Fairchild FDB045AN08A0 N-channel powertrenchâ® mosfet 75v, 80a, 4.5m Datasheet

FDB045AN08A0_F085
N-Channel PowerTrench® MOSFET
75V, 80A, 4.5m:
Features
Applications
• rDS(ON) = 3.9m: (Typ.), VGS = 10V, ID = 80A
• 42V Automotive Load Control
• Qg(tot) = 92nC (Typ.), VGS = 10V
• Starter / Alternator Systems
• Low Miller Charge
• Electronic Power Steering Systems
• Low QRR Body Diode
• Electronic Valve Train Systems
• UIS Capability (Single Pulse and Repetitive Pulse)
• DC-DC converters and Off-line UPS
• Qualified to AEC Q101
• Distributed Power Architectures and VRMs
• RoHS Compliant
• Primary Switch for 24V and 48V systems
Formerly developmental type 82684
D
GATE
G
SOURCE
TO-263AB
FDB SERIES
DRAIN
(FLANGE)
S
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Symbol
VDSS
VGS
ID
EAS
PD
TJ, TSTG
Parameter
Ratings
Units
Drain to Source Voltage
75
V
Gate to Source Voltage
r20
V
90
19
A
A
Drain Current
Continuous (TC < 137oC, VGS = 10V)
Continuous (Tamb = 25oC, VGS = 10V, with RTJA = 43oC/W)
Pulsed
Single Pulse Avalanche Energy (Note 1)
Power dissipation
Derate above 25oC
Operating and Storage Temperature
Figure 4
A
600
mJ
310
W
2.0
-55 to 175
W/oC
o
C
Thermal Characteristics
o
RTJC
Thermal Resistance Junction to Case TO-263
RTJA
Thermal Resistance Junction to Ambient TO-263 (Note 2)
62
oC/W
RTJA
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area
43
o
0.48
C/W
C/W
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
certification.
©2010 Fairchild Semiconductor Corporation
FDB045AN08A0_F085 Rev. A
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
June 2010
Device Marking
FDB045AN08A0
Device
FDB045AN08A0_F085
Package
TO-263AB
Reel Size
330mm
Tape Width
24mm
Quantity
800 units
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
75
-
-
-
V
-
1
-
-
250
VGS = r20V
-
-
r100
nA
-
4
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250PA, VGS = 0V
VDS = 60V
VGS = 0V
TC = 150oC
PA
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
VGS = VDS, ID = 250PA
2
ID = 80A, VGS = 10V
-
0.0039 0.0045
ID = 37A, VGS = 6V
-
0.0056 0.0084
ID = 80A, VGS = 10V,
TJ = 175oC
-
0.008
0.011
-
6600
-
-
1000
-
pF
-
240
-
pF
nC
:
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
VDS = 25V, VGS = 0V,
f = 1MHz
Qg(TOT)
Total Gate Charge at 10V
VGS = 0V to 10V
Qg(TH)
Threshold Gate Charge
VGS = 0V to 2V
Qgs
Gate to Source Gate Charge
Qgs2
Gate Charge Threshold to Plateau
Qgd
Gate to Drain “Miller” Charge
VDD = 40V
ID = 80A
Ig = 1.0mA
pF
92
138
-
11
17
nC
-
27
-
nC
-
16
-
nC
-
21
-
nC
Switching Characteristics (VGS = 10V)
tON
Turn-On Time
-
-
160
ns
td(ON)
Turn-On Delay Time
-
18
-
ns
tr
Rise Time
-
88
-
ns
td(OFF)
Turn-Off Delay Time
-
40
-
ns
tf
Fall Time
-
45
-
ns
tOFF
Turn-Off Time
-
-
128
ns
ISD = 80A
-
-
1.25
V
ISD = 40A
-
-
1.0
V
VDD = 40V, ID = 80A
VGS = 10V, RGS = 3.3:
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
Reverse Recovery Time
ISD = 75A, dISD/dt = 100A/Ps
-
-
53
ns
QRR
Reverse Recovered Charge
ISD = 75A, dISD/dt = 100A/Ps
-
-
54
nC
Notes:
1: Starting TJ = 25°C, L = 0.48mH, IAS = 50A.
