Hynix HYMD532M646CP6-D43 200pin ddr sdram so-dimms based on 512mb c ver. (tsop) Datasheet

200pin DDR SDRAM SO-DIMMs based on 512Mb C ver. (TSOP)
This Hynix unbuffered Small Outline, Dual In-Line Memory Module (DIMM) series consists of 512Mb C ver. DDR
SDRAMs in 400mil TSOP II packages on a 200pin glass-epoxy substrate. This Hynix 512Mb C ver. based unbuffered
SO-DIMM series provide a high performance 8 byte interface in 67.60mm width form factor of industry standard. It is
suitable for easy interchange and addition.
FEATURES
•
JEDEC Standard 200-pin small outline, dual in-line
memory module (SO-DIMM)
•
Programmable Burst Length 2 / 4 / 8 with both
sequential and interleave mode
•
Two ranks 64M x 64 organization
•
•
2.6V ± 0.1V VDD and VDDQ Power supply for
DDR400, 2.5V ± 0.2V for DDR333 and below
Edge-aligned DQS with data outs and Center-aligned
DQS with data inputs
•
Auto refresh and self refresh supported
•
All inputs and outputs are compatible with SSTL_2
interface
•
8192 refresh cycles / 64ms
•
Serial Presence Detect (SPD) with EEPROM
•
Fully differential clock operations (CK & /CK) with
133/166/200MHz
•
Built with 512Mb DDR SDRAMs in 400 mil TSOP II
packages
•
DLL aligns DQ and DQS transition with CK transition
•
All lead-free products (RoHS compliant)
•
Programmable CAS Latency: DDR266(2, 2.5 clock),
DDR333(2.5 clock), DDR400(3 clock)
ADDRESS TABLE
Organization
Ranks
SDRAMs
# of
DRAMs
# of row/bank/column Address
Refresh
Method
256MB
32M x 64
1
32Mb x 16
4
13(A0~A12)/2(BA0,BA1)/10(A0~A9)
8K / 64ms
512MB
64M x 64
2
32Mb x 16
8
13(A0~A12)/2(BA0,BA1)/10(A0~A9)
8K / 64ms
PERFORMANCE
Part-Number Suffix
-D431
-J
-H
Speed Bin
DDR400B
DDR333
DDR266B
-
CL - tRCD- tRP
3-3-3
2.5-3-3
2.5-3-3
CK
Max Clock
Frequency
Unit
CL=3
200
-
-
MHz
CL=2.5
166
166
133
MHz
CL=2
133
133
133
MHz
Note:
1. 2.6V ± 0.1V VDD and VDDQ Power supply for DDR400 and 2.5V ± 0.2V for DDR333 and below
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any
responsibility for use of circuits described. No patent licenses are implied.
Rev. 1.3 / Feb. 2006
1
11
200pin DDR SDRAM SO-DIMMs
ORDERING INFORMATION
Part Number
Density Organization
# of
DRAMs
Material
DIMM Dimension
Lead-free1
67.60 x 31.75 x 3.8 [mm3]
None
↑
None
HYMD532M646C[L]P6-D43/J/H
256MB
32Mb x 16
4
HYMD564M646C[L]P6-D43/J/H
512MB
32Mb x 16
8
↑
ECC
Support
Note:
1. The “Lead-free” products contain Lead less than 0.1% by weight and satisfy RoHS - please contact Hynix for product availability.
* These products are built with HY5DU124(8,16)22C[L]TP, the Hynix DDR SDRAM component.
Rev. 1.3 / Feb. 2006
2
11
200pin DDR SDRAM SO-DIMMs
PIN DESCRIPTION
Pin
Pin Description
Pin
Pin Description
CK0, /CK0
/CS0, /CS1
CKE0, CKE1
/RAS, /CAS, /WE
Differential Clock Inputs
Chip Select Input
Clock Enable Input
Commend Sets Inputs
VDDQ
VSS
VREF
VDDSPD
DQs Power Supply
Ground
Reference Power Supply
Power Supply for SPD
A0 ~ A12
Address
SA0~SA2
E2PROM Address Inputs
BA0, BA1
Bank Address
SCL
E2PROM Clock
DQ0~DQ63
Data Inputs/Outputs
SDA
CB0~CB7
DQS0~DQS17
DM0~7
VDD
/RESET
Data Strobe Inputs/Outputs
Data Strobe Inputs/Outputs
Data-in Mask
Power Supply
Reset Enable
WP
VDDID
DU
NC
FETEN
E2PROM Data I/O
Write Protect Flag
VDD Identification Flag
Do not Use
No Connection
FET Enable
PIN ASSIGNMENT
Pin
Name
Pin
Name
Pin
Name
Pin
Name
Pin
Name
Pin
Name
1
2
3
4
5
6
7
8
9
10
11
12
13
VREF
DQ0
VSS
DQ1
DQS0
DQ2
VDD
DQ3
NC
/RESET
VSS
