PD - 97770 IRF6892STRPbF IRF6892STR1PbF l l l l l l l l l DirectFET®plus MOSFET with Schottky Diode RoHS Compliant and Halogen Free Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for Control FET Application Compatible with existing Surface Mount Techniques 100% Rg tested Typical values (unless otherwise specified) VDSS VGS Qg tot 17nC Qgd Qgs2 Qrr Qoss Vgs(th) 6.0nC 2.3nC 39nC 16nC 1.8V G S S S S3C D ISOMETRIC S3C Applicable DirectFET Outline and Substrate Outline S2 M2 RDS(on) 25V max ±16V max 1.3mΩ @ 10V 2.0mΩ @ 4.5V D S1 RDS(on) M4 L4 L6 L8 Description The IRF6892SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and less than 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6892SPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6892SPbF has been optimized for parameters that are critical in synchronous buck converter’s Sync FET sockets. Absolute Maximum Ratings Max. Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g Typical RDS(on) (mΩ) ID = 28A 6.0 4.0 TJ = 125°C 2.0 TJ = 25°C 0.0 2 4 6 8 10 12 14 e e f h 8.0 16 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Units 25 ±16 28 22 125 220 240 22 VGS, Gate-to-Source Voltage (V) VDS V A mJ A 14.0 ID= 22A 12.0 VDS= 20V VDS= 13V 10.0 VDS= 5V 8.0 6.0 4.0 2.0 0.0 0 10 20 30 40 50 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.2mH, RG = 25Ω, IAS = 22A. 1 4/4/12 IRF6892STR/TR1PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 25 ––– ––– ΔΒVDSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 11 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 1.3 1.7 ––– 2.0 2.6 VGS = 0V, ID = 1mA V mV/°C Reference to 25°C, ID = 5mA VGS = 10V, ID = 28A mΩ VGS = 4.5V, ID = 22A i i VGS(th) Gate Threshold Voltage 1.1 1.8 2.1 V ΔVGS(th)/ΔTJ IDSS Gate Threshold Voltage Coefficient ––– -9.8 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 500 μA VDS = 20V, VGS = 0V ––– ––– 5.0 mA VDS = 20V, VGS = 0V, TJ = 125°C IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 nA S VDS = VGS, ID = 50μA VGS = 16V VGS = -16V VDS = 13V, ID = 22A Forward Transconductance 290 ––– ––– Total Gate Charge ––– 17 25 Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.0 ––– VDS = 13V Qgs2 Post-Vth Gate-to-Source Charge ––– 2.3 ––– VGS = 4.5V Qgd Gate-to-Drain Charge ––– 6.0 ––– Qgodr ––– 4.7 ––– Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 8.3 ––– Qoss Output Charge ––– 16 ––– nC ID = 22A See Fig. 2 & 15 nC RG Gate Resistance ––– 0.4 td(on) Turn-On Delay Time ––– 12 ––– tr Rise Time ––– 30 ––– td(off) Turn-Off Delay Time ––– 16 ––– tf Fall Time ––– 9.5 ––– Ciss Input Capacitance ––– 2510 ––– Coss Output Capacitance ––– 850 ––– Crss Reverse Transfer Capacitance ––– 190 ––– Min. Typ. Max. Units VDS = 10V, VGS = 0V Ω VDD = 13V, VGS = 4.5V ns ID = 22A i RG= 1.8Ω VGS = 0V pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current g ––– ––– 76 ––– ––– 220 Conditions MOSFET symbol A D showing the G integral reverse VSD Diode Forward Voltage ––– ––– 0.75 V p-n junction diode. TJ = 25°C, IS = 22A, VGS = 0V trr Reverse Recovery Time ––– 22 33 ns TJ = 25°C, IF = 22A Qrr Reverse Recovery Charge ––– 37 56 nC di/dt = 300A/μs (Body Diode) i S i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF6892STR/TR1PbF Absolute Maximum Ratings Max. Parameter e e f Units 2.1 1.3 42 270 -40 to + 150 Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG W °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 60 ––– ––– 3.0 ––– °C/W 0.016 W/°C 100 Thermal Response ( ZthJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 0.1 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF6892STR/TR1PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 4.5V 3.5V 3.2V 2.9V 2.7V 2.6V 2.4V 10 1 BOTTOM 10 2.5V ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH 2.5V Tj = 150°C Tj = 