HP HCPL-354 Ac input phototransistor optocoupler smd mini-flat type Datasheet

Agilent HCPL-354
AC Input Phototransistor
Optocoupler
SMD Mini-Flat Type
Data Sheet
Description
The HCPL-354 contains a
phototransistor, optically coupled to
two light emitting diodes connected
inverse parallel. It can operate
directly by AC input current. It is
packaged in a 4-pin mini-flat SMD
package with a 2.0 mm profile. The
small dimension of this product
allows significant space saving. The
package volume is 30% smaller than
that of conventional DIP type. Inputoutput isolation voltage is 3750 Vrms.
Response time, tr, is typically 4 µs
and minimum CTR is 20% at input
current of ± 1 mA.
Ordering Information
Specify Part Number followed by
Option Number (if desired).
HCPL-354-XXXE
Lead Free
Option Number
000 = No Options
060 = IEC/EN/DIN EN 60747-5-2
Option
00A = Rank Mark A
Functional Diagram
1
4
2
3
1. ANODE, CATHODE
2. CATHODE, ANODE
Features
• AC input response
• Current transfer ratio
(CTR: min. 20% at IF = ± 1 mA,
VCE = 5 V)
• Isolation voltage between input
and output (Viso = 3,750 Vrms)
• Subminiature type
(The volume is smaller than that of
conventional DIP type by as far as
30%)
• Mini-flat package
• 2.0 mm profile
• UL approved
• CSA approved
• IEC/EN/DIN EN 60747-5-2
approved
• Options available:
– IEC/EN/DIN EN 60747-5-2
approvals (060)
Applications
• Detecting or monitoring AC signals
• Programmable controllers
• AC/DC-input modules
• AC line/digital logic isolation
3. EMITTER
4. COLLECTOR
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
Package Outline Drawing
HCPL-354-000E
2.54
± 0.25
3.60 ± 0.3
354
Y WW
LEAD
FREE
5.30 ± 0.3
DATE CODE *1
0.2 ± 0.05
2.00 ± 0.2
4.40 ± 0.2
+ 0.2
7.00 – 0.7
0.10 ± 0.1
0.40 ± 0.1
RANK *2
DIMENSIONS IN MILLIMETERS.
HCPL-354-060E
2.54
± 0.25
3.60 ± 0.3
354 V
Y WW
LEAD
FREE
5.30 ± 0.3
DATE CODE *1
0.2 ± 0.05
2.00 ± 0.2
4.40 ± 0.2
+ 0.2
7.00 – 0.7
0.10 ± 0.1
0.40 ± 0.1
RANK *2
DIMENSIONS IN MILLIMETERS.
2) When using another soldering
method such as infrared ray
lamp, the temperature may rise
partially in the mold of the
device. Keep the temperature on
the package of the device within
the condition of (1) above.
2
30 seconds
250°C
Temperature (°C)
Solder Reflow Temperature Profile
1) One-time soldering reflow is
recommended within the
condition of temperature and
time profile shown at right.
260°C (Peak Temperature)
217°C
200°C
150°C
60 sec
25°C
60 ~ 150 sec
90 sec
Time (sec)
60 sec
Absolute Maximum Ratings
Parameters
Storage Temperature
Ambient Operating Temperature
Lead Solder Temperature for 10s
(1.6 mm below seating plane)
Average Forward Current
Input Power Dissipation
Collector Current
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector Power Dissipation
Total Power Dissipation
Isolation Voltage
(AC for 1 minute, R.H. = 40 ~ 60%)[1]
Symbol
TS
TA
Tsol
Min.
–55
–55
IF
PI
IC
VCEO
VECO
PC
Ptot
Viso
Max.
150
100
260
Units
˚C
˚C
˚C
±50
70
50
35
6
150
170
3750
mA
mW
mA
V
V
mW
mW
Vrms
Electrical Specifications (TA = 25˚C)
Parameter
Forward Voltage
Terminal Capacitance
Collector Dark Current
Collector-Emitter Breakdown Voltage
Emitter-Collector Breakdown Voltage
Collector Current
Current Transfer Ratio[2]
Collector-Emitter Saturation Voltage
Isolation Resistance
Symbol
VF
Ct
ICEO
BVCEO
BVECO
IC
CTR
VCE(sat)
Riso
Min.
–
–
–
35
6
0.2
20
–
5 x 1010
Typ.
1.2
30
–
–
–
–
–
0.1
1 x 1011
Max.