DQ8
DQ9
32
33
34
35
36
37
38
39
40
41
42
43
44
A5
DQ24
VSS
DQ25
DQS3
A4
VDD
DQ26
DQ27
A2
VSS
A1
CB0*
62
63
64
65
66
67
68
69
70
71
72
73
74
VDDQ
/WE
DQ41
/CAS
VSS
DQS5
DQ42
DQ43
VDD
/CS2*
DQ48
DQ49
VSS
93
94
95
96
97
98
99
100
101
102
103
104
105
VSS
DQ4
DQ5
VDDQ
DM0,DQS9
DQ6
DQ7
VSS
NC
NC
NC
VDDQ
DQ12
124
125
126
127
128
129
130
131
132
133
134
135
136
VSS
A6
DQ28
DQ29
VDDQ
DM3,DQS12
A3
DQ30
VSS
DQ31
CB4*
CB5*
VDDQ
154
155
156
157
158
159
160
161
162
163
164
165
166
/RAS
DQ45
VDDQ
/CS0
/CS1
DM5,DQS14
VSS
DQ46
DQ47
NC
VDDQ
DQ52
DQ53
A132, NC
VDD
DM6
DQ54
DQ55
VDDQ
NC
DQ60
DQ61
VSS
DM7,DQS16
DQ62
DQ63
VDDQ
SA0
SA1
SA2
VDDSPD
14
DQS1
45
CB1*
75
CK2*
106
DQ13
137
CK0
167
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
VDDQ
CK1*
/CK1*
VSS
DQ10
DQ11
CKE0
VDDQ
DQ16
DQ17
DQS2
VSS
A9
DQ18
A7
VDDQ
DQ19
46
47
48
49
50
51
52
VDD
DQS8
A0
CB2*
VSS
CB3*
BA1
Key
DQ32
VDDQ
DQ33
DQS4
DQ34
VSS
BA0
DQ35
DQ40
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/CK2*
VDDQ
DQS6
DQ50
DQ51
VSS
VDDID
DQ56
DQ57
VDD
DQS7
DQ58
DQ59
VSS
NU
SDA
SCL
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
DM1,DQS10
VDD
DQ14
DQ15
CKE1
VDDQ
BA2*
DQ20
A12
VSS
DQ21
A11
DM2,DQS11
VDD
DQ22
A8
DQ23
138
139
140
141
142
143
144
/CK0
VSS
DM8,DQS17
A10
CB6*
VDDQ
CB7*
key
VSS
DQ36
DQ37
VDD
DM4,DQS13
DQ38
DQ39
VSS
DQ44
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
53
54
55
56
57
58
59
60
61
145
146
147
148
149
150
151
152
153
Note:
1. * : These pins are not used in this module.
2. Pin 167 is NC for 256MB, 512MB, and 1GB, or A13 for 2GB module.
Rev. 1.3 / Feb. 2006
3
11
200pin DDR SDRAM SO-DIMMs
FUNCTIONAL BLOCK DIAGRAM
256MB, 32M x 64 Unbuffered SO-DIMM: HYMD532M646C[L]P6
/S 0
DQS0
DM0
D Q 00
D Q 01
D Q 02
D Q 03
D Q 04
D Q 05
D Q 06
D Q 07
DQS1
DM1
D Q 08
D Q 09
D Q 10
D Q 11
D Q 12
D Q 13
D Q 14
D Q 15
DQS2
DM2
D Q 16
D Q 17
D Q 18
D Q 19
D Q 20
D Q 21
D Q 22
D Q 23
DQS3
DM3
D Q 24
D Q 25
D Q 26
D Q 27
D Q 28
D Q 29
D Q 30
D Q 31
LD Q S
LDM
/S
DQS4
DM4
D Q 32
D Q 33
D Q 34
D Q 35
D Q 36
D Q 37
D Q 38
D Q 39
DQS5
DM5
D Q 40
D Q 41
D Q 42
D Q 43
D Q 44
D Q 45
D Q 46
D Q 47
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDM
D0
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
LD Q S
LDM
/S
DQS6
DM6
D Q 48
D Q 49
D Q 50
D Q 51
D Q 52
D Q 53
D Q 54
D Q 55
DQS7
DM7
D Q 56
D Q 57
D Q 58
D Q 59
D Q 60
D Q 61
D Q 62
D Q 63
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDM
D1
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
LDQS
LD M
/S
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDM
D2
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
LDQS
LD M
/S
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDM
D3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
# U n less o th erw ise n o ted , resisto r valu es are 22O + - 5%
B A 0-B A 1
S D R A M s D 0-D 3
A 0-A N
S D R A M s D 0-D 3
S erial P resen ce D etecto r
(S P D )
/R A S
S D R A M s D 0-D 3
SCL
/C A S
S D R A M s D 0-D 3
SA0
/W E
S D R A M s D 0 -D 3
SA1
A1
CKE0
S D R A M s D 0-D 3
SA2
A2
CKE1
N .C .
VDD SPD
SPD
VDD
S D R A M S D O -D 7
S D R A M S D O -D 7
V D D an d V D D Q
VSS
S D R A M S D O -D 7,S P D
VREF
V D D ID
Rev. 1.3 / Feb. 2006
S trap :see N o te 4
A0
SDA
WP
CK0
/C K 0
2 lo ads
CK1
/C K 1
2 lo ads
CK2
/C K 2
0 lo ads
N otes :
D Q w iring m ay d iffer fro m th at d escrib ed in th is
d raw in g : h o w ever D Q /D M /D Q S relatio nship are
m ain tain ed as sh o w n .
