MA-COM M21151G-24 72x72/144x144 3.2 gbps asynchronous crosspoint switch with amplif-eye signal conditioning Datasheet

M21131/M21151
72x72/144x144 3.2 Gbps Asynchronous Crosspoint Switch
with Amplif-EYE Signal Conditioning
The M21131/M21151 is a 3.2 Gbps, 72/144 lane high-speed, low-power CMOS asynchronous non-blocking
crosspoint switch. It operates from DC to 3.2 Gbps making it suitable for many telecom, datacom, and broadcast
video applications.
Applications
Features
• Large NxN cascaded switch fabrics up to 10 Terabits/sec (Tbps)
• 72/144 inputs by 72/144 outputs non-blocking crosspoint switch
• Dense-Wavelength-Division Multiplexing (DWDM) telecom/datacom
Switcher/Router
• 3.2 Gbps Non-Return to Zero (NRZ) raw data bandwidth
• Serial Digital Video Switcher/Router (3G/HD/SD-SDI)
• Global or individual lane programmable Input Equalization, output DeEmphasis, and drive levels
• Storage Area Network (SAN) Switcher/Router
• Pinout and software compatible with the M21141/M21161
• High-speed Automated Test Equipment (ATE)
• Input signal activity monitor
• Disaster recovery and redundancy systems
• Flexible interface AVdd_IO +1.2/1.5/1.8/2.5V
• Built-in Pseudo-Random Bit Sequence (PRBS) generator/checker
• SmartPower™ dynamically reduces power consumption
• Green/RoHS compliant package
M21131/M21151 Typical Application Diagram
Optical
Optical
O/E
E/O
Optical
SFP/XFP
Pointer
Processor
PHY/Pointer
Processor
SPE/
Framer/
Mapper
72x72/
144x144
Crosspoint
Core
Ser/Des
CDR
O/E
E/O
DS3/E3
Driver
VT/
Framer/
Mapper
Driver
DS1/E1
Optical
SFP/XFP
Video SD/HD
Video SD/HD
DC~3.2 Gbps
DC~3.2 Gbps
Line Card/Backplane
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
December 2012
Ordering Information
72x72 3.2 Gbps Crosspoint Switch Ordering Information
Part Number
Package Type
Substrate
Material
Green/
Eutectic
Operating
Temperature
Availability
M21131-12 (1)
1156-terminal, 35 mm, BGA
Ceramic
Eutectic
0°C to 85 °C
Now
M21131G-12
(1)
1156-terminal, 35 mm, BGA
Ceramic
Green
0°C to 85 °C
Now
M21131G-13 (1,2)
1156-terminal, 35 mm, BGA
Ceramic
Green
0°C to 85 °C
Now
M21131-22
1156-terminal, 35 mm, BGA
CPCore
Eutectic
0°C to 85 °C
Production orders: 01/01/2011
M21131G-22
1156-terminal, 35 mm, BGA
CPCore
Green
0°C to 85 °C
Production orders: 01/01/2011
1156-terminal, 35 mm, BGA
CPCore
Green
0°C to 85 °C
Production orders: 01/01/2011
M21131G-23
(2)
(1) Not recommended for new designs
(2) Improved input sensitivity especially for SDI applications
144x144 3.2 Gbps Crosspoint Switch Ordering Information
Part Number
Package Type
Substrate
Material
Green/
Eutectic
Operating
Temperature
Availability
M21151-13 (1)
1156-terminal, 35 mm, BGA
Ceramic
Eutectic
0°C to 85 °C
Now
M21151G-13 (1)
1156-terminal, 35 mm, BGA
Ceramic
Green
0°C to 85 °C
Now
M21151G-14 (1,2)
1156-terminal, 35 mm, BGA
Ceramic
Green
0°C to 85 °C
Now
M21151-23
1156-terminal, 35 mm, BGA
CPCore
Eutectic
0°C to 85 °C
Production orders: 01/01/2011
M21151G-23
1156-terminal, 35 mm, BGA
CPCore
Green
0°C to 85 °C
Production orders: 01/01/2011
1156-terminal, 35 mm, BGA
CPCore
Green
0°C to 85 °C
Production orders: 01/01/2011
M21151G-24
(2)
(1) Not recommended for new designs
(2) Improved input sensitivity especially for SDI applications
NOTE:
• Mindspeed is changing the package substrate material from Ceramic to CPCore.
For traceability, the revision code will be changed from -1x to -2x to signify this
change. The device silicon will remain unchanged during this transition. The
differences between the CPCore and Ceramic packaged material are outlined in
Section 2.1.3.
• These devices are shipped in trays.
• The letter “G” designator after the part number indicates that the device is RoHS
compliant. Refer to www.mindspeed.com for additional information. The RoHS
compliant devices are backwards compatible with 225 °C reflow profiles.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
2
Revision History
Revision
Level
Date
Description
I
Released
December 2012
H
Released
July 2010
Expanded ordering matrix to include all current revisions.
G
Released
May 2010
Revised part numbers to -23 and -24.
Corrected an error in table 1-1. Maximum voltage on CMOS inputs should be
referenced to DVDD_IO instead of AVDD_IO
Corrected signal names on pin AF1 INP[117] and AF2 INN[117].
Updated Marking Diagrams.
Update package from ceramic to CPCore. Please see Section 2.1.3 for package
changes
F
Released
October 2009
Revised for M21131-13 part details.
Added marking diagrams.
Removed M21131-12 parameters from Table 1-6.
Removed BGA Assignments by Ball Name Tables.
Corrrected global control of de-emphasis duration values in Table 3-33.
E
Released
May 2009
See prior revisions for revision history details.
D
Released
September 2008
See prior revisions for revision history details.
M21131 Marking Diagrams
M21131 -xx Marking Diagram
M21131 G-xx Marking Diagram
Part Number
M21131 G-xx
XXXX .X
YYWW CC
M21131 -xx
XXXX .X
YYWW CC
Lot Number
Date and Country Code
e
RoHS Symbol
M21151 Marking Diagrams
M21151 -xx Marking Diagram
M21151 -xx
XXXX .X
YYWW CC
M21151 G-xx Marking Diagram
M21151 G-xx
XXXX .X
YYWW CC
e
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
Part Number
Lot Number
Date and Country Code
RoHS Symbol
3
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.0
Package Outline Drawing and Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.0
2.1
Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
2.1.1
M21131 and M21151 Packaging Drawing (-12/-13/-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.1.2
M21131 and M21151 Packaging Drawing (-22/-23/-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.1.3
Package Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Pinout Diagram and Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.3
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Control Registers Map and Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1
Control Registers Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.1.1
3.1.2
3.1.3
4.0
Even PRBS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Odd PRBS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Global Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
4.2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.3
4.2.1
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.2.2
Power Supply Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Serial Interface and Switch Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.3.1
4.3.2
4.3.3
Switch State Register Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Parallel I/O Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Serial I/O Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.3.3.1
Timing Diagram Clock Set and Program Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
Switch Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Input/Output Enable and Output Logic Swing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Programmable Input Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Programmable Output De-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Duty Cycle Distortion (Offset) Circuit on Inputs to Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Input Signal Activity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.3.9.1
LOS Data Rate Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.3.9.2
211x1-DSH-001-I
LOS Signal Busing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
4
Table of Contents
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
Power-Up Sequence and Device Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Product and Revision Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Core Power Saving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
PRBS Transmitter and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.3.13.1 PRBS TX Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.3.13.2
Additional Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.13.3
PRBS Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.13.4
PRBS RX Control Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.13.5
PRBS CDR Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PRBS CDR Data Rate Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.3.14.1 Settings for Non-Standard Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.3.14.2
211x1-DSH-001-I
PRBS Error Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
5
1.0 Electrical Characteristics
Unless noted otherwise, specifications in this section are valid with AVDD_CORE = 1.2V, AVDD_IO = 1.8V, and
DVDD_IO = 2.5V power supplies, 25 °C ambient temperature, 800 mVpp differential input/output data swing, PRBS
215– 1 test pattern at 3.2 Gbps, RL = 50Ω.
Table 1-1.
Absolute Maximum Ratings (1)
Symbol
Parameter
Minimum
Typical
Maximum
Unit
DVDD_IO
Digital logic I/O supply
0
+3.6
V
AVDD_IO
Switch I/O supply
0
+2.7
V
AVDD_CORE
Switch core supply
0
+1.5
V
VCML
DC input voltage (CML)
VSS - 0.5
—
AVDD_IO + 0.5
V
VCMOS
DC input voltage (CMOS)
VSS - 0.5
—
DVDD_IO + 0.5
V
-65
+150
°C
Tst
Storage temperature
VESD
Human body model (low-speed)
1000
—
V
VESD
Human body model (high-speed)
500
—
V
VESD
Charge device model
150
—
V
NOTES:
1. Exposure to these conditions over extended periods of time may affect device reliability.
Table 1-2.
Symbol
Recommended Operating Conditions
Parameter
Notes
Minimum
Typical
Maximum
Unit
DVDD_IO
Digital supply voltage
2
+1.71
+1.8/2.5/3.3
+3.47
V
AVDD_IO
Analog I/O supply voltage
2
+1.14
+1.2/1.5/1.8/2.5
+2.63
V
AVDD_CORE
Switch core supply voltage
2
+1.14
+1.2
+1.26
V
1, 3
0
—
+85
°C
Tc
Package heat spreader temperature
θJC
Junction to Case Thermal Resistance
0.3
C/W
NOTES:
1.
2.
3.
Lower limit is ambient temperature and upper limit is case temperature.
Power supply tolerances are ±5%.
Please refer to the 144 XPS thermal Application Note for thermal design and bolted down heat sink recommendations for this product. The use
of adhesively mounted heatsinks is prohibited.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
6
Electrical Characteristics
Table 1-3.
Symbol
AIDD_CORE
AIDD_IO
Pdiss
AIDD_CORE
AIDD_IO
Pdiss
AIDD_CORE
AIDD_IO
Pdiss
DIDD_IO
M21131 Power DC Electrical Specifications
Notes
Minimum
Typical
Maximum(1)
Unit
Core current consumption, small output swing, SmartPower on
1,2
—
4.2
4.4
A
Core current consumption, small output swing, SmartPower off
1,2
—
8.6
9.0
A
I/O current consumption, small output swing, +1.2V I/O
2
—
1.3
1.4
A
I/O current consumption, small output swing, +2.5V I/O
2
—
2.8
3.0
A
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on
2
—
6.6
7.0
W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on
2
—
12.1
12.8
W
Core current consumption, medium output swing, SmartPower
on
1,2
—
4.4
4.6
A
Core current consumption, medium output swing, SmartPower
off
1,2
—
8.8
9.2
A
I/O current consumption, medium output swing, +1.2V I/O
2
—
2.0
2.1
A
I/O current consumption, medium output swing, +2.5V I/O
2
—
3.1
3.2
A
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on
2
—
7.7
8.0
W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on
2
—
12.9
13.5
W
Core current consumption, high output swing, SmartPower on
1,2
—
4.5
4.7
A
Core current consumption, high output swing, SmartPower off
1,2
—
8.9
9.4
A
I/O current consumption, high output swing, +1.2V I/O
2
—
2.5
2.7
A
I/O current consumption, high output swing, +2.5V I/O
2
—
3.5
3.7
A
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on
2
—
8.4
8.9
W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on
2
—
14.2
14.9
W
Digital current consumption DVDD_IO = +2.5V
2
—
0.626
25
mA
Parameter
NOTES:
1.
Core power supply is +1.26V, (+1.20V, +5%).
2.
1-to-1 mapping (Input0 to Output0, Input1 to Output1,...).
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
7
Electrical Characteristics
Table 1-4.
M21151 Power DC Electrical Specifications (1)
Symbol
AIDD_CORE
AIDD_IO
Pdiss
AIDD_CORE
AIDD_IO
Pdiss
AIDD_CORE
AIDD_IO
Pdiss
DIDD_IO
Parameter
Notes
Minimum
Typical
Maximum
Unit
Core current consumption, small output swing, SmartPower on
1,2
—
8.3
8.5
A
Core current consumption, small output swing, SmartPower off
1,2
—
11.2
11.5
A
I/O current consumption, small output swing, +1.2V I/O
2
—
2.5
2.6
A
I/O current consumption, small output swing, +2.5V I/O
2
—
3.6
3.7
A
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on
2
—
12.9
13.3
W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on
2
—
18.9
19.5
W
Core current consumption, medium output swing, SmartPower on
1,2
—
8.4
8.7
A
Core current consumption, medium output swing, SmartPower off
1,2
—
11.3
11.7
A
I/O current consumption, medium output swing, +1.2V I/O
2
—
3.6
3.8
A
I/O current consumption, medium output swing, +2.5V I/O
2
—
4.7
4.9
A
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on
2
—
14.4
15.0
W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on
2
—
21.8
22.7
W
Core current consumption, high output swing, SmartPower on
1,2
—
8.7
8.9
A
Core current consumption, high output swing, SmartPower off
1,2
—
11.6
11.9
A
I/O current consumption, high output swing, +1.2V I/O
2
—
4.3
4.5
A
I/O current consumption, high output swing, +2.5V I/O
2
—
5.5
6.1
A
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on
2
—
15.5
16.1
W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on
2
—
24.2
25.9
W
Digital current consumption DVDD_IO = +2.5V
2
—
0.626
25
mA
NOTES:
1.
Core power supply is +1.26V, (+1.20V +5%).
2.
1-to-1 mapping (Input0 to Output0, Input1 to Output1,...).
Table 1-5.
CMOS DC Electrical Specifications
Symbol
Parameter
Minimum
Typical
Maximum
Unit
0.8 x DVDD_IO
—
—
V
—
—
0.2 x DVDD_IO
V
VOH
Output logic high IOH = -100 μA
VOL
Output logic low IOL = 100 μA
VIH
Input logic high
DVDD_IO - 0.3
—
+3.6
V
VIL
Input logic low
0
—
+0.3
V
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
8
Electrical Characteristics
Table 1-6.
Symbol
PCML Input Electrical Specifications (1)
Parameter
Notes
Minimum
Typical
Maximum
Unit
1
100
—
—
350
1200
—
mV
VID
Input differential voltage (peak-to-peak) PRBS
SDI Pseudo-Pathological Pattern
VICM
Input common-mode voltage
—
AVDD_IO - 300
—
mV
VIH
Maximum input high voltage
—
—
AVDD_IO + 300
mV
VIL
Minimum input low voltage
AVDD_IO - 800
—
—
mV
S11
Input return loss (40 MHz to 2 GHz)
—
-10.0
—
dB
S11
Input return loss (2 GHz to 5 GHz)
—
-5.0
—
dB
NOTES:
1.
Input sensitivity specified @ 3.2 Gbps PRBS 223-1 and BER 10-12.
Table 1-7.
PCML Output Specifications
Symbol
Notes
Minimum
Typical
Maximum
Unit
Operating data rate (NRZ data)
—
DC
—
3.2
Gbps
JOUTRMS
Output data broadband jitter (RMS)
—
—
—
6.0
ps
JOUTP-P
Output data broadband jitter (peak-to-peak)
—
—
—
36.0
ps
Rise time/fall time (20 to 80%)
2
—
—
145
ps
VOD
Low swing: differential swing
Medium swing: differential swing
High swing: differential swing
—
—
3
390
700
920
650
950
1225
700
1200
1600
mV
S22
Output return loss (40 MHz to 2.5 GHz)
Output return loss (2.5 GHz to 5 GHz)
1
—
—
-15.0
-5.0
—
—
dB
tDJ
Output Deterministic Jitter (ISI)
—
125
—
mUI
tRJ
Output Random Jitter
—
2
—
mUI
RMS
DROUT
TRISE/FALL
Parameter
NOTES:
1.
RF parameters measured into a 50Ω load on M21131/M21151 EVM.
2.
Rise/Fall time specification is for lowest output swing settings. Rise/Fall time improves with higher output swing settings.
3.
Package and recommended heat sink are not rated for this mode at AVDD_IO = +2.5 V due to high power dissipation; improved thermal management at the board level would be necessary to use this mode at AVDD_IO = +2.5 V.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
9
Electrical Characteristics
Figure 1-1.
Input Equalization Test Setup
M21131/M21151 EVM
BERT
M21151
SMA
HM-Zd
Copper Trace
HM-Zd
Scope/Error
Detector
Figure 1-2.
De-Emphasis Test Setup
M21131/M21151 EVM
HM-Zd
BERT
M21151
HM-Zd SMA
FR-4 Copper Trace
Scope/Error
Detector
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
10
2.0 Package Outline Drawing and
Pin Descriptions
2.1
Package Outline Drawing
2.1.1
M21131 and M21151 Packaging Drawing (-12/-13/-14)
Figure 2-1 illustrates the M21131/M21151 (-12/-13/-14) overall package dimensions and a cross sectional view,
Figure 2-2 is a bottom view of the package with ball assignments. The substrate thickness is 2.03 millimeters. All
dimensions are in millimeters. The ball count is 1156, the width of each ball is 0.60 millimeters, and the ball pitch
from center to center is 1.00 millimeters.
Figure 2-1.
M21131/M21151 (-12/-13/-14) Package Outline Top View and Cross Sectional View (in mm)
(heat spreader)
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
11
Package Outline Drawing and Pin Descriptions
Figure 2-2.