2: Pulse Width = 100s
FDB045AN08A0_F085 Rev. A
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
Package Marking and Ordering Information
POWER DISSIPATION MULTIPLIER
1.2
200
CURRENT LIMITED
BY PACKAGE
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
160
120
80
40
0.2
0
0
25
50
75
100
150
125
0
175
25
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
ZTJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZTJC x RTJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
2000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
IDM, PEAK CURRENT (A)
1000
CURRENT AS FOLLOWS:
175 - TC
I = I25
VGS = 10V
150
100
50
10-5
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
FDB045AN08A0_F085A Rev. A
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
Typical Characteristics TC = 25°C unless otherwise noted
500
2000
IAS, AVALANCHE CURRENT (A)
10Ps
1000
ID, DRAIN CURRENT (A)
100Ps
100
1ms
10ms
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
DC
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
0.1
0.1
100
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
Figure 5. Forward Bias Safe Operating Area
.01
100
Figure 6. Unclamped Inductive Switching
Capability
150
PULSE DURATION = 80Ps
DUTY CYCLE = 0.5% MAX
VDD = 15V
90
TJ = 175oC
60
TJ = -55oC
TJ = 25oC
VGS = 7V
VGS = 10V
120
ID, DRAIN CURRENT (A)
120
VGS = 6V
90
60
VGS = 5V
TC = 25oC
PULSE DURATION = 80Ps
DUTY CYCLE = 0.5% MAX
30
30
0
0
4.0
4.5
5.0
5.5
VGS , GATE TO SOURCE VOLTAGE (V)
0
6.0
Figure 7. Transfer Characteristics
0.5
1.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
1.5
Figure 8. Saturation Characteristics
2.5
7
PULSE DURATION = 80Ps
DUTY CYCLE = 0.5% MAX
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
DRAIN TO SOURCE ON RESISTANCE(m:)
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
150
ID , DRAIN CURRENT (A)
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If Rz 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
6
VGS = 6V
5
4
VGS = 10V
PULSE DURATION = 80Ps
DUTY CYCLE = 0.5% MAX
2.0
1.5
1.0
VGS = 10V, ID =80A
3
0
20
40
ID, DRAIN CURRENT (A)
60
80
Figure 9. Drain to Source On Resistance vs Drain
Current
FDB045AN08A0_F085 Rev. A
0.5
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
200
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
Typical Characteristics TC = 25°C unless otherwise noted
1.2
1.15
ID = 250PA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250PA
1.0
0.8
0.6
0.4
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
1.05
1.00
0.95
0.90
-80
200
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
10000
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
VGS , GATE TO SOURCE VOLTAGE (V)
10
CISS CGS + CGD
C, CAPACITANCE (pF)
1.10
COSS # CDS + CGD
1000
CRSS CGD
VDD = 40V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 80A
ID = 10A
2
VGS = 0V, f = 1MHz
100
0.1
0
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Source
Voltage
FDB045AN08A0_F085 Rev. A
75
0
25
50
Qg, GATE CHARGE (nC)
75
100
Figure 14. Gate Charge Waveforms for Constant
Gate Currents
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
Typical Characteristics TC = 25°C unless otherwise noted
VDS
BVDSS
tP
L
VDS
VARY tP TO OBTAIN
REQUIRED PEAK IAS
IAS
+
RG
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01:
tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
VDS
L
VGS
VGS
VGS = 10V
+
Qgs2
VDD
DUT
VGS = 2V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
50%
50%
PULSE WIDTH
VGS
0
Figure 19. Switching Time Test Circuit
FDB045AN08A0_F085 Rev. A
10%
Figure 20. Switching Time Waveforms
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
Test Circuits and Waveforms
7 -0 – 7 $
3 '0 = -------------------------5T -$
(EQ. 1)
In using surface mount devices such as the TO-263
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
80
RTJA = 26.51+ 19.84/(0.262+Area) EQ.2
RTJA = 26.51+ 128/(1.69+Area) EQ.3
60
RTJA (oC/W)
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application.
Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RTJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
40
20
0.1
1
10
(0.645)
(6.45)
AREA, TOP COPPER AREA in2 (cm2)
(64.5)
Figure 21. Thermal Resistance vs Mounting
Pad Area
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RTJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeters
square. The area, in square inches or square centimeters is
the top copper area including the gate and source pads.
+ $UHD
5 T -$ = + ---------------------------------------
(EQ. 2)
Area in Inches Squared
+ $UHD
5 T -$ = + ------------------------------------
(EQ. 3)
Area in Centimeter Squared
FDB045AN08A0_F085 Rev. A
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
Thermal Resistance vs. Mounting Pad Area
.SUBCKT FDB045AN08A0 2 1 3 ;
CA 12 8 1.5e-9
CB 15 14 1.5e-9
CIN 6 8 6.4e-9
rev March 2002
LDRAIN
DPLCAP
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
RSLC2
5
51
ESLC
EVTHRES
+ 19 8
+
LGATE
GATE
1
11
+
17
EBREAK 18
-
50
RDRAIN
6
8
ESG
DBREAK
+
LDRAIN 2 5 1e-9
LGATE 1 9 4.81e-9
LSOURCE 3 7 4.63e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 82.3
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
DRAIN
2
5
EVTEMP
RGATE + 18 22
9
20
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
7
SOURCE
3
RSOURCE
RLSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 9e-4
RGATE 9 20 1.36
RLDRAIN 2 5 10
RLGATE 1 9 48.1
RLSOURCE 3 7 46.3
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 2.3e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
14
+
+
VBAT
5
8
EDS
-
IT
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))}
.MODEL DBODYMOD D (IS = 2.4e-11 N = 1.04 RS = 1.76e-3 TRS1 = 2.7e-3 TRS2 = 2e-7 XTI=3.9 CJO = 4.35e-9 TT = 1e-8
M = 5.4e-1)
.MODEL DBREAKMOD D (RS = 1.5e-1 TRS1 = 1e-3 TRS2 = -8.9e-6)
.MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 N = 10 M = 0.53)
.MODEL MMEDMOD NMOS (VTO = 3.7 KP = 9 IS =1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36)
.MODEL MSTROMOD NMOS (VTO = 4.4 KP = 250 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 3.05 KP = 0.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36e1 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = -9e-7)
.MODEL RDRAINMOD RES (TC1 = 1.9e-2 TC2 = 4e-5)
.MODEL RSLCMOD RES (TC1 = 1.3e-3 TC2 = 1e-5)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -6e-3 TC2 = -1.9e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.0 VOFF= -1.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= -4.0)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.0)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
FDB045AN08A0_F085 Rev. A
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
PSPICE Electrical Model
REV March 2002
template FDB045AN08A0 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl = 2.4e-11, n1 = 1.04, rs = 1.76e-3, trs1 = 2.7e-3, trs2 = 2e-7, xti = 3.9, cjo = 4.35e-9, tt = 1e-8, m = 5.4e-1)
dp..model dbreakmod = (rs = 1.5e-1, trs1 = 1e-3, trs2 = -8.9e-6)
dp..model dplcapmod = (cjo = 1.35e-9, isl =10e-30, nl =10, m = 0.53)
m..model mmedmod = (type=_n, vto = 3.7, kp = 9, is =1e-30, tox=1)
m..model mstrongmod = (type=_n, vto = 4.4, kp = 250, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 3.05, kp = 0.03, is = 1e-30, tox = 1, rs=0.1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -1.5)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -4.0)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
LDRAIN
DPLCAP
10
c.ca n12 n8 = 1.5e-9
c.cb n15 n14 = 1.5e-9
c.cin n6 n8 = 6.4e-9
RLDRAIN
RSLC1
51
RSLC2
ISCL
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
21
DBODY
MWEAK
EBREAK
+
17
18
-
MMED
MSTRO
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
CIN
8
LSOURCE
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
12
S2A
14
13