V D D ID strap co n n ectio n s:
(fo r m em ory d evice V D D , V D D Q )
S trap o ut (o pen ) : V D D = V D D Q
S trap in (clo sed) : V D D ≠ V D D Q
4
11
200pin DDR SDRAM SO-DIMMs
FUNCTIONAL BLOCK DIAGRAM
512MB, 64M x 64 Unbuffered SO-DIMM: HYMD564M646C[L]P6
/CS1
/CS0
DQS0
DM0
DQ00
DQ01
DQ02
DQ03
DQ04
DQ05
DQ06
DQ07
DQS1
DM1
DQ08
DQ09
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQS2
DM2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQS3
DM3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
LDQS /CS
LDM
LDQS /CS
LDM
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
UDQS
UDM
D0
I/O7
UDQS
UDM
D4
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
I/O7
LDQS /CS
LDM
LDQS /CS
LDM
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
UDQS
UDM
D1
I/O7
UDQS
UDM
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
I/O7
D5
DQS4
DM4
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQS5
DM5
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQS6
DM6
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQS7
DM7
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
LDQS /CS
LDM
LDQS /CS
LDM
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
UDQS
UDM
D2
I/O7
UDQS
UDM
D6
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
I/O7
LDQS /CS
LDM
LDQS /CS
LDM
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
UDQS
UDM
D3
I/O7
UDQS
UDM
I/O0
I/O1
I/O2
I/O0
I/O1
I/O2
I/O3
I/O4
I/O3
I/O4
I/O5
I/O6
I/O5
I/O6
I/O7
I/O7
D7
# Unless otherwise noted, resistor values are 22O +- 5%
BA0-BA1
SDRAMs D0-D7
A0-AN
SDRAMs D0-D7
Serial Presence Detector
(SPD)
/RAS
SDRAMs D0-D7
SCL
/CAS
SDRAMs D0-D7
SA0
/WE
SDRAMs D0-D7
SA1
A1
CKE0
SDRAMs D0-D3
SA2
A2
CKE1
SDRAMs D4-D7
VDD SPD
VREF
VDD
VSS
VDDID
Rev. 1.3 / Feb. 2006
SPD
SDRAMS DO-D7
SDRAMS DO-D7
VDD and VDDQ
SDRAMS DO-D7,SPD
Strap:see Note 4
A0
SDA
WP
CK0
/CK0
4 loads
CK1
/CK1
4 loads
CK2
/CK2
0 loads
Notes :
DQ wiring may differ from that described in this
drawing : however DQ/DM/DQS relationship are
maintained as shown.
VDDID strap connections:
(for memory device VDD, VDDQ)
Strap out (open) : VDD = VDDQ
Strap in (closed) : VDD ≠ VDDQ
5
11
200pin DDR SDRAM SO-DIMMs
ABSOLUTE MAXIMUM RATINGS1
Parameter
Operating Temperature (Ambient)
Symbol
Rating
TA
0 ~ 70
Unit
o
C
C
Storage Temperature
TSTG
-55 ~ 150
o
Voltage on VDD relative to VSS
VDD
-1.0 ~ 3.6
V
Voltage on VDDQ relative to VSS
VDDQ
-1.0 ~ 3.6
V
Voltage on inputs relative to Vss
VINPUT
-1.0 ~ 3.6
V
VIO
-0.5 ~3.6
V
Voltage on I/O pins relative to Vss
Output Short Circuit Current
Soldering Temperature ⋅ Time
IOS
50
TSOLDER
260 ⋅ 10
mA
o
C ⋅ Sec
Note:
1. Operation at above absolute maximum rating can adversely affect device reliability
DC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
Parameter
Power Supply Voltage (DDR 200, 266, 333)
Symbol
Min
Typ.
Max
Unit
VDD
2.3
2.5
2.7
V
Note
VDD
2.5
2.6
2.7
V
Power Supply Voltage (DDR 200, 266, 333)
VDDQ
2.3
2.5
2.7
V
1
Power Supply Voltage (DDR 400)
VDDQ
2.5
2.6
2.7
V
1,2
Input High Voltage
VIH
VREF + 0.15
-
VDDQ + 0.3
V
Input Low Voltage
VIL
-0.3
-
VREF - 0.15
V
Termination Voltage
VTT
VREF - 0.04
VREF
VREF + 0.04
V
VREF
0.49*VDDQ
0.5*VDDQ
0.51*VDDQ
V
VIN(DC)
-0.3
-
VDDQ+0.3
V
Power Supply Voltage (DDR 400)
Reference Voltage
Input Voltage Level, CK and CK inputs
Input Differential Voltage, CK and CK inputs
2
3
4
VID(DC)
0.36
-
VDDQ+0.6
V
5
VI(RATIO)
0.71
-
1.4
-
6
Input Leakage Current
ILI
-2
-
2
uA
7
Output Leakage Current
ILO
-5
-
5
uA
8
IOH
-16.8
-
-
mA
IOL
16.8
-
-
mA
IOH
-13.6
-
-
mA
IOL
13.6
-
-
mA
V-I Matching: Pullup to Pulldown Current Ratio
Output High Current
Normal Strength
(min VDDQ, min VREF, min VTT)
Output Driver
(VOUT=VTT ± 0.84) Output Low Current
(min VDDQ, max VREF, max VTT)
Half Strength Out- Output High Current
put Driver
(min VDDQ, min VREF, min VTT)
(VOUT=VTT ± 0.68) Output Low Current
(min VDDQ, max VREF, max VTT)
Note:
1. VDDQ must not exceed the level of VDD.
2. For DDR400, VDD=2.6V ± 0.1V, VDDQ=2.6V ± 0.1V
3. VIL (min) is acceptable -1.5V AC pulse width with < 5ns of duration.
4. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of the same. Peak to
peak noise on VREF may not exceed ± 2% of the DC value.
5. VID is the magnitude of the difference between the input level on CK and the input level on /CK.
6. The ratio of the pullup current to the pulldown current is specified for the same temperature and voltage, over the entire temperature and voltage range, for device drain to source voltages from 0.25V to 1.0V. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process variation. The full variation in the ratio of the maximum to minimum
pullup and pulldown current will not exceed 1/7 for device drain to source voltages from 0.1 to 1.0.