211x1-DSH-001-I
M21131/M21151 (-12-13/-14) Bottom View of Package (in mm)
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
12
Package Outline Drawing and Pin Descriptions
2.1.2
M21131 and M21151 Packaging Drawing (-22/-23/-24)
Figure 2-3 illustrates the M21131/M21151 (-22/-23/-24) overall package dimensions and a cross sectional view,
Figure 2-4 is a bottom view of the package with ball assignments. The substrate thickness is 2.03 millimeters. All
dimensions are in millimeters. The ball count is 1156, the width of each ball is 0.60 millimeters, and the ball pitch
from center to center is 1.00 millimeters.
Figure 2-3.
211x1-DSH-001-I
M21131/M21151 (-22/-23/-24) Package Outline Top View and Cross Sectional View (in mm)
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
13
Package Outline Drawing and Pin Descriptions
Figure 2-4.
2.1.3
M21131/M21151 (-22/-23/-24) Bottom View of Package (in mm)
Package Changes
There are some differences between Ceramic and CPCore in package dimension and construction. They are listed
below:
Table 2-1.
Differences Between Ceramic and CPCore Packaging
Differences
Dimension
Units
Ceramic
CPCore
X dimension
35 +0.15/-0.20
35 +/-0.1
mm
Y dimension
35 +0.15/-0.20
35 +/-0.1
mm
Z dimension
3.85 +/-0.26
3.16 +/-0.25
mm
Coplanarity
0.15
0.20
mm
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
14
Package Outline Drawing and Pin Descriptions
2.2
Pinout Diagram and Pin Descriptions
Table 2-2.
BGA Assignments (1 of 8)
Note: For the M21131, the INP/N[72:143] and OUTP/N[72:143] pins are NC (No Connect).
Location
Name
Location
Name
Location
Name
Location
Name
A1
ADDR9
B3
R/XW
C5
XCS
D7
OUTP[136]
A2
DATA6
B4
OUTN[134]
C6
XTEST
D8
OUTP[140]
A3
XRST
B5
OUTN[122]
C7
AVSS
D9
OUTP[128]
A4
OUTP[134]
B6
OUTN[138]
C8
AVDD_IO
D10
OUTP[116]
A5
OUTP[122]
B7
OUTN[132]
C9
AVSS
D11
OUTP[110]
A6
OUTP[138]
B8
OUTN[126]
C10
AVDD_IO
D12
OUTP[104]
A7
OUTP[132]
B9
OUTN[120]
C11
AVSS
D13
OUTP[98]
A8
OUTP[126]
B10
OUTN[114]
C12
AVDD_IO
D14
OUTP[92]
A9
OUTP[120]
B11
OUTN[108]
C13
AVSS
D15
OUTP[86]
A10
OUTP[114]
B12
OUTN[102]
C14
AVDD_IO
D16
OUTP[80]
A11
OUTP[108]
B13
OUTN[96]
C15
AVSS
D17
OUTP[74]
A12
OUTP[102]
B14
OUTN[90]
C16
AVDD_IO
D18
OUTP[68]
A13
OUTP[96]
B15
OUTN[84]
C17
AVSS
D19
OUTP[62]
A14
OUTP[90]
B16
OUTN[78]
C18
AVDD_IO
D20
OUTP[56]
A15
OUTP[84]
B17
OUTN[72]
C19
AVSS
D21
OUTP[50]
A16
OUTP[78]
B18
OUTN[66]
C20
AVDD_IO
D22
OUTP[44]
A17
OUTP[72]
B19
OUTN[60]
C21
AVSS
D23
OUTP[38]
A18
OUTP[66]
B20
OUTN[54]
C22
AVDD_IO
D24
OUTP[32]
A19
OUTP[60]
B21
OUTN[48]
C23
AVSS
D25
OUTP[26]
A20
OUTP[54]
B22
OUTN[42]
C24
AVDD_IO
D26
OUTP[14]
A21
OUTP[48]
B23
OUTN[36]
C25
AVSS
D27
OUTP[2]
A22
OUTP[42]
B24
OUTN[30]
C26
AVDD_IO
D28
OUTP[34]
A23
OUTP[36]
B25
OUTN[24]
C27
AVSS
D29
OUTP[22]
A24
OUTP[30]
B26
OUTN[18]
C28
AVDD_IO
D30
OUTP[10]
A25
OUTP[24]
B27
OUTN[12]
C29
AVSS
D31
XRSTRX[0]
A26
OUTP[18]
B28
OUTN[6]
C30
MDSPDTEST[[3]
D32
MDSPDTEST[1]
A27
OUTP[12]
B29
OUTN[0]
C31
MDSPDTEST[2]
D33
INN[14]
A28
OUTP[6]
B30
OUTN[20]
C32
PERROR[0]
D34
INP[14]
A29
OUTP[0]
B31
OUTN[8]
C33
INN[0]
E1
INP[5]
A30
OUTP[20]
B32
DIRXN[0]
C34
INP[0]
E2
INN[5]
A31
OUTP[8]
B33
DOTXN[0]
D1
INP[17]
E3
ADDR5
A32
DIRXP[0]
B34
TRIG[0]
D2
INN[17]
E4
ADDR1
A33
DOTXP[0]
C1
INP[7]
D3
XDS/SCLK
E5
ADDR4
A34
CLKTXREF[0]
C2
INN[7]
D4
ADDR7
E6
XSET
B1
ADDR8
C3
AVSS
D5
ADDR6
E7
OUTN[136]
B2
DATA7
C4
DATA5
D6
DATA4
E8
OUTN[140]
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
15
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (2 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
E9
OUTN[128]
F12
AVSS
G15
OUTP[94]
H18
OUTN[76]
E10
OUTN[116]
F13
AVDD_IO
G16
OUTP[88]
H19
OUTN[70]
E11
OUTN[110]
F14
AVSS
G17
OUTP[82]
H20
OUTN[64]
E12
OUTN[104]
F15
AVDD_IO
G18
OUTP[76]
H21
OUTN[58]
E13
OUTN[98]
F16
AVSS
G19
OUTP[70]
H22
OUTN[52]
E14
OUTN[92]
F17
AVDD_IO
G20
OUTP[64]
H23
OUTN[46]
E15
OUTN[86]
F18
AVSS
G21
OUTP[58]
H24
OUTN[40]
E16
OUTN[80]
F19
AVDD_IO
G22
OUTP[52]
H25
OUTN[28]
E17
OUTN[74]
F20
AVSS
G23
OUTP[46]
H26
OUTN[16]
E18
OUTN[68]
F21
AVDD_IO
G24
OUTP[40]
H27
OUTN[4]
E19
OUTN[62]
F22
AVSS
G25
OUTP[28]
H28
CLKTXN[0]
E20
OUTN[56]
F23
AVDD_IO
G26
OUTP[16]
H29
AVDD_IO
E21
OUTN[50]
F24
AVSS
G27
OUTP[4]
H30
INN[22]
E22
OUTN[44]
F25
AVDD_IO
G28
CLKTXP[0]
H31
INP[22]
E23
OUTN[38]
F26
AVSS
G29
AVSS
H32
AVSS
E24
OUTN[32]
F27
AVDD_IO
G30
INN[16]
H33
INN[20]
E25
OUTN[26]
F28
AVSS
G31
INP[16]
H34
INP[20]
E26
OUTN[14]
F29
AVDD_IO
G32
AVDD_IO
J1
INP[25]
E27
OUTN[2]
F30
INN[6]
G33
INN[12]
J2
INN[25]
E28
OUTN[34]
F31
INP[6]
G34
INP[12]
J3
AVSS
E29
OUTN[22]
F32
AVSS
H1
INP[21]
J4
INP[23]
E30
OUTN[10]
F33
INN[8]
H2
INN[21]
J5
INN[23]
E31
AVSS
F34
INP[8]
H3
AVDD_IO
J6
AVDD_IO
E32
AVDD_IO
G1
INP[13]
H4
INP[15]
J7
INP[3]
E33
INN[4]
G2
INN[13]
H5
INN[15]
J8
INN[3]
E34
INP[4]
G3
AVSS
H6
DATA1
J9
AVSS
F1
INP[9]
G4
INP[1]
H7
MDSPDTEST[5]
J10
MDSPDTEST[29]
F2
INN[9]
G5
INN[1]
H8
OUTN[142]
J11
AVSS
F3
ADDR2
G6
XINDIS
H9
OUTN[130]
J12
AVDD_IO
F4
XOUTDIS
G7
MDSPDTEST[4]
H10
OUTN[124]
J13
AVDD_IO
F5
ADDR0
G8
OUTP[142]
H11
OUTN[118]
J14
AVDD_CORE
F6
ADDR3
G9
OUTP[130]
H12
OUTN[112]
J15
AVDD_CORE
F7
DATA2
G10
OUTP[124]
H13
OUTN[106]
J16
AVDD_IO
F8
MDSPDTEST[28]
G11
OUTP[118]
H14
OUTN[100]
J17
AVDD_IO
F9
AVDD_IO
G12
OUTP[112]
H15
OUTN[94]
J18
AVDD_CORE
F10
AVSS
G13
OUTP[106]
H16
OUTN[88]
J19
AVDD_CORE
F11
AVDD_IO
G14
OUTP[100]
H17
OUTN[82]
J20
AVDD_IO
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
16
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (3 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
J21
AVDD_IO
K24
MDSPDTEST[32]
L27
INN[18]
M30
INN[46]
J22
AVDD_CORE
K25
XENRX[0]
L28
INP[18]
M31
INP[46]
J23
AVDD_CORE
K26
AVDD_IO
L29
AVSS
M32
AVSS
J24
AVSS
K27
INN[10]
L30
INN[38]
M33
INN[40]
J25
AVDD_IO
K28
INP[10]
L31
INP[38]
M34
INP[40]
J26
AVSS
K29
AVDD_IO
L32
AVDD_IO
N1
INP[45]
J27
INN[2]
K30
INN[32]
L33
INN[36]
N2
INN[45]
J28
INP[2]
K31
INP[32]
L34
INP[36]
N3
AVSS
J29
AVSS
K32
AVSS
M1
INP[41]
N4
INP[47]
J30
INN[30]
K33
INN[28]
M2
INN[41]
N5
INN[47]
J31
INP[30]
K34
INP[28]
M3
AVDD_IO
N6
AVDD_IO
J32
AVDD_IO
L1
INP[37]
M4
INP[39]
N7
INP[35]
J33
INN[24]
L2
INN[37]
M5
INN[39]
N8
INN[35]
J34
INP[24]
L3
AVSS
M6
AVSS
N9
AVDD_CORE
K1
INP[29]
L4
INP[33]
M7
INP[27]
N10
AVSS
K2
INN[29]
L5
INN[33]
M8
INN[27]
N11
AVSS
K3
AVDD_IO
L6
AVDD_IO
M9
AVDD_CORE
N12
AVDD_IO
K4
INP[31]
L7
INP[19]
M10
DVDD_IO
N13
AVDD_IO
K5
INN[31]
L8
INN[19]
M11
AVSS
N14
AVSS
K6
AVSS
L9
DVSS_IO
M12
AVDD_IO
N15
AVSS
K7
INP[11]
L10
LOS
M13
AVDD_IO
N16
AVDD_CORE
K8
INN[11]
L11
DATA0
M14
AVSS
N17
AVDD_CORE
K9
N/C
L12
AVSS
M15
AVSS
N18
AVDD_CORE
K10
SER/XPAR
L13
AVSS
M16
AVDD_CORE
N19
AVDD_CORE
K11
DATA3
L14
AVSS
M17
AVDD_CORE
N20
AVSS
K12
AVSS
L15
AVSS
M18
AVDD_CORE
N21
AVSS
K13
AVSS
L16
AVSS
M19
AVDD_CORE
N22
AVDD_IO
K14
AVSS
L17
AVSS
M20
AVSS
N23
AVDD_IO
K15
AVSS
L18
AVSS
M21
AVSS
N24
AVSS
K16
AVSS
L19
AVSS
M22
AVDD_IO
N25
AVSS
K17
AVSS
L20
AVSS
M23
AVDD_IO
N26
AVDD_CORE
K18
AVSS
L21
AVSS
M24
AVSS
N27
INN[34]
K19
AVSS
L22
AVSS
M25
AVSS
N28
INP[34]
K20
AVSS
L23
AVSS
M26
AVDD_CORE
N29
AVSS
K21
AVSS
L24
MDSPDTEST[33]
M27
INN[26]
N30
INN[48]
K22
AVSS
L25
XENTX[0]
M28
INP[26]
N31
INP[48]
K23
AVSS
L26
AVSS
M29
AVDD_IO
N32
AVDD_IO
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
17
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (4 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
N33
INN[44]
R2
INN[57]
T5
INN[63]
U8
INN[67]
N34
INP[44]
R3
AVSS
T6
AVSS
U9
AVDD_CORE
P1
INP[53]
R4
INP[55]
T7
INP[59]
U10
AVSS
P2
INN[53]
R5
INN[55]
T8
INN[59]
U11
AVSS
P3
AVDD_IO
R6
AVDD_IO
T9
AVDD_CORE
U12
AVDD_IO
P4
INP[49]
R7
INP[51]
T10
AVSS
U13
AVDD_IO
P5
INN[49]
R8
INN[51]
T11
AVSS
U14
AVSS
P6
AVSS
R9
AVDD_IO
T12
AVDD_IO
U15
AVSS
P7
INP[43]
R10
AVSS
T13
AVDD_IO
U16
AVDD_CORE
P8
INN[43]
R11
AVSS
T14
AVSS
U17
AVDD_CORE
P9
AVDD_IO
R12
AVDD_IO
T15
AVSS
U18
AVDD_CORE
P10
AVSS
R13
AVDD_IO
T16
AVDD_CORE
U19
AVDD_CORE
P11
AVSS
R14
AVSS
T17
AVDD_CORE
U20
AVSS
P12
AVDD_IO
R15
AVSS
T18
AVDD_CORE
U21
AVSS
P13
AVDD_IO
R16
AVDD_CORE
T19
AVDD_CORE
U22
AVDD_IO
P14
AVSS
R17
AVDD_CORE
T20
AVSS
U23
AVDD_IO
P15
AVSS
R18
AVDD_CORE
T21
AVSS
U24
AVSS
P16
AVDD_CORE
R19
AVDD_CORE
T22
AVDD_IO
U25
AVSS
P17
AVDD_CORE
R20
AVSS
T23
AVDD_IO
U26
AVDD_CORE
P18
AVDD_CORE
R21
AVSS
T24
AVSS
U27
INN[66]
P19
AVDD_CORE
R22
AVDD_IO
T25
AVSS
U28
INP[66]
P20
AVSS
R23
AVDD_IO
T26
AVDD_CORE
U29
AVSS
P21
AVSS
R24
AVSS
T27
INN[58]
U30
INN[70]
P22
AVDD_IO
R25
AVSS
T28
INP[58]
U31
INP[70]
P23
AVDD_IO
R26
AVDD_IO
T29
AVDD_IO
U32
AVDD_IO
P24
AVSS
R27
INN[50]
T30
INN[64]
U33
INN[68]
P25
AVSS
R28
INP[50]
T31
INP[64]
U34
INP[68]
P26
AVDD_IO
R29
AVSS
T32
AVSS
V1
INP[73]
P27
INN[42]
R30
INN[62]
T33
INN[60]
V2
INN[73]
P28
INP[42]
R31
INP[62]
T34
INP[60]
V3
AVDD_IO
P29
AVDD_IO
R32
AVDD_IO
U1
INP[69]
V4
INP[71]
P30
INN[54]
R33
INN[56]
U2
INN[69]
V5
INN[71]
P31
INP[54]
R34
INP[56]
U3
AVSS
V6
AVSS
P32
AVSS
T1
INP[61]
U4
INP[65]
V7
INP[75]
P33
INN[52]
T2
INN[61]
U5
INN[65]
V8
INN[75]
P34
INP[52]
T3
AVDD_IO
U6
AVDD_IO
V9
AVDD_IO
R1
INP[57]
T4
INP[63]
U7
INP[67]
V10
AVSS
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
18
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (5 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
V11
AVSS
W14
AVSS
Y17
AVDD_CORE
AA20
AVSS
V12
AVDD_IO
W15
AVSS
Y18
AVDD_CORE
AA21
AVSS
V13
AVDD_IO
W16
AVDDCORE
Y19
AVDD_CORE
AA22
AVDD_IO
V14
AVSS
W17
AVDD_CORE
Y20
AVSS
AA23
AVDD_IO
V15
AVSS
W18