25°C 0.1 0.1 100 1 10 VGS 10V 4.5V 3.5V 3.2V 2.9V 2.7V 2.6V 2.4V 1 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 2.0 Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) ID = 28A 100 T J = 150°C T J = 25°C T J = -40°C 10 1 VDS = 15V ≤60μs PULSE WIDTH 0.1 1 2 3 -60 -40 -20 0 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature 14 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 12 Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) 1.0 T J , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics 10000 Ciss Coss 1000 Crss 10 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 V GS = 4.5V 1.5 0.5 4 VGS, Gate-to-Source Voltage (V) 100000 V GS = 10V 0 20 40 60 80 100 120 140 160 180 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6892STR/TR1PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C T J = 25°C 10 T J = -40°C VGS = 0V 0.4 0.6 0.8 100 1msec 10msec 10 1 0.1 TA = 25°C DC Tj = 150°C Single Pulse 0.01 1.0 0.1 1 10 100 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig 11. Maximum Safe Operating Area 2.5 Typical VGS(th) Gate threshold Voltage (V) 140 120 ID, Drain Current (A) 100μsec 0.01 1 0.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 80 60 40 20 ID = 1.0mA 2.0 1.5 1.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 1000 ID 1.3A 2.1A BOTTOM 22A TOP 800 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6892STR/TR1PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgs2 Qgs1 Qgd Fig 15b. Gate Charge Waveform V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V I AS 0.01Ω tp Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG A RD Fig 16b. Unclamped Inductive Waveforms VGS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 10% VDS td(off) tf td(on) tr Fig 17b. Switching Time Waveforms www.irf.com IRF6892STR/TR1PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET®plus Board Footprint, S3C (Small Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G=GATE D=DRAIN S=SOURCE D D www.irf.com S S G S D D 7 IRF6892STR/TR1PbF DirectFET®plus Outline Dimension, S3C Outline (Small Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L M P R METRIC MIN MAX 4.75 4.85 3.70 3.95 2.75 2.85 0.35 0.45 0.48 0.52 0.48 0.52 1.18 1.22 0.68 0.72 0.38 0.42 0.90 1.00 1.80 1.90 0.52 0.62 0.08 0.17 0.02 0.08 IMPERIAL MAX MIN 0.191 0.187 0.156 0.146 0.112 0.108 0.018 0.014 0.020 0.019 0.019 0.020 0.047 0.048 0.027 0.028 0.016 0.015 0.039 0.035 0.075 0.071 0.020 0.024 0.003 0.007 0.0008 0.0031 DirectFET®plus Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF6892STR/TR1PbF DirectFET®plus Tape & Reel Dimension (Showing component orientation). F E A B C D G H NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6892STRPBF). For 1000 parts on 7" reel, order IRF6892STR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS TR1 OPTION (QTY 4800) METRIC IMPERIAL MIN MAX MAX MIN 12.992 N.C 177.77 N.C 0.795 N.C N.C 19.06 0.504 0.520 13.5 12.8 0.059 1.5 N.C N.C 3.937 N.C 58.72 N.C N.C N.C 0.724 13.50 0.488 0.567 11.9 12.01 0.469 0.606 11.9 12.01 (QTY 1000) IMPERIAL MIN MAX 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED D IRECTION A H F C D B E NO TE: C ON TRO LLING DIMEN SION S IN MM C OD E A B C D E F G H G DIMEN SIO NS IMPERIAL METR IC MAX MIN MIN MAX 0.311 7.90 0.319 8.10 0.1 54 0.161 3.90 4.10 0.4 69 11.90 0.484 12.30 0.2 15 5.45 0.219 5.55 0.1 58 4.00 0.165 4.20 0.1 97 5.00 0.205 5.20 0.0 59 1.50 N.C N.C 0.0 59 1.50 0.063 1.60 Note: For the most current drawing please refer to IR website at http://www.irf.com/package Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Consumer market. Additional storage requirement details for DirectFET products can be found in application note AN1035 on IRs Web site. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2012 www.irf.com 9