7. VIN=0 to VDD, All other pins are not tested under VIN =0V.
8. DQs are disabled, VOUT=0 to VDDQ.
Rev. 1.3 / Feb. 2006
6
11
200pin DDR SDRAM SO-DIMMs
IDD SPECIFICATION AND CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)
256MB, 32M x 64 Unbuffered DIMM: HYMD532M646C[L]P6
Symbol
Test Condition
Speed
Unit
DDR400B
DDR333
DDR266B
IDD0
One bank; Active - Precharge; tRC=tRC(min);
tCK=tCK(min); DQ,DM and DQS inputs changing
twice per clock cycle; address and control inputs
changing once per clock cycle
520
480
400
mA
IDD1
One bank; Active - Read - Precharge; Burst
Length=2; tRC=tRC(min); tCK=tCK(min); address
and control inputs changing once per clock cycle
680
600
480
mA
IDD2P
All banks idle; Power down mode; CKE=Low,
tCK=tCK(min)
40
mA
IDD2F
/CS=High, All banks idle; tCK=tCK(min); CKE=
High; address and control inputs changing once
per clock cycle. VIN=VREF for DQ, DQS and DM
140
mA
IDD3P
One bank active ; Power down mode; CKE=Low,
tCK=tCK(min)
180
mA
IDD3N
/CS=HIGH; CKE=HIGH; One bank; Active-Precharge; tRC=tRAS(max); tCK=tCK(min); DQ, DM
and DQS inputs changing twice per clock cycle;
Address and other control inputs changing once
per clock cycle
240
mA
IDD4R
Burst=2; Reads; Continuous burst; One bank
active; Address and control inputs changing once
per clock cycle; tCK=tCK(min); IOUT=0mA
840
760
680
mA
IDD4W
Burst=2; Writes; Continuous burst; One bank
active; Address and control inputs changing once
per clock cycle; tCK=tCK(min); DQ, DM and DQS
inputs changing twice per clock cycle
920
840
720
mA
IDD5
tRC=tRFC(min) - 8*tCK for DDR200 at 100Mhz,
10*tCK for DDR266A & DDR266B at 133Mhz; distributed refresh
1040
960
880
mA
IDD6
CKE=<0.2V; External clock on; tCK Normal
=tCK(min)
Low Power
IDD7
Four bank interleaving with BL=4 Refer to the following page for detailed test condition
1440
20
mA
12
mA
1400
1360
Note
mA
* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.
Rev. 1.3 / Feb. 2006
7
11
200pin DDR SDRAM SO-DIMMs
IDD SPECIFICATION AND CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)
512MB, 64M x 64 Unbuffered DIMM: HYMD564M646C[L]P6
Symbol
Test Condition
Speed
Unit
DDR400B
DDR333
DDR266B
IDD0
One bank; Active - Precharge; tRC=tRC(min);
tCK=tCK(min); DQ,DM and DQS inputs changing
twice per clock cycle; address and control inputs
changing once per clock cycle
760
720
640
mA
IDD1
One bank; Active - Read - Precharge; Burst
Length=2; tRC=tRC(min); tCK=tCK(min); address
and control inputs changing once per clock cycle
920
840
720
mA
IDD2P
All banks idle; Power down mode; CKE=Low,
tCK=tCK(min)
80
mA
IDD2F
/CS=High, All banks idle; tCK=tCK(min); CKE=
High; address and control inputs changing once
per clock cycle. VIN=VREF for DQ, DQS and DM
280
mA
IDD3P
One bank active ; Power down mode; CKE=Low,
tCK=tCK(min)
360
mA
IDD3N
/CS=HIGH; CKE=HIGH; One bank; Active-Precharge; tRC=tRAS(max); tCK=tCK(min); DQ, DM
and DQS inputs changing twice per clock cycle;
Address and other control inputs changing once
per clock cycle
480
mA
IDD4R
Burst=2; Reads; Continuous burst; One bank
active; Address and control inputs changing once
per clock cycle; tCK=tCK(min); IOUT=0mA
1080
1000
920
mA
IDD4W
Burst=2; Writes; Continuous burst; One bank
active; Address and control inputs changing once
per clock cycle; tCK=tCK(min); DQ, DM and DQS
inputs changing twice per clock cycle
1160
1080
960
mA
IDD5
tRC=tRFC(min) - 8*tCK for DDR200 at 100Mhz,
10*tCK for DDR266A & DDR266B at 133Mhz; distributed refresh
1280
1200
1120
mA
IDD6
CKE=<0.2V; External clock on; tCK Normal
=tCK(min)
Low Power
IDD7
Four bank interleaving with BL=4 Refer to the following page for detailed test condition
1680
40
mA
24
mA
1640
1600
Note
mA
* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.
Rev. 1.3 / Feb. 2006
8
11
200pin DDR SDRAM SO-DIMMs
AC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
Parameter
Input High (Logic 1) Voltage, DQ, DQS and DM signals
Symbol
Min
Max
Unit
VIH(AC)
VREF + 0.31
-
V
Note
Input Low (Logic 0) Voltage, DQ, DQS and DM signals
VIL(AC)
-
VREF - 0.31
V
Input Differential Voltage, CK and /CK inputs
VID(AC)
0.7
VDDQ + 0.6
V
1
Input Crossing Point Voltage, CK and /CK inputs
VIX(AC)
0.5*VDDQ-0.2
0.5*VDDQ+0.2
V
2
Note:
1. VID is the magnitude of the difference between the input level on CK and the input on /CK.
2. The value of VIX is expected to equal 0.5*V DDQ of the transmitting device and must track variations in the DC level of the same.