AVDD_CORE
Y21
AVSS
AA24
AVSS
V16
AVDD_CORE
W19
AVDD_CORE
Y22
AVDD_IO
AA25
AVSS
V17
AVDD_CORE
W20
AVSS
Y23
AVDD_IO
AA26
AVDD_CORE
V18
AVDD_CORE
W21
AVSS
Y24
AVSS
AA27
INN[98]
V19
AVDD_CORE
W22
AVDD_IO
Y25
AVSS
AA28
INP[98]
V20
AVSS
W23
AVDD_IO
Y26
AVDD_CORE
AA29
AVSS
V21
AVSS
W24
AVSS
Y27
INN[90]
AA30
INN[94]
V22
AVDD_IO
W25
AVSS
Y28
INP[90]
AA31
INP[94]
V23
AVDD_IO
W26
AVDD_IO
Y29
AVDD_IO
AA32
AVDD_IO
V24
AVSS
W27
INN[82]
Y30
INN[86]
AA33
INN[88]
V25
AVSS
W28
INP[82]
Y31
INP[86]
AA34
INP[88]
V26
AVDD_IO
W29
AVSS
Y32
AVSS
AB1
INP[93]
V27
INN[74]
W30
INN[80]
Y33
INN[84]
AB2
INN[93]
V28
INP[74]
W31
INP[80]
Y34
INP[84]
AB3
AVDD_IO
V29
AVDD_IO
W32
AVDD_IO
AA1
INP[89]
AB4
INP[95]
V30
INN[78]
W33
INN[76]
AA2
INN[89]
AB5
INN[95]
V31
INP[78]
W34
INP[76]
AA3
AVSS
AB6
AVSS
V32
AVSS
Y1
INP[85]
AA4
INP[87]
AB7
INP[107]
V33
INN[72]
Y2
INN[85]
AA5
INN[87]
AB8
INN[107]
V34
INP[72]
Y3
AVDD_IO
AA6
AVDD_IO
AB9
AVDD_IO
W1
INP[77]
Y4
INP[81]
AA7
INP[99]
AB10
AVSS
W2
INN[77]
Y5
INN[81]
AA8
INN[99]
AB11
AVSS
W3
AVSS
Y6
AVSS
AA9
AVDD_CORE
AB12
AVDD_IO
W4
INP[79]
Y7
INP[91]
AA10
AVSS
AB13
AVDD_IO
W5
INN[79]
Y8
INN[91]
AA11
AVSS
AB14
AVSS
W6
AVDD_IO
Y9
AVDD_CORE
AA12
AVDD_IO
AB15
AVSS
W7
INP[83]
Y10
AVSS
AA13
AVDD_IO
AB16
AVDD_CORE
W8
INN[83]
Y11
AVSS
AA14
AVSS
AB17
AVDD_CORE
W9
AVDD_IO
Y12
AVDD_IO
AA15
AVSS
AB18
AVDD_CORE
W10
AVSS
Y13
AVDD_IO
AA16
AVDD_CORE
AB19
AVDD_CORE
W11
AVSS
Y14
AVSS
AA17
AVDD_CORE
AB20
AVSS
W12
AVDD_IO
Y15
AVSS
AA18
AVDD_CORE
AB21
AVSS
W13
AVDD_IO
Y16
AVDD_CORE
AA19
AVDD_CORE
AB22
AVDD_IO
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
19
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (6 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
AB23
AVDD_IO
AC26
AVDD_IO
AD29
AVDD_IO
AE32
AVDD_IO
AB24
AVSS
AC27
INN[114]
AD30
INN[110]
AE33
INN[108]
AB25
AVSS
AC28
INP[114]
AD31
INP[110]
AE34
INP[108]
AB26
AVDD_IO
AC29
AVSS
AD32
AVSS
AF1
INP[117]
AB27
INN[106]
AC30
INN[102]
AD33
INN[104]
AF2
INN[117]
AB28
INP[106]
AC31
INP[102]
AD34
INP[104]
AF3
AVDD_IO
AB29
AVDD_IO
AC32
AVDD_IO
AE1
INP[109]
AF4
INP[113]
AB30
INN[96]
AC33
INN[100]
AE2
INN[109]
AF5
INN[113]
AB31
INP[96]
AC34
INP[100]
AE3
AVSS
AF6
AVSS
AB32
AVSS
AD1
INP[105]
AE4
INP[111]
AF7
INP[139]
AB33
INN[92]
AD2
INN[105]
AE5
INN[111]
AF8
INN[139]
AB34
INP[92]
AD3
AVDD_IO
AE6
AVDD_IO
AF9
AVSS
AC1
INP[101]
AD4
INP[103]
AE7
INP[131]
AF10
AVDD_IO
AC2
INN[101]
AD5
INN[103]
AE8
INN[131]
AF11
AVSS
AC3
AVSS
AD6
AVSS
AE9
AVDD_IO
AF12
AVDD_IO
AC4
INP[97]
AD7
INP[123]
AE10
TRIG[1]
AF13
AVDD_IO
AC5
INN[97]
AD8
INN[123]
AE11
MDSPDTEST[30]
AF14
AVDD_CORE
AC6
AVDD_IO
AD9
AVSS
AE12
AVSS
AF15
AVDD_CORE
AC7
INP[115]
AD10
PERROR[1]
AE13
AVSS
AF16
AVDD_IO
AC8
INN[115]
AD11
MDSPDTEST[31]
AE14
AVSS
AF17
AVDD_IO
AC9
AVDD_IO
AD12
AVSS
AE15
AVSS
AF18
AVDD_CORE
AC10
AVSS
AD13
AVSS
AE16
AVSS
AF19
AVDD_CORE
AC11
AVSS
AD14
AVSS
AE17
AVSS
AF20
AVDD_IO
AC12
AVDD_IO
AD15
AVSS
AE18
AVSS
AF21
AVDD_IO
AC13
AVDD_IO
AD16
AVSS
AE19
AVSS
AF22
AVDD_CORE
AC14
AVSS
AD17
AVSS
AE20
AVSS
AF23
AVDD_CORE
AC15
AVSS
AD18
AVSS
AE21
AVSS
AF24
AVDD_IO
AC16
AVDD_CORE
AD19
AVSS
AE22
AVSS
AF25
AVDD_IO
AC17
AVDD_CORE
AD20
AVSS
AE23
AVSS
AF26
MDSPDTEST[12]
AC18
AVDD_CORE
AD21
AVSS
AE24
AVSS
AF27
INN[138]
AC19
AVDD_CORE
AD22
AVSS
AE25
AVSS
AF28
INP[138]
AC20
AVSS
AD23
AVSS
AE26
MDSPDTEST[11]
AF29
AVDD_IO
AC21
AVSS
AD24
AVSS
AE27
INN[130]
AF30
INN[118]
AC22
AVDD_IO
AD25
AVSS
AE28
INP[130]
AF31
INP[118]
AC23
AVDD_IO
AD26
AVDD_IO
AE29
AVSS
AF32
AVSS
AC24
AVSS
AD27
INN[122]
AE30
INN[112]
AF33
INN[116]
AC25
AVSS
AD28
INP[122]
AE31
INP[112]
AF34
INP[116]
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
20
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (7 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
AG1
INP[121]
AH4
INP[127]
AJ7
AVSS
AK10
OUTN[117]
AG2
INN[121]
AH5
INN[127]
AJ8
AVDD_IO
AK11
OUTN[111]
AG3
AVSS
AH6
AVSS
AJ9
AVSS
AK12
OUTN[105]
AG4
INP[119]
AH7
CLKTXP[1]
AJ10
AVDD_IO
AK13
OUTN[99]
AG5
INN[119]
AH8
OUTP[143]
AJ11
AVSS
AK14
OUTN[93]
AG6
AVDD_IO
AH9
OUTP[131]
AJ12
AVDD_IO
AK15
OUTN[87]
AG7
CLKTXN[1]
AH10
OUTP[119]
AJ13
AVSS
AK16
OUTN[81]
AG8
OUTN[143]
AH11
OUTP[113]
AJ14
AVDD_IO
AK17
OUTN[75]
AG9
OUTN[131]
AH12
OUTP[107]
AJ15
AVSS
AK18
OUTN[69]
AG10
OUTN[119]
AH13
OUTP[101]
AJ16
AVDD_IO
AK19
OUTN[63]
AG11
OUTN[113]
AH14
OUTP[95]
AJ17
AVSS
AK20
OUTN[57]
AG12
OUTN[107]
AH15
OUTP[89]
AJ18
AVDD_IO
AK21
OUTN[51]
AG13
OUTN[101]
AH16
OUTP[83]
AJ19
AVSS
AK22
OUTN[45]
AG14
OUTN[95]
AH17
OUTP[77]
AJ20
AVDD_IO
AK23
OUTN[39]
AG15
OUTN[89]
AH18
OUTP[71]
AJ21
AVSS
AK24
OUTN[33]
AG16
OUTN[83]
AH19
OUTP[65]
AJ22
AVDD_IO
AK25
OUTN[27]
AG17
OUTN[77]
AH20
OUTP[59]
AJ23
AVSS
AK26
OUTN[15]
AG18
OUTN[71]
AH21
OUTP[53]
AJ24
AVDD_IO
AK27
OUTN[3]
AG19
OUTN[65]
AH22
OUTP[47]
AJ25
AVSS
AK28
OUTN[29]
AG20
OUTN[59]
AH23
OUTP[41]
AJ26
AVDD_IO
AK29
OUTN[17]
AG21
OUTN[53]
AH24
OUTP[35]
AJ27
AVSS
AK30
MDSPDTEST[21]
AG22
OUTN[47]
AH25
OUTP[23]
AJ28
AVDD_IO
AK31
MDSPDTEST[9]
AG23
OUTN[41]
AH26
OUTP[11]
AJ29
MDSPDTEST[24]
AK32
MDSPDTEST[6]
AG24
OUTN[35]
AH27
OUTP[5]
AJ30
INN[142]
AK33
INN[136]
AG25
OUTN[23]
AH28
MDSPDTEST[18]
AJ31
INP[142]
AK34
INP[136]
AG26
OUTN[11]
AH29
MDSPDTEST[23]
AJ32
AVDD_IO
AL1
INP[141]
AG27
OUTN[5]
AH30
INN[128]
AJ33
INN[132]
AL2
INN[141]
AG28
MDSPDTEST[17]
AH31
INP[128]
AJ34
INP[132]
AL3
MDSPDTEST[27]
AG29
AVSS
AH32
AVSS
AK1
INP[137]
AL4
XENRX[1]
AG30
INN[126]
AH33
INN[124]
AK2
INN[137]
AL5
MDSPDTEST[25]
AG31
INP[126]
AH34
INP[124]
AK3
XRSTRX[1]
AL6
OUTP[137]
AG32
AVDD_IO
AJ1
INP[133]
AK4
INP[143]
AL7
OUTP[125]
AG33
INN[120]
AJ2
INN[133]
AK5
INN[143]
AL8
OUTP[141]
AG34
INP[120]
AJ3
AVSS
AK6
OUTN[137]
AL9
OUTP[129]
AH1
INP[125]
AJ4
INP[135]
AK7
OUTN[125]
AL10
OUTP[117]
AH2
INN[125]
AJ5
INN[135]
AK8
OUTN[141]
AL11
OUTP[111]
AH3
AVDD_IO
AJ6
AVDD_IO
AK9
OUTN[129]
AL12
OUTP[105]
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
21
Package Outline Drawing and Pin Descriptions
Table 2-2.
BGA Assignments (8 of 8)
Location
Name
Location
Name
Location
Name
Location
Name
AL13
OUTP[99]
AM10
AVSS
AN7
OUTN[127]
AP4
OUTP[123]
AL14
OUTP[93]
AM11
AVDD_IO
AN8
OUTN[121]
AP5
OUTP[139]
AL15
OUTP[87]
AM12
AVSS
AN9
OUTN[115]
AP6
OUTP[133]
AL16
OUTP[81]
AM13
AVDD_IO
AN10
OUTN[109]
AP7
OUTP[127]
AL17
OUTP[75]
AM14
AVSS
AN11
OUTN[103]
AP8
OUTP[121]
AL18
OUTP[69]
AM15
AVDD_IO
AN12
OUTN[97]
AP9
OUTP[115]
AL19
OUTP[63]
AM16
AVSS
AN13
OUTN[91]
AP10
OUTP[109]
AL20
OUTP[57]
AM17
AVDD_IO
AN14
OUTN[85]
AP11
OUTP[103]
AL21
OUTP[51]
AM18
AVSS
AN15
OUTN[79]
AP12
OUTP[97]
AL22
OUTP[45]
AM19
AVDD_IO
AN16
OUTN[73]
AP13
OUTP[91]
AL23
OUTP[39]
AM20
AVSS
AN17
OUTN[67]
AP14
OUTP[85]
AL24
OUTP[33]
AM21
AVDD_IO
AN18
OUTN[61]
AP15
OUTP[79]
AL25
OUTP[27]
AM22
AVSS
AN19
OUTN[55]
AP16
OUTP[73]
AL26
OUTP[15]
AM23
AVDD_IO
AN20
OUTN[49]
AP17
OUTP[67]
AL27
OUTP[3]
AM24
AVSS
AN21
OUTN[43]
AP18
OUTP[61]
AL28
OUTP[29]
AM25
AVDD_IO
AN22
OUTN[37]
AP19
OUTP[55]
AL29
OUTP[17]
AM26
AVSS
AN23
OUTN[31]
AP20
OUTP[49]
AL30
MDSPDTEST[22]
AM27
AVDD_IO
AN24
OUTN[25]
AP21
OUTP[43]
AL31
MDSPDTEST[8]
AM28
AVSS
AN25
OUTN[19]
AP22
OUTP[37]
AL32
MDSPDTEST[7]
AM29
AVDD_IO
AN26
OUTN[13]
AP23
OUTP[31]
AL33
INN[140]
AM30
AVSS
AN27
OUTN[7]
AP24
OUTP[25]
AL34
INP[140]
AM31
MDSPDTEST[19]
AN28
OUTN[1]
AP25
OUTP[19]
AM1
INP[129]
AM32
MDSPDTEST[10]
AN29
OUTN[21]
AP26
OUTP[13]
AM2
INN[129]
AM33
INN[134]
AN30
OUTN[9]
AP27
OUTP[7]
AM3
CLKTXREF[1]
AM34
INP[134]
AN31
MDSPDTEST[20]
AP28
OUTP[1]
AM4
XENTX[1]
AN1
DOTXN[1]
AN32
AVDD_IO
AP29
OUTP[21]
AM5
MDSPDTEST[26]
AN2
DIRXN[1]
AN33
N/C
AP30
OUTP[9]
AM6
AVSS
AN3
OUTN[135]
AN34
MDSPDTEST[13]
AP31
MDSPDTEST[16]
AM7
AVDD_IO
AN4
OUTN[123]
AP1
DOTXP[1]
AP32
MDSPDTEST[15]
AM8
AVSS
AN5
OUTN[139]
AP2
DIRXP[1]
AP33
RXREFCLK
AM9
AVDD_IO
AN6
OUTN[133]
AP3
OUTP[135]
AP34
MDSPDTEST[14]
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
22
Package Outline Drawing and Pin Descriptions
Table 2-3.
Digital Power Connections
Table 2-4.
Location
Connection
L9
DVSS_IO
M10
DVDD_IO
BGA Connections to AVDD_IO
Ball Location
AA12
AC9
AF12
AJ12
AM17
C22
F29
K3
P3
R32
V12
Y12
AA13
AC12
AF13
AJ14
AM19
C24
G32
L6
P9
T3
V13
Y13
AA22
AC13
AF16
AJ16
AM21
C26
H3
L32
P12
T12
V22
Y22
AA23
AC22
AF17
AJ18
AM23
C28
H29
M12
P13
T13
V23
Y23
AA32
AC23
AF20
AJ20
AM25
E32
J6
M13
P22
T22
V26
Y29
AA6
AC26
AF21
AJ22
AM27
F09
J12
M22
P23
T23
V29
—
AB3
AC32
AF24
AJ24
AM29
F11
J13
M23
P26
T29
W6
—
AB9
AD03
AF25
AJ26
AN32
F13
J16
M29
P29
U6
W9
—
AB12
AD26
AF29
AJ28
C8
F15
J17
M3
R6
U12
W12
—
AB13
AD29
AG06
AJ32
C10
F17
J20
N6
R9
U13
W13
—
AB22
AE6
AG32
AM07
C12
F19
J21
N12
R12
U22
W22
—
AB23
AE9
AH3
AM9
C14
F21
J25
N13
R13
U23
W23
—
AB26
AE32
AJ6
AM11
C16
F23
J32
N22
R22
U32
W26
—
AB29
AF3
AJ8
AM13
C18
F25
K26
N23
R23
V3
W32
—
AC6
AF10
AJ10
AM15
C20
F27
K29
N32
R26
V9
Y3
—
Table 2-5.
BGA Connections to AVDD_CORE
Ball Locations
AA9
AC18
J22
N19
T17
V18
AA16
AC19
J23
N26
T18
V19
AA17
AF14
M9
P16
T19
W16
AA18
AF15
M16
P17
T26
W17
AA19
AF18
M17
P18
U9
W18
AA26
AF19
M18
P19
U16
W19
AB16
AF22
M19
R16
U17
Y9
AB17
AF23
M26
R17
U18
Y16
AB18
J14
N9
R18
U19
Y17
AB19
J15
N16
R19
U26
Y18
AC16
J18
N17
T9
V16
Y19
AC17
J19
N18
T16
V17
Y26
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
23
2.3
Pin Definitions
Table 2-6.
Power Pins
Pin Name
Function
Type
AVDD_IO
Analog I/O positive supply
Power
AVDD_CORE
Analog core positive supply
Power
Device ground
Power
DVDD_IO
Digital I/O positive supply
Power
DVSS_IO
Digital I/O negative supply
Power
AVSS
Table 2-7.
