A VR = 34V 900 TJ = 25°C TJ = 125°C 800 TJ = 25°C TJ = 125°C 700 12 QRR (nC) IRRM (A) 14 1000 IF = 195A VR = 34V 10 8 600 500 400 6 300 4 200 2 100 200 300 400 500 100 600 100 diF /dt (A/µs) 200 300 400 500 600 diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt Fig 19. Typical Recovery Current vs. dif/dt 1000 900 800 QRR (nC) 700 IF = 195A VR = 34V TJ = 25°C TJ = 125°C 600 500 400 300 200 100 100 200 300 400 500 600 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 2016-8-9 IRL7472L1TRPbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V L VDS D.U.T RG IAS 20V tp DRIVER + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 Qgd Qgodr Fig 25b. Gate Charge Waveform 2016-8-9 IRL7472L1TRPbF DirectFET® Board Footprint, L8 Outline (Large Size Can, 8-Source Pads) Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D D S S S S D D G S S S S D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 2016-8-9 IRL7472L1TRPbF DirectFET® Outline Dimension, L8 Outline (Large Size Can, 8-Source Pads) Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 9.05 9.15 6.85 7.10 B C 5.90 6.00 0.55 0.65 D E 0.58 0.62 F 1.18 1.22 0.98 1.02 G 0.73 0.77 H J 0.38 0.42 1.335 1.465 K L 2.535 2.665 5.335 5.465 L1 M 0.68 0.74 P 0.09 0.17 0.02 0.08 R IMPERIAL MIN MAX 0.356 0.360 0.270 0.280 0.232 0.236 0.022 0.026 0.023 0.024 0.046 0.048 0.039 0.040 0.029 0.030 0.015 0.017 0.053 0.058 0.100 0.105 0.210 0.215 0.027 0.029 0.003 0.007 0.001 0.003 Dimensions are shown in millimeters (inches) DirectFET® Part Marking GATE MARKING + LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 2016-8-9 IRL7472L1TRPbF DirectFET® Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION + NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. Order as IRF7472L1TRPBF). REEL DIMENSIONS STANDARD OPTION (QTY 4000) IMPERIAL METRIC MIN CODE MAX MIN MAX 12.992 A N.C 330.00 N.C 0.795 B 20.20 N.C N.C 0.504 C 12.80 0.520 13.20 0.059 D 1.50 N.C N.C 3.900 E 99.00 100.00 3.940 F N.C N.C 0.880 22.40 G 0.650 16.40 0.720 18.40 H 0.630 15.90 0.760 19.40 NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 4.69 0.476 11.90 12.10 0.154 0.161 3.90 4.10 0.623 0.642 15.90 16.30 0.291 0.299 7.40 7.60 0.283 0.291 7.20 7.40 0.390 0.398 9.90 10.10 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Note: For the most current drawing please refer to IR webite at http://www.irf.com/package/ Qualification Information Industrial * Qualification Level Moisture Sensitivity Level (per JEDEC JESD47F† guidelines) DFET (L-CAN) RoHS Compliant MSL1 (per JEDEC J-STD-020D†) Yes † Applicable version of JEDEC standard at the time of product release. * Industrial qualification standards except autoclave test conditions. 11 2016-8-9 IRL7472L1TRPbF Revision History Date 08/09/2016 Comments Changed datasheet with Infineon logo - all pages. Changed max Rdson @ 10V/4.5V from “0.59m /0.97m" to “0.45m" / 0.7m" - on pages 1 & 2. Changed ID @ TC 25C/100C from “564A/399A” to “645A/456A” - on pages 1 & 2. Changed ID @ TA 25C from “59A” to “68A” - on pages 1 & 2. Changed Fig.2 -on page 2. Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Email: [email protected] Document reference ifx1 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. 12 For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 2016-8-9