AC OPERATING TEST CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)
Value
Unit
Reference Voltage
Parameter
VDDQ x 0.5
V
Termination Voltage
VDDQ x 0.5
V
AC Input High Level Voltage (VIH, min)
VREF + 0.31
V
AC Input Low Level Voltage (VIL, max)
VREF - 0.31
V
Input Timing Measurement Reference Level Voltage
VREF
V
Output Timing Measurement Reference Level Voltage
VTT
V
Input Signal maximum peak swing
1.5
V
1
V/ns
Input minimum Signal Slew Rate
Termination Resistor (RT)
50
Ω
Series Resistor (RS)
25
Ω
Output Load Capacitance for Access Time Measurement (CL)
30
pF
OUTPUT LOAD CIRCUIT
VTT
RT=50Ω
Output
Zo=50Ω
VREF
CL=30pF
Rev. 1.3 / Feb. 2006
9
11
200pin DDR SDRAM SO-DIMMs
CAPACITANCE (TA=25oC, f=100MHz)
256MB: HYMD564M646C[L]P6
Input/Output Pins
Symbol
Min
Max
Unit
A0 ~ A12, BA0, BA1
CIN1
28
40
pF
/RAS, /CAS, /WE
CIN2
28
40
pF
CKE0, CKE1
CIN3
28
40
pF
/CS0, /CS1
CIN4
28
40
pF
CK0, /CK0, CK1, /CK1, CK2, /CK2
CIN5
16
25
pF
DM0 ~ DM7
CIN6
7
12
pF
DQ0 ~ DQ63, DQS0 ~ DQS7
CIO1
7
12
pF
512MB: HYMD564M646C[L]P6
Symbol
Min
Max
Unit
A0 ~ A12, BA0, BA1
Input/Output Pins
CIN1
36
48
pF
/RAS, /CAS, /WE
CIN2
36
48
pF
CKE0, CKE1
CIN3
28
40
pF
/CS0, /CS1
CIN4
28
40
pF
CK0, /CK0, CK1, /CK1, CK2, /CK2
CIN5
18
27
pF
DM0 ~ DM7
CIN6
12
18
pF
DQ0 ~ DQ63, DQS0 ~ DQS7
CIO1
12
18
pF
Rev. 1.3 / Feb. 2006
10
11
200pin DDR SDRAM SO-DIMMs
AC CHARACTERISTICS (note: 1 - 9 / AC operating conditions unless otherwise noted)
Parameter
Symbol
DDR400B
DDR333
DDR266A
DDR266B
DDR200
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
UNIT
Row Cycle Time
tRC
55
-
60
-
65
-
65
-
70
-
ns
Auto Refresh Row
Cycle Time
tRFC
70
-
72
-
75
-
75
-
80
-
ns
Row Active Time
tRAS
40
70K
42
70K
45
120K
45
120K
50
120K
ns
tRAP
tRCD or
tRASmin
-
tRCD or
tRASmin
-
tRCD or
tRASmin
-
tRCD or
tRASmin
-
tRCD or
tRASmin
-
ns
Row Address to
Column Address Delay
tRCD
15
-
18
-
20
-
20
-
20
-
ns
Row Active to Row
Active Delay
tRRD
10
-
12
-
15
-
15
-
15
-
ns
Column Address to
Column Address Delay
tCCD
1
-
1
-
1
-
1
-
1
-
tCK
Row Precharge Time
tRP
15
-
18
-
20
-
20
-
20
-
ns
Write Recovery Time
tWR
15
-
15
-
15
-
15
-
15
-
ns
Internal Write to Read
Command Delay
tWTR
2
-
1
-
1
-
1
-
1
-
tCK
tDAL
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
tCK
5
10
-
-
-
-
-
-
-
-
-
-
6
12
7.5
12
7.5
12
8.0
12
ns
-
-
7.5
12
7.5
12
10
12
10
12
ns
Active to Read with
Auto Precharge Delay
Auto Precharge Write
Recovery + Precharge
Time22
CL = 3
System
Clock Cycle CL = 2.5
Time24
CL = 2
tCK
Clock High Level Width
tCH
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
Clock Low Level Width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
Data-Out edge to Clock
edge Skew
tAC
-0.7
0.7
-0.7
0.7
-0.75
0.75
-0.75
0.75
-0.75
0.75
ns
-0.55
0.55
-0.6
0.6
-0.75
0.75
-0.75
0.75
-0.75
0.75
ns
tDQSQ
-
0.4
-
0.45
-
0.5
-
0.5
-
0.6
ns
tQH
tHP
-tQHS
-
tHP
-tQHS
-
tHP
-tQHS
-
tHP
-tQHS
-
tHP
-tQHS
-
ns
tHP
min
(tCL,tCH)
-
min
(tCL,tCH)
-
min
(tCL,tCH)
-
min
(tCL,tCH)
-
min
(tCL,tCH)
-
ns
tQHS
-
0.5
-
0.55
-
0.75
-
0.75
-
0.75
ns
DQS-Out edge to Clock
tDQSCK
edge Skew
DQS-Out edge to DataOut edge Skew21
Data-Out hold time
from DQS20
Clock Half Period19,20
Data Hold Skew
Factor20
Valid Data Output
Window
Rev. 1.3 / Feb. 2006
tDV
tQH-tDQSQ
tQH-tDQSQ
tQH-tDQSQ
tQH-tDQSQ
tQH-tDQSQ
ns
11
11
200pin DDR SDRAM SO-DIMMs
- Continue
Parameter
Symbol
DDR400B
DDR333
DDR266A
DDR266B
DDR200
UNIT
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
tHZ
-0.7
0.7
-0.7
0.7
-0.75
0.75
-0.75
0.75
-0.8
0.8
ns
tLZ
-0.7
0.7
-0.7
0.7
-0.75
0.75
-0.75
0.75
-0.8
0.8
ns
tIS
0.6
-
0.75
-
0.9
-
0.9
-
1.1
-
ns
tIH
0.6
-
0.75
-
0.9
-
0.9
-
1.1
-
ns
tIS
0.7
-
0.8
-
1.0
-
1.0
-
1.1
-
ns
tIH
0.7
-
0.8
-
1.0
-
1.0
-
1.1
-
ns
tIPW
2.2
-
2.2
-
2.2
-
2.2
-
2.5
-
ns
Write DQS High Level Width
tDQSH
0.35
-
0.35
-
0.35
-
0.35
-
0.35
-
tCK
Write DQS Low Level Width
tDQSL
0.35
-
0.35
-
0.35
-
0.35
-
0.35
-
tCK
Clock to First Rising edge of DQSIn
tDQSS
0.72
1.25
0.75
1.25
0.75
1.25
0.75
1.25
0.75
1.25
tCK
DQS falling edge to CK setup time
tDSS
0.2
-
0.2
-
0.2
-
0.2
-
0.2
-
tCK
DQS falling edge hold time from
CK
tDSH
0.2
-
0.2
-
0.2
-
0.2
-
0.2
-
tCK
DQ & DM input setup time25
tDS
0.4
-
0.45
-
0.5
-
0.5
-
0.6
-
ns
DQ & DM input hold time25