High-Speed Signal Pins (1 of 2)
Pin Name
INP[71:0] /
Function
Termination
Type
Positive differential input data
50Ω internal pull-up to AVDD_IO
Input/PCML
Negative differential input data
50Ω internal pull-up to AVDD_IO
Input/PCML
Positive differential output data
50Ω internal pull-up to AVDD_IO
Output/PCML
Negative differential output data
50Ω internal pull-up to AVDD_IO
Output/PCML
INP[143:0]
INN[71:0] /
INN[143:0]
OUTP[71:0] /
OUTP[143:0]
OUTN[71:0] /
OUTN[143:0]
XINDIS
Hardware disable of all inputs (active low)
100 kΩ internal pull-down
Input/CMOS
XOUTDIS
Hardware disable of all outputs (active low)
100 kΩ internal pull-down
Input/CMOS
A[9:0]
10 bit parallel address (bit 9: MSB, bit 0: LSB)
100 kΩ internal pull-up
Input/CMOS
D[5:0]
6 low bits of 8 bit parallel data (bit 0: LSB)
100 kΩ internal pull-up
I/O/CMOS
D[6]/SDI
7th bit of parallel data or serial data input
100 kΩ internal pull-up
I/O/CMOS
D[7]/SDO
8th bit of parallel data (MSB) or serial data output
100 kΩ internal pull-up
I/O/CMOS
50Ω internal pull-up to AVDD_IO
Output/PCML
50Ω internal pull-up to AVDD_IO
Output/PCML
DOTXP[1:0]
DOTXN[1:0]
23
Positive differential output of 2 -1 PRBS signal generator
23
Negative differential output of 2 -1 PRBS signal generator
23
CLKTXP[1:0]
Positive differential clock for 2 -1 PRBS signal generator
50Ω internal pull-up to AVDD_IO
Input/PCML
CLKTXN[1:0]
Negative differential clock for 223-1 PRBS signal generator
50Ω internal pull-up to AVDD_IO
Input/PCML
CLKTXREF[1:0]
Low speed reference clock for 223-1 PRBS signal generator
(2, 3)
Input/CMOS
RXREFCLK
19.44 MHz clock reference for LOS detection
(2, 3)
Input/CMOS
XENTX[1:0]
23
100 kΩ internal pull-up to AVDD_IO
Input/CMOS
50Ω internal pull-up to AVDD_IO
Input/PCML
50Ω internal pull-up to AVDD_IO
Input/PCML
100 kΩ internal pull-up to AVDD_IO
Input/CMOS
DIRXP[1:0]
DIRXN[1:0]
XENRX[1:0]
211x1-DSH-001-I
Enable (active low) 2 -1 PRBS signal generator clock
23
Positive differential data for 2 -1 PRBS signal receiver
23
Negative differential data for 2 -1 PRBS signal receiver
23
Enable (active low) 2 -1 pseudorandom RX clock/data
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
24
Table 2-7.
High-Speed Signal Pins (2 of 2)
Pin Name
Function
23
XRSTRX[1:0]
Reset (active low) 2 -1 pseudorandom RX clock/data
PERROR[1:0]
PRBS receiver bit error flag: latches High on first error (cleared on
PRBS reset)
Termination
Type
100 kΩ internal pull-up to AVDD_IO
Input/CMOS
100 kΩ internal pull-up
Output/CMOS
NOTES:
1.
In PRBS mode a portion of the PRBS signal will egress from the input terminal to which the PRBS transmitter is connected. The device normally
connected to these terminals might need to be powered down or temporarily disconnected during PRBS operation; alternatively, any unused
input can be used to route the PRBS signal to any output.
2.
100 kΩ internal pull-ups on all CMOS inputs, unless noted as pull-downs.
3.
RXREFCLK and CLKTXREF[1:0] are CMOS inputs that are referenced to AVDD_IO.
Table 2-8.
Control, Interface, and Alarm Pins
Pin Name
Termination
Type
Parallel I/0: H = read, L = write
(1)
Input/CMOS
Parallel I/0: data latch, serial I/0: serial clock (hysteresis)
(1)
Input/CMOS
Serial/parallel: active low I/O enable
(1)
Input/CMOS
Serial/parallel I/O select: H = serial, L = parallel
(1)
Input/CMOS
XRST
Hardware reset (active low)
(1)
Input/CMOS
XTEST
Mindspeed test terminal (active low)
(1)
Input/CMOS
XSET
Hardware xSet terminal enables switching multiple channel
configurations simultaneously (active low)
(1)
Input/CMOS
Pins reserved for production test (should be left open)
(1)
N/C
R/XW
XDS/SCLK
XCS
SER/XPAR
MDSPDTEST[33:1]
Function
TRIG[1:0]
CLKTX/16 for use as trigger
50Ω internal pull-up to AVDD_IO
Output/PCML
LOS
Global loss of signal status
(1)
Output/CMOS
NOTE:
1.
100 kΩ internal pull-ups on all CMOS inputs, unless noted as pull-downs.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
25
3.0 Control Registers Map and
Descriptions
Table 3-1.
Addr
Control Registers Map (1 of 2)
Register Name
d7
d6
d5
d4
d3
d2
d1
d0: LSB
InChSel[1]
InChSel[1]
InChSel[1]
InChSel[0]
InChSel[0]
InChSel[0]
Common Registers
...
offset
offset
offset
eql[1]
eql[1]
eql[1]
eql[0]
eql[0]
eql[0]
en_pe
en_pe
en_pe
out_level[1]
out_level[1]
out_level[1]
out_level[0]
out_level[0]
out_level[0]
in_mode[1]
in_mode[1]
in_mode[1]
in_mode[0]
in_mode[0]
in_mode[0]
in_mode[1]
in_mode[0]
200
201
IN_CHAN_CTRL#0
IN_CHAN_CTRL#1
0
0
0
0
0
0
0
0
inh_en
inh_en
0
0
los_en
los_en
0
0
0
dr_range
dr_range
0
data_rate[5]
data_rate[5]
0
data_rate[4]
data_rate[4]
inh_en
data_rate[3]
data_rate[3]
0
data_rate[2]
data_rate[2]
los_en
data_rate[1]
data_rate[1]
38Fh
LOS_DR_SEL#143
0
dr_range
data_rate[4]
data_rate[3]
data_rate[2]
0
data_rate[0]
data_rate[0]
...
data_rate[5]
...
...
0
0
0
...
IN_CHAN_CTRL#143
LOS_DR_SEL#0
LOS_DR_SEL#1
...
28Fh
300
301
...
out_level[0]
...
out_level[1]
...
en_pe
...
eql[0]
...
eql[1]
...
offset
...
CHANCFG#143
...
18Fh
...
...
CHANCFG#0
CHANCFG#1
CHANCFG#2
...
100
101
102
...
InChSel[0]
...
InChSel[1]
...
InChSel[2]
...
InChSel[3]
...
InChSel[4]
...
InChSel[5]
...
InChSel[6]
...
InChSel[7]
...
INCHSEL#143
...
8Fh
...
...
InChSel[2]
InChSel[2]
InChSel[2]
...
InChSel[3]
InChSel[3]
InChSel[3]
...
InChSel[4]
InChSel[4]
InChSel[4]
...
InChSel[5]
InChSel[5]
InChSel[5]
...
InChSel[6]
InChSel[6]
InChSel[6]
...
InChSel[7]
InChSel[7]
InChSel[7]
...
INCHSEL#0
INCHSEL#1
INCHSEL#2
...
00
01
02
data_rate[1]
data_rate[0]
en_rx
rxchsel[3]
rxerr[3]
prbsrx_dly[3]
0
data_rate[3]
reserved
en_tx
pe_dur
txchsel[3]
0
data_rate[3]
core2rx
rxchsel[2]
rxerr[2]
prbsrx_dly[2]
1
data_rate[2]
reserved
tx2core
sel_div2pat
txchsel[2]
0
data_rate[2]
rxcdr_pd
rxchsel[1]
rxerr[1]
prbsrx_dly[1]
los_en
data_rate[1]
los
pll_pd
en_pattx
txchsel[1]
0
data_rate[1]
0
rxchsel[0]
rxerr[0]
prbsrx_dly[0]
1
data_rate[0]
lol
0
pwr_trig
txchsel[0]
1
data_rate[0]
en_rx
rxchsel[3]
rxerr[3]
prbsrx_dly[3]
0
data_rate[3]
reserved
en_tx
pe_dur
txchsel[3]
0
data_rate[3]
core2rx
rxchsel[2]
rxerr[2]
prbsrx_dly[2]
1
data_rate[2]
reserved
tx2core
sel_div2pat
txchsel[2]
0
data_rate[2]
rxcdr_pd
rxchsel[1]
rxerr[1]
prbsrx_dly[1]
los_en
data_rate[1]
los
pll_pd
en_pattx
txchsel[1]
0
data_rate[1]
0
rxchsel[0]
rxerr[0]
prbsrx_dly[0]
1
data_rate[0]
lol
0
pwr_trig
txchsel[0]
1
data_rate[0]
Even PRBS Registers
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
PRBSRXCTRL_EVEN
PRBSRXCHSEL_EVEN
PRBSERROR_EVEN
PRBSRX_DLY_EVEN
RXCDR_CTRLA_EVEN
RXCDR_CTRLB_EVEN
RXCDR_ALARMS_EVEN
PRBSTXCTRL1_EVEN
PRBSTXCTRL2_EVEN
PRBSTXCHSEL_EVEN
PLL_CTRLA_EVEN
PLL_CTRLB_EVEN
en_patrx
rxchsel[7]
rxerr[7]
0
lolwinctrl[1]
softreset
reserved
0
0
txchsel[7]
lolwinctrl[1]
softreset
0
rxchsel[6]
rxerr[6]
0
lolwinctrl[0]
reserved
reserved
txmux[1]
0
txchsel[6]
lolwinctrl[0]
reserved
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
PRBSRXCTRL_ODD
PRBSRXCHSEL_ODD
PRBSERROR_ODD
PRBSRX_DLY_ODD
RXCDR_CTRLA_ODD
RXCDR_CTRLB_ODD
RXCDR_ALARMS_ODD
PRBSTXCTRL1_ODD
PRBSTXCTRL2_ODD
PRBSTXCHSEL_ODD
PLL_CTRLA_ODD
PLL_CTRLB_ODD
en_patrx
rxchsel[7]
rxerr[7]
0
lolwinctrl[1]
softreset
reserved
0
0
txchsel[7]
lolwinctrl[1]
softreset
0
rxchsel[6]
rxerr[6]
0
lolwinctrl[0]
reserved
reserved
txmux[1]
0
txchsel[6]
lolwinctrl[0]
reserved
rxmux
rxchsel[5]
rxerr[5]
0
0
data_rate[5]
reserved
txmux[0]
pe_amp
txchsel[5]
0
data_rate[5]
rst_rx
rxchsel[4]
rxerr[4]
prbsrx_dly[4]
0
data_rate[4]
reserved
rst_tx
en_pe
txchsel[4]
0
data_rate[4]
Odd PRBS Registers
211x1-DSH-001-I
rxmux
rxchsel[5]
rxerr[5]
0
0
data_rate[5]
reserved
txmux[0]
pe_amp
txchsel[5]
0
data_rate[5]
rst_rx
rxchsel[4]
rxerr[4]
prbsrx_dly[4]
0
data_rate[4]
reserved
rst_tx
en_pe
txchsel[4]
0
data_rate[4]
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
26
Control Registers Map and Descriptions
Table 3-1.
Addr
Control Registers Map (2 of 2)
Register Name
d7
d6
d5
d4
d3
d2
d1
d0: LSB
0
xsetcmd[3]
out_level[1]
pe_dur
srst[3]
rev[3]
prod[3]
win_inlck[3]
win_outlck[3]
0
los_stat[3]
los_stat[3]
0
xsetcmd[2]
out_level[0]
en_pe
srst[2]
rev[2]
prod[2]
win_inlck[2]
win_outlck[2]
1
los_stat[2]
los_stat[2]
xset[1]
xsetcmd[1]
in_mode[1]
1
srst[1]
rev[1]
prod[1]
win_inlck[1]
win_outlck[1]
0
los_stat[1]
los_stat[1]
xset[0]
xsetcmd[0]
in_mode[0]
en_smartpwr
srst[0]
rev[0]
prod[0]
win_inlck[0]
win_outlck[0]
clear_alarm
los_stat[0]
los_stat[0]
Local Registers
...
...
...
...
0
xsetcmd[4]
en_individ
pe_amp
srst[4]
rev[4]
prod[4]
win_inlck[4]
win_outlck[4]
0
los_stat[4]
los_stat[4]
...
0
xsetcmd[5]
eql[0]
0
srst[5]
rev[5]
prod[5]
win_inlck[5]
win_outlck[5]
0
los_stat[5]
los_stat[5]
...
LOS_STATN
0
xsetcmd[6]
eql[1]
0
srst[6]
rev[6]
prod[6]
win_inlck[6]
win_outlck[6]
0
los_stat[6]
los_stat[6]
...
1B3
0
xsetcmd[7]
offset
0
srst[7]
rev[7]
prod[7]
win_inlck[7]
win_outlck[7]
0
los_stat[7]
los_stat[7]
...
XSETMODE
XSETCMD
IOENABLE
CORECTRL
SOFTRESET
CHIPREV
PRODCODE
WIN_INLCK_LOL
WIN_OUTLCK_LOL
GLOBAL_CTRL
LOS_STATn
LOS_STATN
...
B8
B9
BA
BB
BF
C0
C1
C3
C4
CB
1A2
1A3
los_stat[7]
los_stat[6]
los_stat[5]
los_stat[4]
los_stat[3]
los_stat[2]
los_stat[1]
los_stat[0]
NOTES:
D[7]... D[0] represent the internal bus, which is mapped to the data in both the serial and parallel mode.
Blank register bits are undefined for a write and read.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
27
Control Registers Map and Descriptions
3.1
Control Registers Descriptions
Table 3-2.
Input Channel Selection (INCHSEL: Address 00h–47h/00h–8Fh)
(Output channel = address Input to route to output = data)
Bits
Type
Default
7:0
R/W
00h
Label
Description
Select input channel (data) to route to selected output (address).
INCHSEL
In#0 = 00h, In#1 = 01h, …In#143 = 8Fh.
Table 3-3.
I/O Input/Output Configuration (CHANCFG: Address 100h–147h/100h–18Fh)
(Selected channel + 100h is the address)
Bits
Type
Default
7
R/W
0
Label
DC offset
Description
Input DC offset
0: DC offset enable (default)
1: DC offset disable
6:5
R/W
01
eq
Input equalization
00: Minimum EQ (≈ 9 dB)
01: Small EQ (≈ 12 dB) (default)
10: Medium EQ (≈ 15 dB)
11: Large EQ (≈ 18 dB)
4
R/W
0
en_pe
Enable de-emphasis—en_individ (BAh, bit 4) must be set to 1 for this bit to be functional.
0: Disabled.
1: Enabled.
3:2
R/W
11
out_level
en_individ (BAh, bit 4) must be set to 1 for these bits to be functional.
00: 500 mVp–p differential output.
01: 900 mVp–p differential output.
10: 1200 mVp–p differential output.
11: Disable output.
1:0
R/W
10
in_mode
en_individ (BAh, bit 4) must be set to 1 for these bits to be functional.
00: Reserved.
01: Reserved.
10: Input channel is powered down.
11: Input channel is active.
Table 3-4.
Input Channel Control (IN_CHAN_CTRL: Address 200h–247h/200h–28Fh)
Bits
Type
Default
Label
7:4
R/W
0000
—
3
R/W
0
2
R/W
1
—
1
R/W
1
los_en
0
R/W
1
—
211x1-DSH-001-I
Description
Reserved, set to 0.
inh_en
0: Inhibit disabled.
1: Inhibit enabled.
Reserved, defaults to 1 but must be set to 0.
0: LOS disabled.
1: LOS enabled (default).
Reserved, defaults to 1 but must be set to 0.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
28
Control Registers Map and Descriptions
Table 3-5.
Individual Channel LOS Data Rate Control (Select Channel 300h-347h/300h-38Fh)
Bits
Type
Default
Label
7
R/W
0
LOS_dr_sel
Reserved, default to 0.
6
R/W
0
dr_range
0: 2–3.2 Gbps operation (default).
1: 1–1.6 Gbps operation.
5:0
R/W
011010
—
Description
Select data rate. See Section 4.3.9.1. for data rate programming.
011010: 2.488 Gbps (default).
3.1.1
Even PRBS Registers
Table 3-6.
Bits
PRBS RX Control (Even) (PRBSRXCTRL_EVEN: Address A0h)
Type
7
R/W
6
R/W
5
R/W
Default
0
Label
Description
223-1
en_patrx
0: PRBSRX configured for
PRBS pattern.
1: PRBSRX configured for simple “1010” or “1100” pattern.
Reserved, must be set to 0.
1
rxmux
Select RX data input.
0: Select input form cross point core.
1: Select input from terminals DIRXP/N.
4
R/W
1
rst_rx
Reset RX PRBS receiver.
