HD74ALVC2G125 Dual Bus Buffer with 3-state Output REJ03D0171–0200Z (Previous ADE-205-621A (Z)) Rev.2.00 Dec.18.2003 Description The HD74ALVC2G125 has dual bus buffer with 3-state output in an 8 pin package. Output is disabled when the associated output enable (OE) input is high. To ensure the high impedance state during power up or power down, OE should be connected to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current sinking capability of the driver. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life. Features • The basic gate function is lined up as Renesas uni logic series. • Supplied on emboss taping for high-speed automatic mounting. • Supply voltage range : 1.2 to 3.6 V Operating temperature range: −40 to +85°C • All inputs VIH (Max.) = 3.6 V (@VCC = 0 V to 3.6 V) All outputs VO (Max.) = 3.6 V (@VCC = 0 V) • Output current ±2 mA (@VCC = 1.2 V) ±4 mA (@VCC = 1.4 V to 1.6 V) ±6 mA (@VCC = 1.65 V to 1.95 V) ±18 mA (@VCC = 2.3 V to 2.7 V) ±24 mA (@VCC = 3.0 V to 3.6 V) • Ordering Information Part Name Package Type Package Code Package Abbreviation Taping Abbreviation (Quantity) HD74ALVC2G125USE SSOP-8 pin TTP-8DBV US E (3,000 pcs/reel) Rev.2.00, Dec.18.2003, page 1 of 12 HD74ALVC2G125 Outline and Article Indication • HD74ALVC2G125 Index band Lot No. Y M W A 2 5 Y : Year code (the last digit of year) M : Month code W : Week code SSOP-8 Marking Function Table Inputs OE A Output Y L H H L L L H X Z H: L: X: Z: High level Low level Immaterial High impedance Rev.2.00, Dec.18.2003, page 2 of 12 HD74ALVC2G125 Pin Arrangement OE1 1 8 VCC A1 2 7 OE2 Y2 3 6 Y1 GND 4 5 A2 (Top view) Absolute Maximum Ratings Item Symbol Ratings Unit Supply voltage range VCC −0.5 to 4.6 V Input voltage range *1 VI −0.5 to 4.6 V VO −0.5 to VCC+0.5 V Output voltage range *1, 2 −0.5 to 4.6 Conditions Output : H or L or Z VCC : OFF Input clamp current IIK −50 mA VI < 0 Output clamp current IOK ±50 mA VO < 0 or VO > VCC Continuous output current IO ±50 mA VO = 0 to VCC Continuous current through VCC or GND ICC or IGND ±100 mA Maximum power dissipation *3 at Ta = 25°C (in still air) PT 200 mW Storage temperature Tstg −65 to 150 °C Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time. 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This value is limited to 4.6 V maximum. 3. The maximum package power dissipation was calculated using a junction temperature of 150°C. Rev.2.00, Dec.18.2003, page 3 of 12 HD74ALVC2G125 Recommended Operating Conditions Item Symbol Min Max Unit Supply voltage range VCC 1.2 3.6 V Input voltage range VI 0 3.6 V Output voltage range VO 0 VCC V Output current IOH −2 mA −4 VCC = 1.4 V −6 VCC = 1.65 V −18 VCC = 2.3 V −24 VCC = 3.0 V 2 VCC = 1.2 V 4 VCC = 1.4 V 6 VCC = 1.65 V 18 VCC = 2.3 V IOL Input transition rise or fall rate Operating free-air temperature ∆t / ∆v Ta 24 0 20 0 10 −40 85 Note: Unused or floating inputs must be held high or low. Rev.2.00, Dec.18.2003, page 4 of 12 Conditions VCC = 1.2 V VCC = 3.0 V ns / V VCC = 1.2 to 2.7 V VCC = 3.3±0.3 V °C HD74ALVC2G125 Electrical Characteristics (Ta = −40 to 85°C) Item Symbol VCC (V) * Min Input voltage VIH 1.2 VIL Output voltage VOH VOL Typ Max Unit VCC×0.75 V 1.4 to 1.6 VCC×0.7 1.65 to 1.95 VCC×0.7 2.3 to 2.7 1.7 3.0 to 3.6 2.0 1.2 VCC×0.25 1.4 to 1.6 VCC×0.3 1.65 to 1.95 VCC×0.3 2.3 to 2.7 0.7 3.0 to 3.6 0.8 Min to Max VCC−0.2 1.2 0.9 IOH = −2 mA 1.4 1.1 IOH = −4 mA 1.65 1.2 IOH = −6 mA 2.3 1.7 IOH = −18 mA 3.0 2.2 IOH = −24 mA Min to Max 0.2 IOL = 100 µA 1.2 0.3 IOL = 2 mA 1.4 0.3 IOL = 4 mA 1.65 0.3 IOL = 6 mA 2.3 0.55 IOL = 18 mA 3.0 0.55 IOL = 24 mA V Test conditions IOH = −100 µA Input current IIN 3.6 ±5 µA VIN = 3.6 V or GND Off state output current IOZ 3.6 ±5 µA VO = VCC or GND Quiescent supply current ICC 3.6 10 µA VIN = VCC or GND, IO = 0 Output leakage current IOFF 0 5 µA VIN or VO = 0 to 3.6 V Input capacitance CIN 3.3 4.5 pF VIN = VCC or GND Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions. Rev.2.00, Dec.18.2003, page 5 of 12 HD74ALVC2G125 Switching Characteristics (Ta = −40 to 85°C) VCC = 1.2 V Item Symbol Min Typ Max Unit Test conditions FROM (Input) TO (Output) Propagation delay time tPLH tPHL 5.5 ns CL = 15 pF A Y Enable time tZH tZL 6.5 ns CL = 15 pF OE Y Disable time tHZ tLZ 4.5 ns CL = 15 pF OE Y Item Symbol Min Typ Max Unit Test conditions FROM (Input) TO (Output) Propagation delay time tPLH tPHL 2.0 7.0 ns CL = 15 pF A Y Enable time tZH tZL 2.0 7.0 ns CL = 15 pF OE Y Disable time tHZ tLZ 2.0 7.0 ns CL = 15 pF OE Y Item Symbol Min Typ Max Unit Test conditions FROM (Input) TO (Output) Propagation delay time tPLH tPHL 1.5 5.0 ns CL = 30 pF A Y Enable time tZH tZL 1.5 5.0 ns CL = 30 pF OE Y Disable time tHZ tLZ 1.5 5.0 ns CL = 30 pF OE Y VCC = 1.5±0.1 V VCC = 1.8±0.15 V Rev.2.00, Dec.18.2003, page 6 of 12 HD74ALVC2G125 Switching Characteristics (cont) VCC = 2.5±0.2 V Item Symbol Min Typ Max Unit Test conditions FROM (Input) TO (Output) Propagation delay time tPLH tPHL 1.0 4.0 ns CL = 30 pF A Y Enable time tZH tZL 1.0 4.0 ns CL = 30 pF OE Y Disable time tHZ tLZ 1.0 4.0 ns CL = 30 pF OE Y Item Symbol Min Typ Max Unit Test conditions FROM (Input) TO (Output) Propagation delay time tPLH tPHL 1.0 3.0 ns CL = 30 pF A Y Enable time tZH tZL 1.0 3.0 ns CL = 30 pF OE Y Disable time tHZ tLZ 1.0 3.0 ns CL = 30 pF OE Y VCC = 3.3±0.3 V Operating Characteristics (Ta = 25°C) Item Symbol VCC (V) Min Typ Max Unit Test conditions Power dissipation CPD 1.5 10.5 pF f = 10 MHz 1.8 10.5 2.5 11.0 3.3 13.0 capacitance Rev.2.00, Dec.18.2003, page 7 of 12 HD74ALVC2G125 Test Circuit - 1 Input Pulse Generator Z OUT = 50 Ω Symbol VCC See Function Table VCC V OUT CL RL V CC = 1.2 V, V = 2.5±0.2 V, V = 1.8±0.15 V CC 1.5±0.1 V CC 3.3±0.3 V RL 2.0 kΩ 1.0 kΩ 500 Ω CL 15 pF 30 pF 30 pF Note: CL includes probe and jig capacitance. Rev.2.00, Dec.18.2003, page 8 of 12 HD74ALVC2G125 Waveforms - 1 tr tf Input A VIH 90% 90% V ref V ref 10% 10% t PLH GND t PHL VOH V ref Output Y V ref VOL Symbol V CC = 1.2 V, 1.5±0.1 V, V CC = 2.5±0.2 V 1.8±0.15 V V CC = 3.3±0.3 V tr / t f 2.0 ns 2.5 ns 2.5 ns V IH VCC VCC 2.7 V V ref 50% 50% 1.5 V Note: Input waveform : PRR = 10 MHz, duty cycle 50% Rev.2.00, Dec.18.2003, page 9 of 12 HD74ALVC2G125 Test Circuit - 2 VCC VCC Output See Function Table Input Pulse Generator Z OUT = 50 Ω RL OPEN See under table GND *1 CL RL S1 V CC = 1.2 V, 1.5±0.1 V, V = 3.3±0.3 V CC 1.8±0.15 V, 2.5±0.2 V Symbol t PLH / t PHL OPEN OPEN t HZ / t ZH GND GND t LZ / t ZL VCC×2 6.0 Symbol S1 V CC = 1.2 V, V = 2.5±0.2 V, V = 1.8±0.15 V CC 1.5±0.1 V CC 3.3±0.3 V RL 2.0 kΩ 1.0 kΩ 500 Ω CL 15 pF 30 pF 30 pF Note: CL includes probe and jig capacitance. Rev.2.00, Dec.18.2003, page 10 of 12 HD74ALVC2G125 Waveforms - 2 Input OE tf tr 90% 90% V ref VIH V ref 10% 10% GND t ZL t LZ VOH V ref VL t ZH Output Y VOL t HZ VOH VH V ref VOL Symbol V CC = 1.2 V, 1.5±0.1 V V CC = 1.8±0.15 V V CC = 2.5±0.2 V V CC = 3.3±0.3 V tr / t f 2.0 ns 2.0 ns 2.5 ns 2.5 ns V IH VCC VCC VCC 2.7 V 50% 50% 1.5 V V ref VH / V L 50% VH = VOH-0.1 V VL = VOL+0.1 V VH = VOH-0.15 V VH = VOH-0.15 V VH = VOH-0.3 V VL = VOL+0.15 V VL = VOL+0.15 V VL = VOL+0.3 V Note: Input waveform : PRR = 10 MHz, duty cycle 50% Rev.2.00, Dec.18.2003, page 11 of 12 HD74ALVC2G125 Package Dimensions 2.0 ± 0.2 1.5 ± 0.2 + 0.1 (0.17) 8 − 0.2 − 0.05 Package Code JEDEC JEITA Mass (reference value) Rev.2.00, Dec.18.2003, page 12 of 12 + 0.1 0.13 − 0.05 0 − 0.1 0.7 ± 0.1 (0.4) 2.3 ± 0.1 (0.5) (0.5) (0.5) 3.1 ± 0.3 (0.4) Unit: mm TTP–8DBV 0.010 g Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 1.0