tDH
0.4
-
0.45
-
0.5
-
0.5
-
0.6
-
ns
DQ & DM Input Pulse Width17
tDIPW
1.75
-
1.75
-
1.75
-
1.75
-
2
-
ns
Read DQS Preamble Time
tRPRE
0.9
1.1
0.9
1.1
0.9
1.1
0.9
1.1
0.9
1.1
tCK
Read DQS Postamble Time
tRPST
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
tCK
0
-
0
-
0
-
0
-
0
-
ns
-
0.25
-
0.25
-
0.25
-
0.25
-
tCK
Data-out high-impedance window
from CK,/CK10
Data-out low-impedance window
from CK, /CK10
Input Setup Time (fast slew
rate)14,16-18
Input Hold Time (fast slew
rate)14,16-18
Input Setup Time (slow slew
rate)15-18
Input Hold Time (slow slew
rate)15-18
Input Pulse Width17
Write DQS Preamble Setup Time12 tWPRES
Write DQS Preamble Hold Time
tWPREH 0.25
Write DQS Postamble Time11
tWPST
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
tCK
Mode Register Set Delay
tMRD
2
-
2
-
2
-
2
-
2
-
tCK
tXSNR
75
-
75
-
75
-
75
-
80
-
ns
tXSRD
200
-
200
-
200
-
200
-
200
-
tCK
tREFI
-
7.8
-
7.8
-
7.8
-
7.8
-
7.8
us
Exit Self Refresh to non-Read
command23
Exit Self Refresh to Read
command
Average Periodic Refresh
Interval13,25
Rev. 1.3 / Feb. 2006
12
11
200pin DDR SDRAM SO-DIMMs
Note:
1. All voltages referenced to Vss.
2. Tests for ac timing, IDD, and electrical, ac and dc characteristics, may be conducted at nominal reference/supply voltage levels,
but the related specifications and device operation are guaranteed for the full voltage range specified.
3. Below figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to
be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production
tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment.
Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics).
VDDQ
Output
(VOUT)
50 Ω
30 pF
Figure: Timing Reference Load
4. AC timing and IDD tests may use a VIL to VIHswing of up to 1.5 V in the test environment, but input timing is still referenced to
VREF (or to the crossing point for CK, /CK), and parameter specifications are guaranteed for the specified ac input levels under
normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(ac) and VIH(ac).
5. The ac and dc input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result
of the signal crossing the ac input level and will remain in that state as long as the signal does not ring back above (below) the
dc input LOW (HIGH) level.
6. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE < 0.2VDDQ is
recognized as LOW.
7. The CK, /CK input reference level (for timing referenced to CK, /CK) is the point at which CK and /CK cross; the input reference
level for signals other than CK, /CK is VREF.
8. The output timing reference voltage level is VTT.
9. Operation or timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must
be powered down and then restarted through the specified initialization sequence before normal operation can continue.
10. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to
a specific voltage level but specify when the device output is no longer driving (HZ), or begins driving (LZ).
11. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but
system performance (bus turnaround) will degrade accordingly.
12. The specific requirement is that DQS be valid (HIGH, LOW, or at some point on a valid transition) on or before this CK edge. A
valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from High-Z to logic LOW. If a previous write was in progress, DQS could
be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS.
13. A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.
14. For command/address input slew rate ≥ 1.0 V/ns.
15. For command/address input slew rate ≥ 0.5 V/ns and < 1.0 V/ns
16. For CK & /CK slew rate ≥ 1.0 V/ns (single-ended)
17. These parameters guarantee device timing, but they are not necessarily tested on each device.
They may be guaranteed by device design or tester correlation.
18. Slew Rate is measured between VOH(ac) and VOL(ac).
19. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this
value can be greater than the minimum specification limits for tCL and tCH).
For example, tCL and tCH are = 50% of the period, less the half period jitter (tJIT(HP)) of the clock source, and less the half
period jitter due to crosstalk (tJIT(crosstalk)) into the clock traces.