1.4
250
100
–
–
4
400
0.2
–
Units
V
pF
nA
V
V
mA
%
V
Ω
Floating Capacitance
Response Time (Rise)
Response Time (Fall)
Cf
tr
tf
–
–
–
0.6
4
3
1
18
18
pF
µs
µs
Rank Mark
A
No Mark
CTR (%)
50 ~ 150
20 ~ 400
Conditions
IF = ±1 mA,
VCE = 5 V,
TA = 25˚C
Notes:
1. Isolation voltage shall be measured using the following method:
(a) Short between anode and cathode on the primary side and between collector and emitter
on the secondary side.
(b) The isolation voltage tester with zero-cross circuit shall be used.
(c) The waveform of applied voltage shall be a sine wave.
I
2. CTR = C x 100%
IF
3
Test Conditions
IF = ±20 mA
V = 0, f = 1 kHz
VCE = 20 V, IF = 0
IC = 0.1 mA, IF = 0
IE = 10 µA, IF = 0
IF = ±1 mA,
VCE = 5 V
IF = ±20 mA, IC = 1 mA
DC 500 V
40 ~ 60% R.H.
V = 0, f = 1 MHz
VCE = 2 V, IC = 2 mA,
RL = 100 Ω
30
20
10
25
50
75
100
125
TA – AMBIENT TEMPERATURE – °C
Figure 1. Forward current vs. ambient
temperature.
IF – FORWARD CURRENT – mA
500
TA = 75°C
TA = 50°C
TA = 25°C
200
TA = -25°C
50
20
10
5
2
1
0
1.0
0.5
1.5
2.0
2.5
50
3.0
50
75
100
50
0
20
40
60
80
100
Figure 7. Relative current transfer ratio vs.
ambient temperature.
IC = 5 mA
IC = 7 mA
2
1
0
2.5
7.5
5.0
50
100
80
60
40
20
0
0.1 0.2 0.5 1
2
5 10 20
10.0
12.5
15.0
Figure 3. Collector-emitter saturation voltage
vs. forward current.
TA = 25°C
40
IF = 30 mA
PC (MAX.)
30
IF = 20 mA
20
IF = 10 mA
10
IF = 5 mA
0
50 100
IF = 1 mA
1
0
2
3
4
5
6
7
8
9 10
VCE – COLLECTOR-EMITTER VOLTAGE – V
Figure 5. Current transfer ratio vs. forward
current.
Figure 6. Collector current vs. collectoremitter voltage.
0.10
100
IC = 3 mA
3
IF – FORWARD CURRENT – mA
VCE = 5 V
TA = 25°C
120
150
IF = 1 mA
VCE = 5 V
IC = 1 mA
4
125
140
VCE(SAT.) – COLLECTOR-EMITTER
SATURATION VOLTAGE – V
RELATIVE CURRENT TRANSFER RATIO – %
25
IF – FORWARD CURRENT – mA
TA – AMBIENT TEMPERATURE – °C
4
0
IC = 0.5 mA
TA – AMBIENT TEMPERATURE – °C
VF – FORWARD VOLTAGE – V
Figure 4. Forward current vs. forward voltage.
TA = 25°C
5
0
0
-55
Figure 2. Collector power dissipation vs.
ambient temperature.
TA = 0°C
100
100
IC – COLLECTOR CURRENT – mA
0
150
ICEO – COLLECTOR DARK CURRENT – nA
0
-55
6
200
VCE(SAT.) – COLLECTOR-EMITTER
SATURATION VOLTAGE – V
40
PC – COLLECTOR POWER DISSIPATION – mW
50
CTR – CURRENT TRANSFER RATIO – %
IF – FORWARD CURRENT – mA
60
10000
IF = 20 mA
IC = 1 mA
0.08
0.06
0.04
0.02
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 8. Collector-emitter saturation
voltage vs. ambient temperature.
VCE = 20 V
1000
100
10
1
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 9. Collector dark current vs. ambient
temperature.
RESPONSE TIME – µs
50
20
VCE = 2 V
IC = 2 mA
TA = 25°C
VCE = 2 V
IC = 2 mA
tr
VOLTAGE GAIN AV – dB
100
TA = 25°C
10
tf
5
td
2
ts
1
0.5
0
RL = 10 kΩ
-10
RL = 1 kΩ
RL = 100 Ω
0.2
0.1
0.1 0.2
0.5
1
2
5
-20
0.2
10
0.5 1 2
5 10
1000
100
f – FREQUENCY – kHz
RL – LOAD RESISTANCE – kΩ
Figure 10. Response time vs. load resistance.
Figure 11. Frequency response.
VCC
;;
RD
INPUT
INPUT
RL
OUTPUT
90%
td
; ;;
VCC
RL
OUTPUT
Figure 13. Test circuit for frequency response.
5
ts
tr
Figure 12. Test circuit for response time.
RD
10%
OUTPUT
tf
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5989-0313EN
November 3, 2004
5989-1739EN
Similar pages