0: RX PRBS receiver enabled.
1: RX PRBS in reset.
3
R/W
0
en_rx
0: RX PRBS disabled.
1: RX PRBS enabled.
2
R/W
0
core2rx
0: Disconnect all cross point outputs from PRBS RX.
1: Route cross point outputs to PRBS receiver.
1
R/W
1
rxcdr_pd
PRBS receiver CDR control.
0: CDR is enabled.
1: CDR is disabled.
0
R/W
Table 3-7.
—
—
Reserved, must be set to 0.
PRBS RX Channel Select (even) (PRBSRXCHSEL_EVEN: Address A1h)
Bits
Type
Default
7:0
R/W
00h
Table 3-8.
Label
rxchSel
Description
Selects channel for PRBS RX.
PRBS RX Error Count (Read Only) (PRBSERROR_EVEN: Address A2h)
Bits
Type
Default
7:0
RO
—
211x1-DSH-001-I
Label
rxerr
Description
PRBS RX error count register (read-only). Although this is a read-only register, a write of
any value must be performed to latch the latest error count. A PRBS RX reset (address
A0h, bit 4) will clear the PRBS RX error count register.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
29
Control Registers Map and Descriptions
Table 3-9.
PRBS RX Delay Select (even) (PRBSRX_DLY_EVEN: Address A3h)
Bits
Type
Default
Label
7:5
R/W
—
—
4:0
R/W
00101
Description
Reserved, must be set to 0
prbsrx_dly
PRBS RX delay select in increments of 1/32 of a bit time (12.5 ps for 2.488 GHz
operation).
00000: No Delay.
00001: 1/32 of a bit time (12.5 ps for 2.488 GHz operation).
…
00101: 5/32 of a bit time (62.5 ps for 2.488 GHz operation) (default).
…
11111: One bit time (400 ps for 2.488 GHz operation).
Table 3-10.
PRBS RX CDR Control A (even) (RXCDR_CTRLA_EVEN: Address A4h)
Bits
Type
Default
7:6
R/W
00
Label
lolwinctrl
Description
00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
settings).
11: Content of register RXCDR_CTRLB is stored into a separate register, which programs
the offset of the VCO counter start value.
5:4
R/W
—
—
Reserved, must be set to 0.
3
R/W
1
—
0: Autoinhibit disabled.
1: Autoinhibit enabled.
2
R/W
—
—
Reserved, must be set to 1.
1
R/W
1
0
R/W
—
Table 3-11.
los_en
0: LOS circuit disabled.
1: LOS enabled.
—
Reserved, must be set to 1.
PRBS RX CDR Control B (even) (RXCDR_CTRLB_EVEN: Address A5h)
Bits
Type
Default
Label
Description
7
R/W
0
softreset
0: CDR is in normal mode.
1: CDR is in reset.
6
R/W
0
MSPD
Reserved, defaults to “0”, must be set to “1” to use PRBS RX CDR.
5:0
R/W
011010
data_rate
Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
30
Control Registers Map and Descriptions
Table 3-12.
PRBS RX Alarms (Read Only) (even) (RXCDR_ALARMS_EVEN: Address A6h)
(Cleared on write, a high alarm status gets latched into the register)
Bits
Type
Default
Label
7:2
RO
—
—
1
RO
—
los
Loss of Signal alarm.
0
RO
—
lol
Loss of Lock alarm.
Table 3-13.
Description
Reserved.
PRBS TX Control 1 (even) (PRBSTXCTRL1_EVEN: Address A7h)
Bits
Type
Default
Label
7
R/W
—
—
6:5
R/W
10
txmux
Description
Reserved, must be set to 0.
Select PRBS TX clock input.
00: Select clock generated by PRBS TX PLL.
01: Select clock recovered from PRBS RX CDR.
10: Select clock from input pins CLKTXP/N.
11: None.
4
R/W
1
rst_tx
0: PRBS TX pattern generator in normal operation.
1: Reset PRBS TX pattern generator.
3
R/W
0
en_tx
0: TX PRBS disabled.
1: TX PRBS enabled.
2
R/W
0
tx2core
0: Disable the PRBS TX from going to the inputs.
1: Route PRBS TX pattern through cross point.
1
R/W
1
pll_pd
PRBS TX PLL control.
0: TX PLL enabled.
1: TX PLL disabled.
0
R/W
211x1-DSH-001-I
—
—
Reserved, must be set to 0.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
31
Control Registers Map and Descriptions
Table 3-14.
PRBS TX Control 2 (even) (PRBSTXCTRL2_EVEN: Address A8h)
Bits
Type
Default
Label
7:6
R/W
—
—
5
R/W
0
Description
Reserved, must be set to 0.
pe_amp
Control of de-emphasis amplitude.
0: 50% DE.
1: 67% DE.
4
R/W
0
en_pe
Enable de-emphasis.
0: Disable.
1: Enable.
3
R/W
1
pe_dur
Control of de-emphasis duration.
0: Approximately 1200 ps.
1: Approximately 600 ps.
2
R/W
0
sel_div2_pat
Select TX pattern. en_pattx has to be high for this bit to be functional.
0: Select 1010 pattern.
1: Select 1100 pattern.
1
R/W
0
en_pattx
Select TX PRBS or simple pattern.
0: Select PRBS TX pattern.
1: Select simple pattern: 1010 or 1100 determined by sel_div2_pat.
0
R/W
Table 3-15.
0
0: TX PRBS trigger disabled.
1: TX PRBS trigger enabled.
PRBS TX Channel Select (even) (PRBSTXCHSEL_EVEN: Address A9h)
Bits
Type
Default
7:0
R/W
01h
Table 3-16.
pwr_trig
Label
txchSel
Description
Select channel for PRBS TX.
PRBS TX PLL Control A (even) (PLL_CTRLA_EVEN: Address AAh)
Bits
Type
Default
7:6
R/W
00
Label
lolwinctrl
Description
00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
setting).
11: Content of register PLL_CTRLB is stored into a separate register, which programs the
offset of the VCO counter start value.
5:1
R/W
—
—
Reserved, must be set to 0.
0
R/W
—
—
Reserved, must be set to 1.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
32
Control Registers Map and Descriptions
Table 3-17.
PRBS TX PLL Control B (even) (PLL_CTRLB_EVEN: Address ABh)
Bits
Type
Default
Label
7
R/W
0
softreset
0: PLL is in normal mode.
1: PLL is in reset.
6
R/W
0
MSPD
Reserved, defaults to “0”, must be set to “1” to use PRBS Tx PLL.
5:0
R/W
011010
data_rate
Description
Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
3.1.2
Odd PRBS Registers
Table 3-18.
Bits
7
Type
R/W
PRBS RX Control (Odd) (PRBSRXCTRL_ODD: Address ACh)
Default
Label
0
en_patrx
Description
0: PRBSRX configured for
223-1
PRBS pattern.
1: PRBSRX configured for simple “1010” or “1100” pattern.
6
R/W
5
R/W
Reserved, must be set to 0.
1
rxmux
Select RX data input.
0: Select input from cross point core.
1: Select input from terminals DiRxP/N.
4
R/W
1
rst_rx
Reset RX PRBS receiver.
0: RX PRBS receiver enabled.
1: RX PRBS in reset.
3
R/W
0
en_rx
2
R/W
0
core2rx
1
R/W
1
rxcdr_pd
0: RX PRBS disabled.
1: RX PRBS enabled.
0: Disconnect all cross point outputs from PRBS RX.
1: Route cross point outputs to PRBS receiver.
PRBS receiver CDR control.
0: CDR is enabled.
1: CDR is disabled.
0
R/W
Table 3-19.
—
Type
Default
7:0
R/W
01h
Label
rxchSel
Description
Selects channel for PRBS RX.
PRBS RX Error Count (Read Only) (odd) (PRBSERROR_ODD: Address AEh)
Bits
Type
Default
7:0
RO
—
211x1-DSH-001-I
Reserved, must be set to 0.
PRBS RX Channel Select (odd) (PRBSRXCHSEL_ODD: Address ADh)
Bits
Table 3-20.
—
Label
rxerr
Description
PRBS RX error count register (read-only). Although this is a read-only register, a write of
any value must be performed to latch the latest error count. A PRBS RX reset (address
A0h, bit 4) will clear the PRBS RX error count register.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
33
Control Registers Map and Descriptions
Table 3-21.
Bits
Type
7:5
R/W
4:0
R/W
PRBS RX Delay Select (odd) (PRBSRX_DLY_ODD: Address AFh)
Default
Label
Description
Reserved, must be set to 0.
00101
prbsrx_dly
PRBS RX delay select in increments of 1/32 of a bit time (12.5 ps for 2.488 GHz
operation).
00000: No Delay.
00001: 1/32 of a bit time (12.5 ps for 2.488 GHz operation).
…
00101: 5/32 of a bit time (62.5 ps for 2.488 GHz operation).
…
11111: One bit time (400 ps for 2.488 GHz operation).
Table 3-22.
PRBS RX CDR Control A (odd) (RXCDR_CTRLA_EVEN: Address B0h)
Bits
Type
Default
7:6
R/W
00
Label
lolwinctrl
Description
00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
setting).
11: Content of register RXCDR_CTRLB is stored into a separate register, which programs
the offset of the VCO counter start value.
5:4
R/W
—
—
Reserved, must be set to 0.
3
R/W
1
—
0: Autoinhibit disabled.
1: Autoinhibit enabled.
2
R/W
—
—
Reserved, must be set to 1.
1
R/W
1
0
R/W
—
Table 3-23.
los_en
0: LOS circuit disabled.
1: LOS enabled.
—
Reserved, must be set to 1.
PRBS RX CDR Control B (odd) (RXCDR_CTRLB_ODD: Address B1h)
Bits
Type
Default
Label
Description
7
R/W
0
softreset
0: CDR is in normal mode.
1: CDR is in reset.
6
R/W
0
MSPD
Reserved, defaults to “0”, must be set to “1” to use PRBS RX CDR.
5:0
R/W
011010
data_rate
Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
34
Control Registers Map and Descriptions
Table 3-24.
PRBS RX Alarms (Read Only) (odd) (RXCDR_ALARMS_ODD: Address B2h)
Bits
Type
Default
Label
7:2
RO
—
—
1
RO
—
los
Loss of Signal alarm.
0
RO
—
lol
Loss of Lock alarm.
Table 3-25.
Description
Reserved.
PRBS TX Control 1 (odd) (PRBSTX_ctrl1_odd: Address B3h)
Bits
Type
Default
Label
7
R/W
—
—
6:5
R/W
10
txmux
Description
Reserved, must be set to 0.
Select PRBS TX clock input.
00: Select clock generated by PRBS TX PLL.
01: Select clock recovered from PRBS RX CDR.
10: Select clock from input terminals CLKTXP/N.
11: None.
4
R/W
1
rst_tx
0: PRBS TX pattern generator in normal operation.
1: Reset PRBS TX pattern generator.
3
R/W
0
en_tx
0: TX PRBS disabled.
1: TX PRBS enabled.
2
R/W
0
tx2core
0: Disable the PRBS TX from going to the inputs.
1: Route PRBS TX pattern through cross point.
1
R/W
1
pll_pd
PRBS TX PLL control.
0: TX PLL is enabled.
1: TX PLL is disabled.
0
R/W
211x1-DSH-001-I
—
—
Reserved, must be set to 0.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
35
Control Registers Map and Descriptions
Table 3-26.
PRBS TX Control 2 (odd) (PRBSTX_ctrl2_odd: Address B4h)
Bits
Type
Default
Label
7:6
R/W
—
—
5
R/W
0
Description
Reserved, must be set to 0.
pe_amp
Control of de-emphasis amplitude.
0: 50% PE.
1: 67% PE.
4
R/W
0
en_pe
Enable de-emphasis.
0: Disable.
1: Enable.
3
R/W
1
pe_dur
Control of de-emphasis duration.
0: Approximately 1200 ps.
1: Approximately 600 ps.
2
R/W
0
sel_div2_pat
Select TX pattern. en_pattx has to be high for this bit to be functional.
0: Select 1010 pattern.
1: Select 1100 pattern.
1
R/W
0
en_pattx
Select TX PRBS or simple pattern.
0: Select PRBS TX pattern.
1: Select simple pattern: 1010 or 1100 determined by sel_div2_pat.
0
R/W
Table 3-27.
0
0: TX PRBS trigger disabled.
1: TX PRBS trigger enabled.
PRBS TX Channel Select (odd) (PRBSTXCHSEL_ODD: Address B5h)
Bits
Type
Default
7:0
R/W
01h
Table 3-28.
pwr_trig
Label
txchSel
Description
Selects channel for PRBS TX.
PRBS TX PLL Control A (odd) (PLL_CTRLA_ODD: Address B6h)
Bits
Type
Default
7:6
R/W
00
Label
lolwinctrl
Description
00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
setting).
11: Content of register PLL_ctrlB is stored into a separate register, which programs the
offset of the VCO counter start value.
5:1
R/W
—
—
Reserved, must be set to 0.
0
R/W
—
—
Reserved, must be set to 1.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
36
Control Registers Map and Descriptions
Table 3-29.
PRBS TX PLL Control B (odd) (PLL_CTRLB_ODD: Address B7h)
Bits
Type
Default
Label
7
R/W
0
softreset
0: CDR is in normal mode.
1: CDR is in reset.
6
R/W
0
MSPD
Reserved, defaults to “0”, must be set to “1” to use PRBS TX PLL.
5:0
R/W
011010
data_rate
Description
Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
3.1.3
Global Registers
Table 3-30.
XSET MODE (xSET mode: Address B8h)
Bits
Type
Default
Label
7:2
R/W
—
—
1:0
R/W
00
Description
Reserved, must be set to 0.
xset
Selects the XSET mode.
00: ACL latches are transparent. Any switch setting written immediately affects the core
configuration.
01: ACL latches are controlled through register B9h (software XSET).
10: ACL latches are controlled by terminal XSET (hardware control).
11: N/A.
Table 3-31.
Software xSET (Read back always 00h) (xSET cmd: Address B9h)
Bits
Type
Default
7:0
R/W
—
211x1-DSH-001-I
Label
xsetcmd
Description
Register B8h (XSET mode) needs to be set to 01 in order for this register to be functional.
Any value written to this register will update the ACL with the ICL.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
37
Control Registers Map and Descriptions
Table 3-32.
I/O Enable (IOENABLE: Address BAh)
Bits
Type
Default
7
R/W
0
Label
DC offset
Description
Input DC offset
0: DC offset enable (default)
1: DC offset disable
6:5
R/W
01
EQ
Input equalization
00: Minimum EQ (≈ 9 dB)
01: Small EQ (≈ 12 dB) (default)
10: Medium EQ (≈ 15 dB)
11: Large EQ (≈ 18 dB)
4
R/W
0
en_individ
This bit controls individual IO control.
0: Individual input/output configuration (100 to 147h/100h to 18Fh) is bypassed.
1: Input/outputs are individually controlled by registers 100 to 147h/100h to 18Fh.
3:2
R/W
11
out_level
en_individ (BAh, bit 4) must be set to 0 for these bits to be functional.
00: 500 mVp–p differential on all outputs.
01: 900 mVp–p differential on all outputs.
10: 1200 mVp–p differential on all outputs.
11: Disable all outputs.
1:0
R/W
10
in_mode
en_individ (BAh, bit 4) must be set to 0 for these bits to be functional.
00: Reserved.
01: Reserved.
10: All input channels are powered down.
11: All input channels are active.
Table 3-33.
Core Control (CORECTRL: Address BBh)
Bits
Type
Default
Label
7:5
R/W
—
—
4
R/W
0
Description
Reserved, must be set to 0.
pe_amp
Global control of de-emphasis amplitude.
0: 50% PE.
1: 67% PE.
3
R/W
1
pe_dur
Global control of de-emphasis duration.
0: Approximately 1200 ps.
1: Approximately 600 ps (default).
2
R/W
0
en_pe
en_individ (BAh, bit 4) must be set to 0 for this bit to be functional.
0: Disable de-emphasis for all outputs.
1: Enable de-emphasis for all outputs.
1
R/W
—
0
R/W
1
—
Reserved, must be set to 1.
en_smartpwr
Core SmartPower™ control.
0: Core fully powered.
1: Core in low power mode.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
38
Control Registers Map and Descriptions
Table 3-34.
Software Reset (SOFTRESET: Address BFh)
Bits
Type
Default
7:0
R/W
00h
Label
srst
Description
Software reset: Needs two consecutive Writes with DATA = AAh.
If second Write is not a reset, register is cleared.
Third Write required to bring out of reset.
Table 3-35.
Chip Revision (CHIPREV: Address C0h)
Bits
Type
Default
7:0
RO
—
Label
rev
Description
Chip Revision Number:
M21131-13/M21131G-13: 05h
M21131-23/M21131G-23: 05h
M21151-14/M21151G-14: 05h
M21151-23/M21151G-23: 05h
Table 3-36.
Product Code (PRODCODE: Address C1h)
Bits
Type
Default
7:0
RO
—
Table 3-37.
Type
Default
7:0
R/W
1Eh
Product Code Number
M21131 = 40h
M21151 = C0h
Label
win_inlck
Description
Sets the in lock window value.