Rev. 1.3 / Feb. 2006
13
11
200pin DDR SDRAM SO-DIMMs
20.tQH = tHP - tQHS, where:
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for 1) The
pulse duration distortion of on-chip clock circuits; and 2) The worst case push--out of DQS on one transition followed by the
worst case pull--in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects,
and p-channel to n-channel variation of the output drivers.
21. tDQSQ:
Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given
cycle.
22. tDAL = (tWR/tCK) + (tRP/tCK)
For each of the terms above, if not already an integer, round to the next highest integer.
Example: For DDR266B at CL=2.5 and tCK=7.5 ns
tDAL = ((15 ns / 7.5 ns) + (20 ns / 7.5 ns)) clocks
= ((2) + (3)) clocks
= 5 clocks
23. In all circumstances, tXSNR can be satisfied using
tXSNR = tRFCmin + 1*tCK
24. The only time that the clock frequency is allowed to change is during self-refresh mode.
25. If refresh timing or tDS/tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid
READ can be executed.
Rev. 1.3 / Feb. 2006
14
11
200pin DDR SDRAM SO-DIMMs
SYSTEM CHARACTERISTICS CONDITIONS for DDR SDRAMS
The following tables are described specification parameters that required in systems using DDR devices to ensure
proper performannce. These characteristics are for system simulation purposes and are guaranteed by design.
Input Slew Rate for DQ/DM/DQS
AC CHARACTERISTICS
(Table a.)
DDR400
DDR333
DDR266
DDR200
PARAMETER
Symbol
min
max
min
max
min
max
min
max
DQ/DM/DQS input slew rate
measured between VIH(DC),
VIL(DC) and VIL(DC), VIH(DC)
DCSLEW
0.5
4.0
0.5
4.0
0.5
4.0
0.5
4.0
UNIT
Note
V/ns
1,12
Address & Control Input Setup & Hold Time Derating (Table b.)
Input Slew Rate
Delta tIS
Delta tIH
UNIT
Note
0.5 V/ns
0
0
ps
9
0.4 V/ns
+50
0
ps
9
0.3 V/ns
+100
0
ps
9
DQ & DM Input Setup & Hold Time Derating
(Table c.)
Input Slew Rate
Delta tDS
Delta tDH
UNIT
Note
0.5 V/ns
0
0
ps
11
0.4 V/ns
+75
0
ps
11
0.3 V/ns
+150
0
ps
11
DQ & DM Input Setup & Hold Time Derating for Rise/Fall Delta Slew Rate
Input Slew Rate
Delta tDS
Delta tDH
UNIT
Note
± 0.0 ns/V
0
0
ps
10
± 0.25 ns/V
+50
+50
ps
10
± 0.5 ns/V
+100
+100
ps
10
Output Slew Rate Characteristics (for x4, x8 Devices)
(Table d.)
(Table e.)
Slew Rate
Characteristic
Typical Range
(V/ns)
Minimum
(V/ns)
Maximum
(V/ns)
Note
Pullup Slew Rate
1.2 - 2.5
1.0
4.5
1,3,4,6,7,8
Pulldown Slew Rate
1.2 - 2.5
1.0
4.5
2,3,4,6,7,8
Output Slew Rate Characteristics (for x16 Device) (Table f.)
Slew Rate
Characteristic
Typical Range
(V/ns)
Minimum
(V/ns)
Maximum
(V/ns)
Note
Pullup Slew Rate
1.2 - 2.5
1.0
4.5
1,3,4,6,7,8
Pulldown Slew Rate
1.2 - 2.5
1.0
4.5
2,3,4,6,7,8
Output Slew Rate Matching Ratio Characteristics
Slew Rate Characteristic
DDR266A
(Table g.)
DDR266B
DDR200
Parameter
min
max
min
max
min
max
Output Slew Rate Matching Ratio
(Pullup to Pulldown)
-
-
-
-
0.71
1.4
Rev. 1.3 / Feb. 2006
Note
5,12
15
11
200pin DDR SDRAM SO-DIMMs
Note:
1. Pullup slew rate is characterized under the test conditions as shown in below Figure.
Test Point
Output
(VOUT)
50
Ω
VSSQ
Figure: Pullup Slew rate
2. Pulldown slew rate is measured under the test conditions shown in below Figure.
VDDQ
Output
(VOUT)
50Ω
Test Point
Figure: Pulldown Slew rate
3. Pullup slew rate is measured between (VDDQ/2 - 320 mV ± 250mV)
Pulldown slew rate is measured between (VDDQ/2 + 320mV ± 250mV)
Pullup and Pulldown slew rate conditions are to be met for any pattern of data, including all outputs switching and only one output
switching.
Example: For typical slew, DQ0 is switching
For minimum slew rate, all DQ bits are switching worst case pattern
For maximum slew rate, only one DQ is switching from either high to low, or low to high.
The remaining DQ bits remain the same as for previous state.
4. Evaluation conditions
Typical: 25 oC (Ambient), VDDQ = nominal, typical process
Minimum: 70 oC (Ambient), VDDQ = minimum, slow-slow process
Maximum: 0 oC (Ambient), VDDQ = Maximum, fast-fast process
5. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature
and voltage range. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process
variation.
6. Verified under typical conditions for qualification purposes.
7. TSOP-II package devices only.
8. Only intended for operation up to 256 Mbps per pin.
9. A derating factor will be used to increase tIS and tIH in the case where the input slew rate is below 0.5 V/ns as shown in Table b.
The Input slew rate is based on the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), similarly for rising transitions.