13
8
S1B
CA
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -9e-7
res.rdrain n50 n16 = 9e-4, tc1 = 1.9e-2, tc2 = 4e-5
res.rgate n9 n20 = 1.36
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 48.1
res.rlsource n3 n7 = 46.3
res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 2.3e-3, tc1 = 1e-3, tc2 =1e-6
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -6e-3, tc2 = -1.9e-5
DBREAK
50
-
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 4.81e-9
l.lsource n3 n7 = 4.63e-9
DRAIN
2
5
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
-
19
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 82.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10))
}
}
FDB045AN08A0_F085 Rev. A
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
SABER Electrical Model
th
JUNCTION
REV 23 March 2002
FDB045AN08A0T
CTHERM1 th 6 6.45e-3
CTHERM2 6 5 3e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.65e-2
CTHERM5 3 2 4.85e-2
CTHERM6 2 tl 1e-1
RTHERM1
CTHERM1
6
RTHERM1 th 6 3.24e-3
RTHERM2 6 5 8.08e-3
RTHERM3 5 4 2.28e-2
RTHERM4 4 3 1e-1
RTHERM5 3 2 1.1e-1
RTHERM6 2 tl 1.4e-1
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDB045AN08A0T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 6.45e-3
ctherm.ctherm2 6 5 = 3e-2
ctherm.ctherm3 5 4 = 1.4e-2
ctherm.ctherm4 4 3 = 1.65e-2
ctherm.ctherm5 3 2 = 4.85e-2
ctherm.ctherm6 2 tl = 1e-1
rtherm.rtherm1 th 6 = 3.24e-3
rtherm.rtherm2 6 5 = 8.08e-3
rtherm.rtherm3 5 4 = 2.28e-2
rtherm.rtherm4 4 3 = 1e-1
rtherm.rtherm5 3 2 = 1.1e-1
rtherm.rtherm6 2 tl = 1.4e-1
}
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
FDB045AN08A0_F085 Rev. A
CASE
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
SPICE Thermal Model
AccuPower¥
Auto-SPM¥
Build it Now¥
CorePLUS¥
CorePOWER¥
CROSSVOLT¥
CTL¥
Current Transfer Logic¥
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax¥
ESBC¥
F-PFS¥
FRFET®
SM
Global Power Resource
Green FPS¥
Green FPS¥ e-Series¥
Gmax¥
GTO¥
IntelliMAX¥
ISOPLANAR¥
MegaBuck¥
MICROCOUPLER¥
MicroFET¥
MicroPak¥
MicroPak2¥
MillerDrive¥
MotionMax¥
Motion-SPM¥
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series¥
FACT®
FAST®
FastvCore¥
FETBench¥
FlashWriter®*
FPS¥
®
PDP SPM™
Power-SPM¥
PowerTrench®
PowerXS™
Programmable Active Droop¥
QFET®
QS¥
Quiet Series¥
RapidConfigure¥
¥
Saving our world, 1mW/W/kW at a time™
SignalWise¥
SmartMax¥
SMART START¥
SPM®
STEALTH¥
SuperFET¥
SuperSOT¥-3
SuperSOT¥-6
SuperSOT¥-8
SupreMOS¥
SyncFET¥
Sync-Lock™
®
*
The Power Franchise®
TinyBoost¥
TinyBuck¥
TinyCalc¥
TinyLogic®
TINYOPTO¥
TinyPower¥
TinyPWM¥
TinyWire¥
TriFault Detect¥
TRUECURRENT¥*
PSerDes¥
UHC®
Ultra FRFET¥
UniFET¥
VCX¥
VisualMax¥
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR
CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts.
Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications,
and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of
counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are
listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have
full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information.
Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide
any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our
customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Advance Information
Formative / In Design
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
Definition
Datasheet contains the design specifications for product development. Specifications may change in
any manner without notice.
Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes
at any time without notice to improve the design.
Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I48
© Fairchild Semiconductor Corporation
www.fairchildsemi.com
FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
Similar pages