Global LOL Window Detector Outlock Value (WIN_OUTLCK_LOL: Address C4h)
Bits
Type
Default
7:0
R/W
03
Table 3-39.
prod
Description
Global LOL Window Detector Inlock Value (WIN_INLCK_LOL: Address C3h)
Bits
Table 3-38.
Label
Label
win_outlck
Description
Sets the out lock window value.
Global Control (GLOBAL_CTRL: Address CBh)
Bits
Type
Default
Label
7:3
R/W
—
—
Reserved, must be set to 0.
2
R/W
—
—
Reserved, must be set to 1.
1
R/W
—
—
Reserved, must be set to 0.
0
R/W
0
clear_alarms
211x1-DSH-001-I
Description
0: All input and PRBS LOS alarms are active.
1: Clear all PRBS and input LOS alarms.
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
39
Control Registers Map and Descriptions
Table 3-40.
LOS Alarms Register Bank 1 to 18 (LOS_STATn: 1A2–1B3h)
Bits
Type
Default
7:0
RO
—
Label
los_stat
Description
(Read only, cleared by clear_alarms).
0: LOS alarm on CDR (n*8 +[I]) is not present.
1: LOS alarm on CDR (n*8 +[I]) is present.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
40
4.0 Functional Description
4.1
Overview
The M21131/M21151, designed for today’s demanding telecom and datacom applications, is a low-power CMOS,
high-speed 72x72/144x144 crosspoint switch with input equalization, output de-emphasis, and built-in system test
features.
The SmartPower™ features offer dynamically scalable switch settings to further reduce power consumption without
affecting the operation of the remaining channels.
To improve signal quality each input buffer is preceded by a programmable input equalizer (IE) and each output
includes output de-emphasis (PE). The IE removes ISI jitter which is usually caused by PCB skin effect losses. The
IE circuit opens the input data eye in applications where long PCB traces and cables are used. The PE provides a
boost of the high frequency content of the output signal, such that the data eye remains open after passing through
a long interconnect of PCB traces and cables. There are two amplitude settings and two duration settings that can
be selected on a global basis. De-emphasis can be enabled on a per-channel basis.
The device supports data rates from 0 to 3.2 Gbps on each channel, allowing any combination of SONET, Fibre
Channel (1x and 2x), InfiniBand, Gigabit Ethernet and 10 Gbps Ethernet traffic.
The switch includes a pair of on-board 223-1 pseudo-random bit sequence transmitters (PRBS TX) and receivers
(PRBS RX) for system verification purposes.
Three-stage switch fabrics with up to 2,880 x 2,880 ports, carrying over 10 Terabits per second of traffic, can be
designed using this non-blocking switch, with multi-cast and broadcast abilities.
All inputs and outputs are differential PCML (positive current mode logic) with supply voltages ranging from 1.2V to
2.5V. The output levels are programmable at 500 mV, 900 mV, and 1200 mV.
The M21131/M21151 is available in a 1156 terminal, 35 mm, CBGA (Ceramic Ball Grid Array) package. The green
72x72/144x144 crosspoint switch is the M21131G/M21151G. The green devices share the same features,
specifications, and pinout as the non-green devices.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
41
Functional Description
Figure 4-1.
Jitter Removal by Input Equalization and Output De-Emphasis at 3.2 Gbps
Tx Device
(No output
Pre-Emphasis)
36" FR-4 trace and
backplane
connectors
M21131/M21151
Crosspoint Switch with
Input Equalization
3.2 Gbps data eye with
input EQ disabled NOT ERROR FREE
3.2 Gbps data eye with
input EQ enabled ERROR FREE
M21131/M21151
Crosspoint Switch with
Output Pre-Emphasis
30" FR-4 trace and
backplane
connectors
3.2 Gbps data eye after 30"
FR4 trace with output preemphasis disabled - NOT
ERROR FREE
3.2 Gbps data eye after 30"
FR4 trace with output preemphasis enabled ERROR FREE
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
42
Functional Description
Figure 4-2.
M21131/M21151 Functional Block Diagram
XENRX<0> XRSTRX<0>
PERROR<0>
CLKTXREF<0>
PLL
PRBSRXERR<7:0>
Data
23 - 1
2
PRBS RX
Clk
CDR
DIRXP/N<0>
CLKRXP/N<0>
CLKTXP/N<0>
TRIG<0>
XENTX<0>
PRBS TX
2 23 - 1
OUTP/N<70:0>/
OUTP/N<142:0>
PRBS Tx/Rx Even
DOTXP/N<0>
INP/N<0>
OUTP/N<0>
72x72/
144x144
INP/N<1>
PCML Input
Buffer and
Programmable
Input Equalizer
and LOS Monitor
OUTP/N<1>
PCML Output
Buffer and
Programmable
Output
Pre-emphasis
Differential
Crosspoint
Core
INP/N<71>/
INP/N<143>
XINDIS
OUTP/N<71>/
OUTP/N<143>
XOUTDIS
XDS/SCLK
A[9:0]
D[5:0]
D[6]/DI
Parallel - Serial
D[7]/DO
Interface and
R/XW
XCS
General
XTEST
Registers
XRST
SER/XPAR
TRIG<1>
Active
Configuration
Latch (ACL)
Switch State Write Bus
XSET
Input
Configuration
Latch (ICL)
OUTP/N<71:1>/
OUTP/N<143:1>
XENRX<1> XRSTRX<1>
DOTXP/N<1>
XENTX<1>
Switch State Read Bus
PRBS TX
2 23 - 1
Data
PERROR<1>
PRBSRXERR<7:0>
23 - 1
2
PRBS RX
Clk
CDR
DIRXP/N<1>
CLKTXP/N<1>
CLKRXP/N<1>
CLKTXREF<1>
211x1-DSH-001-I
PLL
PRBS Tx/Rx Odd
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
43
Functional Description
Figure 4-3.
PCML Input and Output Equivalent Circuits
PCML Output
PCML Input
AVdd_IO
AVdd_IO
AVdd_IO
AVdd_IO
50
50
OUTN
INP
50
50
OUTP
INN
Mindspeed
Mindspeed
AVss
Figure 4-4.
AVss
Crosspoint Application Example
Optical
Optical
O/E
E/O
Optical
SFP/XFP
Pointer
Processor
PHY/Pointer
Processor
SPE/
Framer/
Mapper
72x72/
144x144
Crosspoint
Core
Ser/Des
CDR
O/E
E/O
DS3/E3
Driver
VT/
Framer/
Mapper
Driver
DS1/E1
Optical
SFP/XFP
Video SD/HD
Video SD/HD
DC~3.2 Gbps
DC~3.2 Gbps
Line Card/Backplane
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
44
Functional Description
4.2
Detailed Description
4.2.1
Document Conventions
This document uses the following text styling conventions:
Signal names and terminal numbers are listed in all upper case letters denoting each functional name part, with its
related signal polarity indicated by a upper case 'N' or 'P'. Thus, data input signal names are indicated, for example
as: 'DINP' and 'DINN'.
A signal name and an associated channel number (0 through 71/0 through 143) are indicated as DINP[n] and
DINN[n] where 'n' is a channel number.
A register name is typed in all upper case preceded by the word register with each functional name part separated
by an underscore, additionally, brackets group register bit numbers, and sub-function names are in initial caps such
as for example only: 'register CONTROL_FUNCTION[5:4] Los_hyst'.
In order to distinguish terminal names from internally generated signals, the word ‘terminal’ is included in reference
to an input, output, or control, such as: ‘the signal on terminal ABC controls function x', or ‘when the signal on
terminal ABC = H function x is enabled'.
Terminal function descriptions generally do not repeat the word terminal.
4.2.2
Power Supply Configurations
Below is a summary of possible voltage configurations for the switch core and input/output buffers.
•
2.5V IO, 1.2V core
•
1.8V IO, 1.2V core
•
1.5V IO, 1.2V core
•
1.2V IO, 1.2V core (tied together externally)
The I/O supply voltage can be chosen independently, no register bit setting is required. The AVDD_IO and
AVDD_CORE supplies are separate from the DVDD_IO supply, and can be any combination of values specified in
Table 1-2.
4.3
Serial Interface and Switch Programming
The crosspoint switch uses +1.8V/+2.5V/+3.3V CMOS interface levels to program the switch state (SS). All input
terminals have a 100 KΩ internal pull-up, except XINDIS and XOUTDIS, which have internal 100 KΩ pull-downs.
The communication protocol may be either a serial synchronous interface or a parallel asynchronous interface
using eight or ten bits. Either interface can:
•
Program the switch state
•
Individually enable/disable inputs or outputs
•
Access control registers and auxiliary functions
•
Read back the current state of the switch
•
Control the programmable equalization
This section details the operation of the I/O interface and switch programming in Section 4.3.4. The auxiliary
functions and address mapping are described in the section, Switch Function Details.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
45
Functional Description
4.3.1
Switch State Register Concept
The various switch functions are accessed through 8-bit registers (memory), which are addressed with the 10-bit
address bus. The contents of the registers are transferred via an 8-bit data bus during a read or write.
The M21131/M21151 switch-state controller uses a double-buffered register. The active configuration latch (ACL)
holds the actual switch setting while the input configuration latch (ICL) holds either the actual switch setting or the
next switch setting, depending on the mode of operation.
The XSETMODE register selects one of three modes of operation:
•
Default Mode—core configuration updated after every register write.
With XSETMODE = 00h, the first mode is enabled and is the default mode after a reset. Consequently, the
state of the switch changes with each write to a register determining the switch state. In the write mode, as
soon as the signal on terminal XDS makes a low-to-high transition, the input channel specified by data for the
output selected by the 10-bit address bus passes directly through the double buffer memory (ICL/ACL). As
soon as the desired data passes through the ACL, the crosspoint core routes the selected input to the desired
output to physically change the switch state. On the rising edge of XDS, this channel is stored (latched) into
both the ICL and ACL.
•
XSET Mode—core configuration updated after hardware XSET command.
When register XSETMODE = 10b the hardware XSET mode is enabled. In this mode, the desired switch state
(which may contain one or more routing changes) is written first to the ICL, but the switch state does not
change since the data is blocked from the ACL. With either the hardware or software XSET command, the
contents of the ICL are transferred to the ACL, which physically changes the switch state in the switching core.
This mode allows 1 to 144 channels to change at the same time. On the falling edge of the XSET signal, the
ICL contents are passed to the ACL and the switch state changes. On the rising edge of the XSET signal, the
switch state is latched.
•
XSET Mode—core configuration updated after software XSET command.
When register XSETMODE = 01b the software XSET mode is selected, and the desired switch routing is
written into the appropriate registers to update the ICL without affecting the ACL. Then, a write of any value to
the XSETCMD register will update the ACL with the current contents of the ICL, and the switch state changes.
The interface is configured into the parallel mode by forcing terminal SER/XPAR low.
4.3.2
Parallel I/O Overview
A 10-bit address bus and the register contents (read or write) are transferred via a bidirectional 8-bit data bus. The
active-low data strobe (XDS) latches (stores) the data into the register on the rising edge of XDS. To change the
switch state, the double buffer (ICL/ACL) is transparent (mode1) when signal XDS = L in relationship to the data,
consequently the switch state will change on the falling edge of signal XDS. On the rising edge of XDS, the switch
state will be stored into the register.
The active low terminal XCS gates the I/O and input control signal R/XW selects either a read or write operation.
Figure 4-5 illustrates the timing diagram for a parallel write operation.
Table 4-1 shows the parallel write timing specifications as defined in Figure 4-5.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
46
Functional Description
Figure 4-5.
Parallel Write Timing Diagram
XCS
tScs_w
tHcs_w
R_XW
tSrw_w
tHrw_w
XDS
tTxDS_lo _w
A[9:0]
Address
tSA _w
D[7:0]
tTxDS_hi _w
tHA _w
Data Write
tSD
tHD
tSetw
XSET
tSets
Data is latched on rising edge of XDS
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
Write Access
47
Functional Description
Table 4-1.
Parallel I/O Write Timing
Parameter
Description
Minimum
Typical
Maximum
tScs_w
XCS Falling Edge before XDS Rising Edge
5 ns
—
—
tHcs_w
XCS Hold after Rising Edge of XDS
0 ns
—
—
tHrw_w
R/XW Hold after Rising Edge of XDS
0 ns
—
—
tSrw_w
R/XW Setup before Rising Edge of XDS
9 ns
—
—
tTxDSl_w
XDS Low Period
8 ns
—
—
tTxDSh_w
XDS High Period
8 ns
—
—
tSA_w
Address Setup before Rising Edge of XDS
6 ns
—
—
tHA_w
Address Hold after Rising Edge of XDS
3 ns
—
—
tSD_w
Data Setup before Rising Edge of XDS
3 ns
—
—
tHD_w
Data Hold after Rising Edge of XDS
3 ns
—
—
tsetw
Hardware XSET pulse width
20 ns
—
—
tsets
Hardware XSET setup time
3 ns
—
—
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
48
Functional Description
Figure 4-6 shows the timing diagram for a parallel read operation. Table 4-2 shows the parallel read timing
specifications as defined in Figure 4-6.
Figure 4-6.
Parallel Read Timing Diagram
XCS
tHcs_r
tScs_r
R_XW
XDS
tHrw_r
tSrw_r
tTxDS_lo _r
A[9:0]
tTxDS_hi _r
Address
tHA_r
tSA _r
D[7:0]
Data Read
tout2Z
tA2out
Read Access
Table 4-2.
Parallel I/O Read Timing
Parameter
Description
Minimum
Typical
Maximum
tScs_r
XCS Falling Edge before XDS Falling Edge
5 ns
—
—
tHcs_r
XCS Hold after Rising Edge of XDS
0 ns
—
—
tHrw_r
R/XW Hold after Rising Edge of XDS
0 ns
—
—
tSrw_r
R/XW Setup before Falling Edge of XDS
5 ns
—
—
tTxDSl_r
XDS Low Period
50 ns
—
—
tTxDSh_r
XDS High Period
50 ns
—
—
tSA_r
Address Setup before Falling Edge of XDS
9 ns
—
—
tHA_r
Address Hold after Rising Edge of XDS
2 ns
—
—
ta2out
Address Valid to Data Valid (on Read)
—
—
24 ns
tout2Z
XDS Rising Edge to Data High Z
1 ns
—
8 ns
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
49
Functional Description
4.3.3
Serial I/O Overview
The serial I/O operation is gated by chip select signal XCS (on input terminal XCS). Data is shifted in on terminal
SDI on the falling edge of the serial I/O clock input (terminal SCLK), and shifted out on the serial data output
(terminal SDO) on the rising edge of SCLK. Addressing a register consists of the following, as shown in Figure 4-7:
A 12-bit input, consisting of the first bit (start bit, SB = 1), the second bit (operation bit: OP = 1 for read, OP = 0 for
write), followed by the 10-bit address (most significant bit (MSB) first).
Figure 4-7.
Serial Word Format
19 18
1
Start Bit
4.3.3.1
rw
MSB
17
LSB
8
MSB
7
LSB
0
A[9:0]
D[7:0]
Address
Data
Read/Write
Timing Diagram Clock Set and Program Modes
To initiate a write sequence, as shown in Figure 4-8, terminal XCS goes low before the falling edge of SCLK. On
each falling edge of serial I/O clock (SCLK) the 20-bit word consisting of SB = 1, OP = 0, address, and data, are
latched into the input shift register. The rising edge of signal XCS must occur before the falling edge of SCLK for
the last bit. Upon receipt of the last bit, one additional cycle of SCLK is necessary before the input data transfers
from the input shift register to the addressed register.
If consecutive read/write cycles are being performed, it is not necessary to insert an extra clock cycle between
read/write cycles, however one extra clock cycle is needed after the last data bit of the final read/write cycle to
complete the operation. On a write cycle, only the first 18 bits after SB and OP are used and all bits that follow are
ignored.
Figure 4-9 illustrates the serial read mode timing diagram. To initiate a read sequence, the signal on terminal XCS
goes low before the falling edge of SCLK. On each falling edge of SCLK, the 12 bits consisting of SB = 1, OP = 1,
and the10-bit address are written to the serial input shift register of the M21131/M21151. On the first rising edge
following the address LSB, the SB and eight bits of the data are shifted out on SDO. The first bit output on SDO for
a read operation is always 0.
In a read cycle, all extra clock cycles will result in invalid data. For invalid SB/OP, the operation is undefined. The
falling edge of XCS always resets the serial operation for a new read/write cycle.
Table 4-3 contains the timing specifications for the serial programming interface.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
50
Functional Description
Figure 4-8.
Serial Write Mode
Twclk
Tclk
Tcs
Tch
SCLK
Tdh
Tds
xCS
Tens
SDI
1
wr
a9
a8
a7
a6
a5
a1
a0
d7
d6
d5
d4
d3
d2
d1
d0
1
Tdw
Figure 4-9.
Serial Read Mode
Tcs
Tch
SCLK
Twclk
xCS
Tens
SDI
Tdh
Tds
1
rd
a9
a8
a7
Tclk
a6
a2
a1
a0
X
X
X
X
X
211x1-DSH-001-I
X
X
X
d1
d0
1
Trds
Tdw
SD O
X
Trdd
0
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
d7
d6
d5
d4
d3
d2
51
Functional Description
Table 4-3.