10. A derating factor will be used to increase tDS and tDH in the case where DQ, DM, and DQS slew rates differ, as shown in Tables c
& d. Input slew rate is based on the larger of AC-AC delta rise, fall rate and DC-DC delta rise, fall rate. Input slew rate is based on
the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), similarly for rising transitions. The
delta rise/fall rate is calculated as:
{1/(Slew Rate1)} - {1/(slew Rate2)}
For example:
If Slew Rate 1 is 0.5 V/ns and Slew Rate 2 is 0.4 V/ns, then the delta rise, fall rate is -0.5 ns/V. Using the table given, this would
result in the need for an increase in tDS and tDH of 100ps.
11. Table c is used to increase tDS and tDH in the case where the I/O slew rate is below 0.5 V/ns. The I/O slew rate is based on the
lesser of the AC-AC slew rate and the DC-DC slew rate. The input slew rate is based on the lesser of the slew rates determined by
either VIH(ac) to VIL(AC) or VIH(DC) to VIL(DC), and similarly for rising transitions.
12. DQS, DM, and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal transitions through the DC region must be monotonic.
Rev. 1.3 / Feb. 2006
16
11
200pin DDR SDRAM SO-DIMMs
SIMPLIFIED COMMAND TRUTH TABLE
CKEn-1
CKEn
/CS
/RAS
/CAS
/WE
Extended Mode Register Set
Command
H
X
L
L
L
L
OP code
1,2
Mode Register Set
H
X
L
L
L
L
OP code
1,2
H
X
X
1
H
X
Device Deselect
No Operation
Bank Active
Read
Read with Autoprecharge
Write
Write with Autoprecharge
Precharge All Banks
Precharge selected Bank
Read Burst Stop
Auto Refresh
Entry
Self Refresh
Precharge Power
Down Mode
Active Power Down
Mode
H
X
H
X
X
X
L
H
H
H
L
L
H
H
L
H
L
H
ADDR
A10/AP
RA
CA
BA
V
L
H
L
V
1
1
1,3
1
H
X
L
H
L
L
CA
H
X
L
L
H
L
X
H
X
L
H
H
L
X
1
H
H
L
L
L
H
X
1
H
L
L
L
L
H
H
X
X
X
L
H
H
H
Exit
L
H
Entry
H
L
Exit
L
H
Entry
H
L
Exit
L
H
H
V
Note
H
X
L
V
1,4
1,5
1
1
X
1
H
X
X
X
1
L
H
H
H
1
H
X
X
X
L
H
H
H
H
X
X
X
L
V
V
V
X
1
1
1
X
1
X
1
( H=Logic High Level, L=Logic Low Level, X=Don’t Care, V=Valid Data Input, OP Code=Operand Code, NOP=No Operation )
Note :
1. DM states are Don’t Care. Refer to below Write Mask Truth Table.
2. OP Code(Operand Code) consists of A0~A12 and BA0~BA1 used for Mode Registering during Extended MRS or MRS.
Before entering Mode Register Set mode, all banks must be in a precharge state and MRS command can be issued after tRP
period from Prechagre command.
3. If a Read with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented
to activated bank until CK(n+BL/2+tRP).
4. If a Write with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented
to activated bank until CK(n+BL/2+1+tWR+tRP). Write Recovery Time(tWR) is needed to guarantee that the last data has been
completely written.
5. If A10/AP is High when Row Precharge command being issued, BA0/BA1 are ignored and all banks are selected to be precharged.
WRITE MASK TRUTH TABLE
CKEn-1
CKEn
/CS, /RAS, /CAS, /WE
DM
Data Write
Function
H
X
X
L
ADDR
A10/AP
X
BA
Note
1
Data-In Mask
H
X
X
H
X
1
Note:
1. Write Mask command masks burst write data with reference to LDQS/UDQS(Data Strobes) and it is not related with read data.
In case of x16 data I/O, LDM and UDM control lower byte(DQ0~7) and Upper byte(DQ8~15) respectively.
Rev. 1.3 / Feb. 2006
17
11
200pin DDR SDRAM SO-DIMMs
PACKAGE DIMENSIONS
256MB, 32M x 64 Unbuffered SO-DIMM: HYMD532M646C[L]P6
Front
Millimeters
Inches
Unit:
67.60 mm
2.00 mm
Component
Keepout
Area
2.00 mm
31.75 mm
20.00 mm
Side
3.8mm
MAX.
1
39
41
199
Back
2.0 mm
2
40
42
2.0 mm
200
(Front)
1.1mm
MAX.
# The location and number of additional
device can be different from real product
Rev. 1.3 / Feb. 2006
18
11
200pin DDR SDRAM SO-DIMMs
PACKAGE DIMENSIONS
512MB, 64M x 64 Unbuffered SO-DIMM: HYMD564M646C[L]P6
Front
Millimeters
Inches
Unit:
67.60 mm
2.00 mm
Component
Keepout
Area
2.00 mm
31.75 mm
20.00 mm
1
39
41
199
Back
2.0 mm
2
40
42
Side
2.0 mm
200
3.8mm
MAX.
(Front)
1.1mm
MAX.
Rev. 1.3 / Feb. 2006
19
11
200pin DDR SDRAM SO-DIMMs
REVISION HISTORY
Revision
History
Date
1.0
First Version Release
Mar. 2005
1.1
Added x16 based 32Mx64 configuration - HYMD532M646C[L]P6
Apr. 2005
1.2
Leaded products removed
IDD specification revised
July 2005
1.3
IDD6 specification revised
Feb. 2006
Rev. 1.3 / Feb. 2006
Remark
20
Similar pages