AOT14N50 / AOTF14N50 500V, 14A N-Channel MOSFET General Description Features The AOT14N50 & AOTF14N50 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. Top View TO-220 VDS (V) = 600V@150°C ID=14A RDS(ON)<0.38Ω (V GS = 10V) 100% UIS Tested! 100% R g Tested! D TO-220F G G D G S D S S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter AOT14N50 Symbol AOTF14N50 VDS Drain-Source Voltage 500 VGS Gate-Source Voltage ±30 TC=25°C Continuous Drain Current TC=100°C ID 14* 9.6* 14 9.6 Units V V A C IDM Avalanche Current C, G IAR 6 A Repetitive avalanche energy C, G EAR 540 mJ Single pulsed avalanche energy Peak diode recovery dv/dt TC=25°C B Power Dissipation Derate above 25oC EAS dv/dt 1080 5 mJ V/ns W Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter TJ, TSTG Pulsed Drain Current G PD Alpha & Omega Semiconductor, Ltd. 223 50 1.8 0.4 TL Symbol RθJA Maximum Junction-to-Ambient A RθCS Maximum Case-to-Sink RθJC Maximum Junction-to-Case * Drain current limited by maximum junction temperature. A,D 56 -50 to 150 W/ oC °C 300 °C AOT14N50 65 AOTF14N50 65 Units 0.5 -2.5 °C/W °C/W 0.56 °C/W www.aosmd.com AOT14N50 / AOTF14N50 Electrical Characteristics (T J=25°C unless otherwise noted) Parameter Symbol STATIC PARAMETERS Conditions Min ID=250µA, VGS=0V, TJ=25°C 500 BVDSS Drain-Source Breakdown Voltage BVDSS Breakdown Voltage Temperature /∆TJ Coefficient IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V Typ Max Units V ID=250µA, VGS=0V, TJ=150°C 600 V ID=250µA, VGS=0V 0.5 V/ oC VDS=500V, VGS=0V 1 VDS=400V, TJ=125°C 10 µA ±100 nA VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 4.2 4.5 V RDS(ON) gFS Static Drain-Source On-Resistance VGS=10V, ID=7A 0.29 0.38 Forward Transconductance VDS=40V, ID=7A 20 Ω S VSD IS Diode Forward Voltage IS=1A, VGS=0V Maximum Body-Diode Continuous Current ISM Maximum Body-Diode Pulsed Current DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=400V, ID=14A 3.3 0.71 1 V 14 A 56 A 1531 1914 2297 pF 153 191 229 pF 11 16 20 pF 1.75 3.5 5.3 Ω 42.8 51 nC 9.3 11 nC nC Qgd Gate Drain Charge 20.3 24 tD(on) Turn-On DelayTime 44 53 ns tr Turn-On Rise Time 84 101 ns tD(off) Turn-Off DelayTime 92 110 ns tf Turn-Off Fall Time 50 60 ns 289 347 4.93 6 ns µC VGS=10V, VDS=250V, ID=14A, RG=25Ω IF=14A,dI/dt=100A/µs,VDS=100V trr Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=14A,dI/dt=100A/µs,VDS=100V Qrr A: The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial T J =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=6A, VDD=50V, RG=25Ω, Starting TJ=25°C Rev 2. Dec-08 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Alpha & Omega Semiconductor, Ltd. www.aosmd.com AOT14N50 / AOTF14N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 30 100 10V 6.5V 25 20 10 ID(A) ID (A) -55°C VDS=40V 6V 15 VGS=5.5V 10 125°C 1 25°C 5 0.1 0 0 5 10 15 20 25 30 2 0.50 3 0.45 2.5 0.40 0.35 0.30 4 6 8 10 VGS(Volts) Figure 2: Transfer Characteristics Normalized On-Resistance RDS(ON) (mΩ) VDS (Volts) Fig 1: On-Region Characteristics VGS=10V 0.25 200 16 VGS=10V ID=7A 2 1.5 1 0.5 0.20 0 5 10 15 20 25 0 -100 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 1.2 100 150 200 1.0E+02 1.0E+01 125°C 1.1 1.0E+00 IS (A) BVDSS (Normalized) 50 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1 1.0E-01 25°C 1.0E-02 0.9 1.0E-03 0.8 -100 1.0E-04 -50 0 50 100 150 200 TJ (oC) Figure 5: Break Down vs. Junction Temperature Alpha & Omega Semiconductor, Ltd. 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics www.aosmd.com AOT14N50 / AOTF14N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=400V ID=14A Ciss Capacitance (pF) VGS (Volts) 12 9 6 1000 Coss 100 Crss 3 0 10 5 10 15 20 25 30 35 40 45 50 55 60 Qg (nC) Figure 7: Gate-Charge Characteristics 100 10µs RDS(ON) limited ID (Amps) 10 0.1 1 10ms 0.1s DC 0.1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 200 16 10µs RDS(ON) limited 10 100µs 1ms 1 100 100µs ID (Amps) 0 1 DC 0.1 TJ(Max)=150°C TC=25°C 1ms 10ms 0.1s 1s 10s TJ(Max)=150°C TC=25°C 0.01 0.01 1 10 100 1000 VDS (Volts) 1 10 100 1000 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOT14N50 (Note F) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF14N50 (Note F) 16 Current rating ID(A) 14 12 10 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (°C) Figure 11: Current De-rating (Note B) Alpha & Omega Semiconductor, Ltd. www.aosmd.com AOT14N50 / AOTF14N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TA+PDM.ZθJC.RθJC RθJC=0.45°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT14N50 (Note F) ZθJC Normalized Transient Thermal Resistance 10 1 200 16 D=Ton/T TJ,PK=TA+PDM.ZθJC.RθJC RθJC=2.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF14N50 (Note F) Alpha & Omega Semiconductor, Ltd. www.aosmd.com AOT14N50 / AOTF14N50 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs Rg + VDC 90% Vdd - 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC Rg - Vdd I AR Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Qrr = - Idt Vds + DUT Vds - Isd Vgs L Vgs Ig Alpha & Omega Semiconductor, Ltd. Isd + VDC - IF trr dI/dt IRM Vdd Vdd Vds www.aosmd.com