Serial Interface Timing—Specified at Recommended Operating Conditions
Symbol
Item
Notes
Minimum
Typical
Maximum
Units
tdw
Data width
—
14
—
—
ns
tdh
Data hold time
—
5
—
—
ns
tds
Data setup time
—
5
—
—
ns
tens
Enable setup time
—
5
—
—
ns
tcs
Chip select setup time
—
2
—
Tclk - 2
ns
tch
Chip select hold time
—
2
—
—
ns
trDD
Read data output delay
—
1
—
14
ns
trds
Read data valid
—
9
—
—
ns
tclk
SCLK period width
—
40
—
—
ns
twclk
SCLK minimum low duration
—
5
—
Tclk - 5
ns
tr
Output rise time
1
1
—
4
ns
tf
Output fall time
1
1
—
4
ns
NOTES:
1.
Edge rate in the high edge-rate mode.
4.3.4
Switch Setting
Crosspoint functions and options are accessed through hardware terminals, or software via the serial/parallel
interface. In some cases, both software and hardware can access the same function. This section describes these
functions in detail and Table 3-1 lists register functions.
The setting parameters are summarized in Table 3-1, which contains the allowable addresses for the M21131/
M21151 crosspoint switch. The INCHSEL#n register controls the crosspoint connectivity. Its register address,
INCHSEL#n, is mapped to the output channel number and its associated data is the input connected to the output
N. Output channels 0 through 71/0 through 143 are mapped to register addresses = 00h through 37h/00h through
8Fh with the output N = address.
For example, if register address = 05h and DATA = 02h (5h = 02h), then output #5 gets input #2. Any output can be
routed to the internal PRBS receiver input and the internal PRBS transmitter output can be routed to any of the
inputs. To Read the current switch state (CSS) of the ACL, the selected channel is specified by register address
and the resulting data is the input channel number routed to the selected output. The Next Switch State (NSS) in
the ICL, if different from the ACL, cannot be read back. The default state after power on is channel 0 broadcast to
all outputs (all registers cleared).
4.3.5
Input/Output Enable and Output Logic Swing
The inputs and outputs have both a hardware global enable and a software global enable as well as individual I/O
software controls.
Terminals XINDIS and XOUTDIS control the inputs and outputs, and are active low (disabled) with internal pulldowns (100 KΩ). When terminals XINDIS = L and/or XOUTDIS = L all inputs and/or outputs are globally disabled,
respectively (default). Hardware disable has priority over all software controls. If the I/Os are not disabled via the
hardware terminals, XINDIS and/or XOUTDIS = H, then the IOENABLE register selects the control status. With
IOENABLE[4] = 0 (default), the software global enable/disable bits (IOENABLE[1:0] for global input) and
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
52
Functional Description
(IOENABLE[3:2] for global output) are selected. The individual global input and output register values default to
disable.
With IOENABLE[4] = 1, the 72/144 CHANCFG#n registers control the enable/disable status of each channel input
and output buffer. The CHANCFG#n address is computed with N+100h, with the variable N mapped to both the
input and output channel. Consequently, CHANCFG#n[3:2] controls the enable/disable status of output N, and
CHANCFG#n[1:0] controls the enable/disable status of input N. With IOENABLE[4] = 1, IOENABLE[3:2] and
IOENABLE[1:0] have no meaning.
For both inputs and outputs, a disabled state implies turning off the current sources of the I/O buffer to save power.
With the built-in pull-up resistors, both “p” and “n” nodes of the differential output will default to the high logic state
when disabled; however, the logic levels of the “p” and “n” inputs to the switch core are undetermined.
An additional input signal inhibit function is included in the IN_CHAN_CTRL[3] registers (200h–237h/200h–28Fh)
of the M21131/M21151. With IN_CHAN_CTRL[3] = 1, the “p” inputs to the switch core are clamped to a logic low
and the “n” inputs are clamped to a logic high.
The output drive level is programmable on either a global or individual basis. With IOENABLE[4] = 0 (default),
IOENABLE[3:2] = 00b selects a global default 500 mVp–p differential output level, and IOENABLE[3:2] = 01b
selects a global default 900 mVp–p differential output level. With IOENABLE[3:2] = 10b a global 1200 mV
differential output level is selected (1200 mV should not be used at AVDD_IO = 2.5 V). With IOENABLE[3:2] = 11b
(default) all outputs are disabled. A 500 mVp–p differential output implies a 250 mVp–p single-ended output. With
IOENABLE[4] = 1, CHANCFG#n[3:2] selects the output level of each channel individually.
The global enable, disable, and output swing level registers minimize the software setup overhead of the crosspoint
switch after resetting; however, individual control of enable/disable and output swing level is provided for maximum
flexibility in some applications.
4.3.6
Programmable Input Equalization
In order to compensate for lossy external interconnects, the input buffers include a programmable equalization
function. Register CHANCFG#n[6:5] as listed in Table 4-4, controls channel equalization for each input
independently.
Table 4-4.
Equalization Control Bits
CHANCFG#n[6:5]
4.3.7
Description
00
Minimum EQ (≈ 9 dB)
01
Small EQ (≈ 12 dB) (default)
10
Medium EQ (≈ 15 dB)
11
Large EQ (≈ 18 dB)
Programmable Output De-Emphasis
Similar to input equalization, each output buffer and PRBS transmitter has a programmable output de-emphasis
(PE) function included. When enabled, the PE will provide a high frequency boost to the output signal, such that the
data eye will be improved (more open) after a long external interconnect.
With IOENABLE[4] = 0 (address BAh), CORECTRL[2] (address BBh) globally enables/disables the PE for all
outputs. CORECTRL[2] defaults to 0, PE off. The PE for PRBS transmitters are not dependant on IOENABLE[4],
i.e., PRBSTXCTRL2_N[5:3] always control PE for the PRBS transmitters. With IOENABLE[4] = 0 and
CORECTRL[2] = 1, PE is globally enabled and CORECTRL[4:3] (address BBh) globally control the PE amplitude
and duration for all outputs. The default PE amplitude and duration settings are CORECTRL[4] = 0 and
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
53
Functional Description
CORECTRL[3] = 1 which globally enable a PE of 50% for a duration of approximately 600 ps (see Figure 4-10). For
example, if the output drive level is set for 1200 mV, when there is a data transition (1-to-0 or 0-to-1) the beginning
of each pulse will start at 1200 mV and decay to 600 mV in approximately 600 ps. Setting CORECTRL[4] = 1
(PRBSTXCTRL2_N[5] = 1) enables a higher boost of 67%. For example, if the output drive level is set for 1200 mV,
the beginning of each pulse will start at 1200 mV and decay to 400 mV. CORECTRL[3] = 0 and
PRBSTXCTRL2_N[3] = 0 (default is 1) enable a longer decay time of approximately 1200 ps, corresponding to
lower frequency boost. This is for interconnects which exhibit attenuation at lower frequencies.
Table 4-5.
De-Emphasis Control Bits
Register BBh[4:3]
Description
00
50% Amplitude, 1200 ps duration.
01
50% Amplitude, 600 ps duration (default).
10
67% Amplitude, 1200 ps duration.
11
67% Amplitude, 600 ps duration.
With IOENABLE[4] = 1 (address BAh), PE on each output is individually enabled/disabled by CHANCFG#n[4].
CHANCFG#n[4] defaults to 0, PE off. The amplitude and duration of the PE on all of outputs are still controlled by
CORECTRL[4:3]. The amplitude and duration of the PE on PRBS transmitters are controlled by
PRBSTXCTRL2_N[5, 3].
Figure 4-10. Definition of De-Emphasis Levels and Duration
Duration
V
B
V
S
Pre-Emphasis Level =
V
B
V
x 100
S
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
54
Functional Description
4.3.8
Duty Cycle Distortion (Offset) Circuit on Inputs to Switch
Each input channel has an offset circuit that can be enabled to correct for DC offset. This circuit is designed to
correct duty cycle distortion (DCD) that may be present on either a single ended or differential signal at the input of
the switch. It also compensates for common mode drift of the input stage over temperature and power supply
variation for single ended inputs. When enabled, the offset feature removes DCD thus improving the quality of the
data eye pattern. CHANCFG#n[7] at addresses 100h–137h/100h–18Fh enables the offset function.
4.3.9
Input Signal Activity Monitor
For operation at data rates of 1.0 Gbps to 1.6 Gbps and 2.0 Gbps to 3.2 Gbps, a loss of signal (LOS) circuit is
included on each input and detects whether valid data is present. The 19.44 MHz RXREFCLK clock must be
provided to the M21131/M21151 and the data rate of the signal must be programmed for the LOS feature to
function properly. LOS acts as an alarm and can be used to inhibit the signal into the switch core when the data to
the input terminal is lost. If the input signal is clamped high or low, or if the difference between the input data rate
and the programmed data rate is greater than approximately ±100 Mbps, the LOS alarm will be activated.
Whenever valid data is present at the input, the LOS alarm is deactivated. The LOS circuit is disabled if register
IN_CHAN_CTRL#[1] = 0 (default 1) (addresses 200h–237h/200h–28Fh). The data rate range is selected using
LOS_DR_SEL#n[6] and the data rate is programmed using LOS_DR_SEL#n[5:0] (addresses 300h–337h/300h–
38Fh). When register IN_CHAN_CTRL#[3] = 1 (default) a LOS alarm issues an inhibit signal which forces the
switch input to a low state. This minimizes any noise propagating to the switch in the LOS condition.
Figure 4-11. LOS Architecture
Inhibit Enable
MUX
0
To Xpoint
Input Data
Reference Clock (RXREFCLK)
Loss of Signal Detection
data_rate
4.3.9.1
LOS
LOS Data Rate Programming
The LOS circuit for each input channel operates independently and employs an external 19.44 MHz clock
reference, RXREFCLK. The LOS circuit can be programmed to any rate between 2.0 GHz and 3.2 GHz or between
1.0 GHz and 1.6 GHz using register LOS_DR_SEL#n[6:0] (300h–337h/300h–38Fh). To select a desired rate, it is
necessary to set LOS_DR_SEL#n[6:0] to the value closest to the desired rate. For example if 2.64 GHz is the
desired rate: LOS_DR_SEL#n[6] = 0 and the code to be selected (LOS_DR_SEL#n[5:0]) is 100010 (136d), which
corresponds to 2.6438 GHz. The programmed frequency is exactly equal to the reference frequency multiplied by
the decimal equivalent of the binary value programmed in register LOS_DR_SEL#n[5:0] + 102d. For 1.0 Gbps to
1.6 Gbps operation, the dr_range bit, LOS_DR_SEL#n[6] must be set to 1. This bit causes the multiplier set by
LOS_DR_SEL#n[5:0] to be divided by two.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
55
Functional Description
Table 4-6.
Allowed Data Rates with 19.44 MHz External Reference
RXCDR_CTRLB_N[5:0]
Notes
Bit Rate in Gbps
Multiplier
000000
1
1.983
102
000001
1
2.002
103
000010
2.022
104
…
…
…
011010
2.488
128
…
…
…
3.208
165
111111
1
NOTE:
1.
For decimal multiplier values which are not 104, 112, 120, 128, 136, 144, 152, or 160, more programming steps are required and are outlined in
the “Settings for Non-Standard Rates” section and Table 4-7.
4.3.9.2
LOS Signal Busing
Although each input channel has an individual LOS alarm, the alarms for all of the channels are wired OR on chip
to create the global LOS alarm; therefore, an active LOS from one or more channels will generate a logic high on
the global LOS terminal and set an alarm bit. The alarm bit can be immediately read from los_statn[7:0]. Toggling
register GLOBAL_CTRL[0] from 0 to 1 then back to 0 will clear all alarm bits (unless a particular alarm persists, in
which case this bit will remain high).
4.3.10
Power-Up Sequence and Device Reset
There are no power supplies sequence requirements for the M21131/M21151. Proper hardware reset assertion will
ensure that the device will operate properly regardless of power supply sequence.
The XRST terminal is a hardware reset to be used after power-up or as a general reset. Before and during powerup, XRST must be set LOW.
If the device is configured to use the parallel interface for programming the registers, then upon device power-up,
the XRST terminal must be held LOW for a minimum of TRESET = 10 µs after all power supplies have reached the
expected voltage level. Once XRST is set HIGH following TRESET, the device reset is complete. Any hardware reset
of the device after power-up can be achieved by setting terminal XRST LOW for TRESET > 10 µs and returning it to
HIGH.
Figure 4-12. Reset Timing in Parallel Programming Mode
100%
95%
All power supplies
TRESET
>10µs
TRESET
>10µs
XRST
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
56
Functional Description
If the device is configured to use the serial interface for programming the registers (SPI), then a valid SPI clock
(SCLK) must be present at the time of reset. The XRST terminal must be held LOW for a minimum of TRESET >= 4
SCLK cycles, after a valid clock signal is applied. Once XRST is set HIGH following TRESET, the device reset is
complete. Any hardware reset of the device after power up can be achieved by setting terminal XRST LOW for at
least TRESET > 4 SCLK cycles and returning it to HIGH.
Figure 4-13. Reset Timing in Serial Programming Mode
All power supplies
SCLK
TRESET
TRESET
XRST
Following reset, the device will be in the following condition:
• All registers will be set to the default values.
• A software global disables of all input and output channels will be asserted (through the I/O enable register).
• Input channel 0 will be broadcast to all outputs (the ICL and ACL are cleared).
• The PRBS TX and RX will be disabled.
• All error flags will be cleared
If XTEST = L after reset, all inputs and outputs are globally enabled and the switch is set with channel 0 broadcast
to all outputs. Mindspeed uses these features for internal die testing, but for normal operation, terminals XTEST =
H and XRST = H. To enable a software reset, two consecutive writes to the SOFTRESET register (address, BFh)
value (AAh) are required. If the second write is not to the SOFTRESET register, the register will be cleared and two
additional consecutive writes of (AAh) will be needed to enable a software reset. Hardware reset has priority over
software reset. A third write of any value is required to bring the switch out of reset.
4.3.11
Product and Revision Codes
A read to the read-only PRODCODE register causes a readback of the M21131/M21151 product code number. A
read to the read-only CHIPREV register causes a readback of the version number of the chip. The contents of
these registers can be used by software drivers to determine the appropriate driver routine to be used. See
Section 3.1.3 for details.
4.3.12
Core Power Saving
The CORECTRL register enables the core power-saving modes. Register CORECTRL[1] = 0 powers down the
switch core and the PRBS TX/RX (default power on).
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
57
Functional Description
Register CORECTRL[0] = 1 enables the SmartPower™ core control (default).
SmartPower automatically disables portions of the core mux circuitry that are not active for certain switch
configurations. This results in a significant power savings compared to operations when the core mux is fully
powered. The actual power savings will vary across configurations.
Enabling SmartPower will slightly increase the settling time of the device when a new switch core configuration is
implemented, so for applications where the minimum configuration time of the switch is desired, SmartPower
should be disabled. Most applications will use the M21131/M21151 with SmartPower enabled.
4.3.13
PRBS Transmitter and Receiver
Internally, the switch core input terminals (INP and INN) and output terminals (OUTP and OUTN) are grouped into
odd and even sections, as shown in the PRBS TX and RX Functional Block Diagram, Figure 4-14. Likewise, there
are two PRBS transmitter (TX) and receiver (RX) sections:
An odd (1) section which operates with the odd numbered Inputs (INP1, 3, 5, etc. and INN1, 3, 5, etc.) and
Outputs (OUTP1, 3. 5, etc. and OUTN1, 3, 5, etc.)
An even (0) section which operates with the even numbered Inputs (INP0, 2, 4, etc. and INN0, 2, 4, etc.) and
Outputs (OUTP0, 2, 4, etc. and OUTN0, 2, 4, etc.).
As a result, there are two sets of PRBS control terminals, interface terminals and control registers. See Table 3-1,
Register Summary, (addresses A0 − B7) for additional information.
The references to PRBS control registers in this section apply to either the odd or even PRBS registers. As an
example:
Terminal DOTXP/N[1] is the PRBS TX output of the odd (1) section and can only be routed to the odd
numbered inputs. If an even numbered input is selected for PRBSTXCHSEL_ODD[7:0], the PRBS TX output
will not be connected to any odd numbered input (to connect a PRBS signal to an even numbered input, the
even (0) PRBS TX section must be enabled and the PRBSTXCHSEL_EVEN[7:0] register must be properly
programmed).
Similarly, the even (0) PRBS RX section can only accept even numbered outputs (OUTP0, 2. 4, etc.). If an odd
numbered output is selected for the even (0) PRBS RX, no PRBS output signal will be connected to the even
(0) PRBS RX block (invalid output).
Also, note that since the RX and TX functions are completely duplicated, they can be used simultaneously in
parallel. For instance, PRBS signals can be simultaneously routed into input 1 and input 71/input 1 and input 143.
These two PRBS signals can then be switched to any even and any odd outputs, respectively. The respective odd
and even outputs that were selected can be connected to the PRBS RX blocks. The PRBS TX and RX sections
operate from 1.0 Gbps to 1.6 Gbps and 2.0 Gbps to 3.2 Gbps.
4.3.13.1
PRBS TX Pattern Generation
223-1
The
PRBS TX (with polynomial D23+D18+1) provides a NRZ PRBS pattern. The PRBS TX is enabled with
register PRBSTXCTRL1[3] = 1 (default 0) or with terminal XENTX = L (CMOS level, internal pull-up). An
asynchronous reset can be performed by setting PRBSTXCTRL1[4] = 1 and then bringing it low again. The data
rate is determined by the external clock on terminal CLKTXP/N (PCML), by an external reference clock CLKTXREF
(~19.44MHz, CMOS level) or by the recovered clock from the PRBS RX block, which is derived from its preceding
CDR).
Register PRBSTXCTRL1[6:5] = 10b (default) selects the high-speed clock input, PRBSTXCTRL1[6:5] = 00b
selects the low-frequency reference clock input and PRBSTXCTRL1[6:5] = 01b selects the recovered PRBS RX
clock. For the case where an external low frequency clock is provided, register PRBSTXCTRL1[1] = 0 enables the
TX PLL and PLL_CTRLB[6:0] sets the actual internal clock frequency into the PRBS TX. For a 19.44 MHz
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
58
Functional Description
reference input, the PLL output frequency programming is described in “PRBS CDR Control Parameters” on
page 59. Register PLL_CTRLB[7] provides a PLL software reset if required.
4.3.13.2
Additional Test Patterns
The PRBS TX can also output a 0101 or a 0011 pattern. By setting register PRBSTXCTRL2[1] = 1 (default 0) this
mode is selected. If PRBSTXCTRL2[2] = 1 then a 0011 pattern is generated otherwise a 0101 pattern is created
(default).
4.3.13.3
PRBS Output Data
The output data is updated with each rising edge of CLKTXP. The output terminal Trig (CLKTXP/N divided by 16) is
used as a scope trigger to observe the 223-1 pattern and can be disabled with Register PRBSTXCTRL2[0 = 0
(default). It is a single ended PCML output with 50Ω on chip source termination and 450 mVp–p single ended
swing into an external 50Ω load.
The PRBS TX data can be observed at terminals DOTXP and DOTXN (PCML output with 50Ω on chip source
termination and 900 mVp–p differential swing into an external 50Ω load) and can be routed internally to any of the
inputs. When routing PRBSTX through the crosspoint core, DOTXP/N needs to be terminated with 50Ω load.
Register PRBSTXCTRL1[2] = 0 disables the PRBS TX output to be routed to any input; with PRBSTXCTRL1[2] = 1
(default).
Register PRBSTXCHSEL[7:0] selects the input to which the PRBS TX will be routed. Input channel N is selected
by setting PRBSTXCHSEL[7:0] = Nh. If an invalid input is selected (N>71/143), then the PRBS TX will not be
routed to any input.
Note that the PRBS TX signal will be forced into the input terminals (the on-chip PRBS buffers are operating in
current mode); a portion of the PRBS signal will egress from the input terminal to which the PRBS transmitter is
connected. The device normally connected to these terminals may need to be powered down (it is acceptable to
have the 50Ω source termination still present) or temporarily disconnected during PRBS operation.
4.3.13.4
PRBS RX Control Parameters
A 223-1 PRBS RX takes in a NRZ PRBS pattern (with polynomial D23+D18+1) and checks for any bit errors. The
PRBS RX includes an integrated CDR which uses RXREFCLK as a low-speed reference clock.
The PRBS RX will be enabled with register PRBSRXCTRL[3] = 1 (default 0) or with terminal XENRX = L (CMOS
level, internal pull-up). When enabled, the PRBS RX takes its input directly from any of the odd or even core
outputs as enabled by PRBSRXCTRL[5] = 0, or from external inputs DIRXP/N enabled by PRBSRXCTRL[5] = 1
(default).
Register PRBSRXCTRL[2] = 0 prevents any of the core outputs from being connected to the PRBS RX. If register
PRBSRXCTRL[2] = 1 (default), then PRBSRXCHSEL[7:0] selects which core output channel goes to the PRBS
RX. In either case, the input to the PRBS RX is first routed into a dedicated CDR to resample the data and to
extract a clock for the PRBS RX. Register PRBSRXCTRL[1] = 0 (default 1) enables the CDR.
4.3.13.5
PRBS CDR Control Parameters
Register CDR: RXCDR_CTRLB[6:0] controls the desired bit rate, and CDR: RXCDR_CTRLB[7] provides a means
for a software reset. The CDR must be in lock before valid data can be passed on to the actual PRBS RX circuit.
Register RXCDR_ALARMS[1:0] contain the normal CDR alarms; these bits need to be 0 for the PRBS RX to
produce valid error counts. For this reason the PRBS RX needs to remain in reset while the CDR is acquiring lock.
This can be done by setting register XRSTRX = L (CMOS level, internal pull-up) or with PRBSRXCTRL[4] = 1
(default 0).
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
59
Functional Description
The operation of the CDR for the PRBS RX section is controlled through the PRBS RX CDR Control A and Control
B registers (addresses A4h, A5h, B0h, and B1h). The CDR for the PRBS RX can be reset through
RXCDR_CTRLB[7]. This bit must be set to a 1 and then set back to a 0 to issue a software reset. The LOS circuit
for the PRBS RX CDR can be enabled/disabled with RXCDR_CTRLA[1]. Bits 5, 4, 3, 2, and 0 of this register are
Mindspeed reserved bits and should not be used. Bits 5, 4, and 3 should be set to 0 and bits 2 and 0 should be set
to 1.
4.3.14
PRBS CDR Data Rate Programming
For the CDR to achieve a correct frequency acquisition, a frequency acquisition loop is present. The frequency
acquisition loop employs an external clock reference, REFCLK. The external reference clock frequency should be
19.44 MHz ±50 ppm. The CDR is able to lock the VCO to any rate between 2.0 GHz and 3.2 GHz or from between
1.0 GHz and 1.6 GHz using register RXCDR_CTRLB_N[6:0] (A5h and B1h). To select a desired rate, it is
necessary to set RXCDR_CTRLB_N[6:0] to the value closest to the desired rate. For example if 2.64 GHz is the
desired rate: RXCDR_CTRLB_N[6] = 0 and the code to be selected (RXCDR_CTRLB_N[5:0]) is 100010 (136d),
which corresponds to 2.6438 GHz. The programmed frequency is exactly equal to the reference frequency
multiplied by the decimal equivalent of the binary value programmed in register RXCDR_CTRLB_N[5:0] + 102d.
For 1.0–1.6 GHz operation, the half rate bit, RXCDR_CTRLB_N[6] must be set to 1. This bit causes the multiplier
set by RXCDR_CTRLB_N[5:0] to be divided by two.
The Frequency Acquisition Loop is activated if the frequency difference between VCO (divided down) and the
external reference clock is more than a certain value called Frequency Window. More precisely, if LOL = H this
value is called Narrow Frequency Window (NFW) and when LOL = L it is called Wide Frequency Window (WFW)
(WIN_INLCK_LOL[7:0]/WIN_OUTLCK_LOL[7:0]) (addresses C3h/C4h). The WFW is typically larger then NFW to
provide hysteresis for the locking process. With CDRX_CTRLA[3] = 1 (default) a LOL alarm issues the CDR inhibit
which forces the CDR output to a low-logic state. When LOL = L the frequency acquisition loop is turned off to
reduce jitter generation and to optimize phase lock. A Frequency Window Detector determines whether the VCO
frequency is inside or outside the Narrow/Wide Frequency Window.
The Narrow Frequency Window and Wide Frequency Window are calculated as follows:
⎧ 1
⎫
w _ inlk
NFW = f refclk ⋅ ⎨
− 1⎬ , with α =
ref _ strt
⎩ (1 ± α ) ⎭
⎧ 1
⎫
w _ inlk
− 1⎬ , with α =
WFW = f refclk ⋅ ⎨
ref _ strt
⎩ (1 ± α ) ⎭
The default values for the narrow and wide window are 03h and 1Eh, which corresponds to 100 ppm and 1000 ppm
frequency windows. The frequency acquisition time is about 1.65 ms and is limited by the 100 ppm accuracy.
4.3.14.1
Settings for Non-Standard Rates
If a data rate is selected, which does not correspond to a multiplier of 104, 112, 120, 128, 136, 144, 152, or 160,
then an additional write sequence is required for proper operation:
1. The VCO counter needs to have a start value different from the default value (00h). To accomplish this, the
appropriate value for diff_start from Table 4-7 should be written into RXCDR_CTRLB_N[7:0].
2. RXCDR_CTRLA_N[7:6] should be changed to 11b, i.e., CFh should be written to RXCDR_CTRLA_N[7:0]
(initial value can be 00, 01, or 10); this latches the contents of RXCDR_CTRLB_N into a dedicated register.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
60
Functional Description
3. RXCDR_CTRLB_N can be used as defined in the register map in Table 4-6.
4. RXCDR_CTRLA_N[7:6] should be reset back to 00, 01, or 10.
An individual channel soft reset will not clear the results of the diff_start register but this write sequence must be
repeated after a hardware reset or power down.
For example, for a data rate of 2.605 Gbps for the even PRBS receive CDR, the multiplier would be 134 and the
following register commands would be required:
1. Write data 5Fh into register address A5h
2. Write data CFh into register address A4h
3. Write data 20h into register address A5h
4. Write data 0Fh into register address A4h
The diff_start values as a function of the multiplier ratio are shown in Table 4-7.
Table 4-7.
211x1-DSH-001-I
Diff_start Values as a Function of the Multiplier (1 of 3)
Multiplier
Bit Rate in Gbps
RXCDR_CTRLB[7:0] = diff_start[7:0]
102
1.983
7Fh
103
2.002
7Fh
104
2.022
00h (default)
105
2.041
13h
106
2.061
27h
107
2.080
3Bh
108
2.099
4Eh
109
2.119
62h
110
2.138
75h
111
2.158
7Fh
112
2.177
00h (default)
113
2.197
12h
114
2.216
24h
115
2.236
36h
116
2.255
49h
117
2.274
5Bh
118
2.294
6Dh
119
2.313
7Fh
120
2.333
00h (default)
121
2.352
11h
122
2.372
22h
123
2.391
33h
124
2.411
44h
125
2.430
55h
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
61
Functional Description
Table 4-7.
211x1-DSH-001-I
Diff_start Values as a Function of the Multiplier (2 of 3)
Multiplier
Bit Rate in Gbps
RXCDR_CTRLB[7:0] = diff_start[7:0]
126
2.449
66h
127
2.469
77h
128
2.488
00h (default)
129
2.508
10h
130
2.527
20h
131
2.547
30h
132
2.566
40h
133
2.586
4Fh
134
2.605
5Fh
135
2.624
6Fh
136
2.644
00h (default)
137
2.663
0Fh
138
2.683
1Eh
139
2.702
2Dh
140
2.722
3Ch
141
2.741
4Bh
142
2.760
5Ah
143
2.780
69h
144
2.799
00h (default)
145
2.819
0Eh
146
2.838
1Ch
147
2.858
2Ah
148
2.877
38h
149
2.897
47h
150
2.916
55h
151
2.935
36h
152
2.955
00h (default)
153
2.974
0Dh
154
2.994
1Bh
155
3.013
28h
156
3.033
35h
157
3.052
43h
158
3.072
50h
159
3.091
5Eh
160
3.110
00h (default)
161
3.130
0Ch
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
62
Functional Description
Table 4-7.
Diff_start Values as a Function of the Multiplier (3 of 3)
Multiplier
Bit Rate in Gbps
RXCDR_CTRLB[7:0] = diff_start[7:0]
162
3.149
19h
163
3.169
26h
164
3.188
33h
165
3.208
3Fh
Because of finite resolution in the diff_start values, the value for WIN_OUTLCK_LOL[7:0] should be changed to at
least 0Ah (default is 03h).
If rates are required which correspond to a non-integer multiplier (in between 2 consecutive multipliers), the CDRs
can still lock to this input, as long as the closest integer multiplier is selected, and the narrow and wide frequency
windows are changed to wider settings. For this purpose, each CDR has 2 individual large frequency window
settings (lolwinctrl[1:0]): RXCDR_CTRLA_N[7:6] = 01 selects 2200/2600 ppm for the narrow and wide window of
CDRx; RXCDR_CTRLA_N[7:6] = 10 selects 4400/5200 ppm. RXCDR_CTRLA_N[7:6] = 00 (default) selects the
global frequency window settings of 100 ppm/1000 ppm (default).
NOTE:
4.3.14.2
If these wide window settings are not selected, a CDR with a data rate in between, for
instance 2.488 Gbps and 2.508 Gbps, will never go out of frequency acquisition, since the
frequency acquisition loop pulls the VCO to either 2.488 GHz or 2.508 GHz (depending on
which multiplier was chosen) and the phase loop will pull the VCO to the exact data rate
which is seen as an LOL condition (if the data rate is more than 1000 ppm away from
2.488 Gbps or 2.508 Gbps).
PRBS Error Detection
When the PRBS RX detects an error, terminal PERROR will go high. The first and every additional error
increments an internal 8-bit counter (PRBSERROR[7:0]). If the number of errors exceeds 255 (counter overflow),
the counter will remain at 255 until a hardware or software reset (powering down and then powering up) occurs.
Reading the receiver error counter register requires a write of any value to copy the current contents of the error
register into the PRBS error register. Subsequently, a read will yield the current error count as of the last write.
While the counter value is being read out, no additional errors will be counted. Upon PRBS reset, the PRBS
receiver error counter is cleared and PERROR is reset. Register PRBSERROR[7:0] will always contain the current
number of error counts The value divided by the time of the test can be used to calculate a first order estimate of
the bit error rate. If there have been more than 255 errors, the PRBSERROR register will always read FFh until
cleared.
NOTE:
The PERROR terminal is gated with the RXCDR alarms, so that if no stable data is
presented to the PRBS receiver (LOS or LOL alarm is high), this terminal will go high and
will stay high until all the alarms are cleared and the PRBS receiver error counter is
cleared. This enables the PRBS receiver to detect the all zeros case as an error condition.
The PRBS RX can also be configured to detect all patterns that the PRBS TX can generate. Register
PRBSRXCTRL[7] = 1 (default 0) selects this mode. The input data has to be a 0101 or a 0011 repeating pattern. If
it does not correspond to one of them, errors will be counted.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
63
Functional Description
Figure 4-14. PRBS TX and RX Functional Block Diagram
XENTX<0>
CLKRXP/N[0]
CLK_IN
CLKTXP/N<0>
PLL
CLKTXREF<0>
PRBS_OUT
PRBS TX
(0)
PRBSTXCTRL_EVEN1[6:5]
XRSTTX<0>
PLL_CTRL_EVENB[7:0]
PRBS TX Cell 0
DOTXP/N<0>
PRBSTXCTRL_EVEN[2]
TRIG<0>
XENTX<1>
CLKRXP/N[1]
Clk_in
CLKTXP/N<1>
CLKTXREF<1>
PRBS TX Cell 1
PLL
PRBS_OUT
PRBS TX
(1)
PRBSTXCTRL1_ODD[6:5]
XRSTTX<1>
PRBSTXCTRL1_ODD[2]
TRIG<1>
PLL_CTRLB_ODD[7:0]
DOTXP/N<1>
OUTP/N<0>
INP/N<0>
...
...
50
X
...
...
OUTP/N<70>
INP/N<1>
50
Crosspoint Switch Core
INP/N<71>/
INP/N<143>
50
OUTP/N<71>/
OUTP/N<143>
XRSTRX<0>
PRBS RX Channel Select
(even/odd)
Register:
ADh (even), A1 (odd)
RXCDR_CTRLB_EVEN[7:0]
DIRXP/N<0>
CDR
data
clk
XENRX<0>
PRBSERROR[7:0]
(8-Bit Counter)
PRBS RX
PRBSRXCTRL_EVEN[5]
PERROR<0>
PRBS TXChannel Select
(even/odd)
Register:
A9h (even), B5 (odd)
PRBS RX Cell 0
PRBS RX Control
Register (ACh)
RXCDR_CTRLB_ODD[7:0]
XRSTRX<1>
PRBSERROR[7:0]
(8-Bit Counter)
data
DIRXP/N<1>
CDR
clk
PRBSRXCTRL_ODD[5]
211x1-DSH-001-I
PRBS RX
XENRX<1>
PERROR<1>
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
PRBS RX Cell 1
64
www.mindspeed.com
General Information:
Telephone: (949) 579-3000
Headquarters - Newport Beach
4000 MacArthur Blvd., East Tower
Newport Beach, CA 92660
© 2012 Mindspeed Technologies®, Inc. All rights reserved.
Information in this document is provided in connection with Mindspeed Technologies® ("Mindspeed®") products.
These materials are provided by Mindspeed as a service to its customers and may be used for informational
purposes only. Except as provided in Mindspeed’s Terms and Conditions of Sale for such products or in any
separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes
no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and
product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and
shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its
specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document.
THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL
DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR
COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS,
WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.
Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed
customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to
fully indemnify Mindspeed for any damages resulting from such improper use or sale.
211x1-DSH-001-I
Mindspeed Technologies®
Mindspeed Proprietary and Confidential
65
Similar pages