CY7C1371S 18-Mbit (512K × 36) Flow-Through SRAM with NoBL™ Architecture 18-Mbit (512K × 36) Flow-Through SRAM with NoBL™ Architecture Features Functional Description ■ No Bus Latency (NoBL) architecture eliminates dead cycles between write and read cycles ■ Supports up to 133-MHz bus operations with zero wait states ■ Data is transferred on every clock ■ Pin-compatible and functionally equivalent to ZBT™ devices ■ Internally self-timed output buffer control to eliminate the need to use OE ■ Registered inputs for flow through operation ■ Byte Write capability ■ 3.3 V/2.5 V I/O power supply (VDDQ) ■ Fast clock-to-output times ❐ 6.5 ns (for 133-MHz device) ■ Clock Enable (CEN) pin to enable clock and suspend operation ■ Synchronous self-timed writes ■ Asynchronous Output Enable ■ Available in JEDEC-standard Pb-free 100-pin TQFP, and non Pb-free 119-ball BGA ■ Three chip enables for simple depth expansion ■ Automatic Power down feature available using ZZ mode or CE deselect ■ IEEE 1149.1 JTAG-Compatible Boundary Scan ■ Burst Capability – linear or interleaved burst order ■ Low standby power The CY7C1371S is a 3.3 V, 512K × 36 Synchronous flow through Burst SRAM designed specifically to support unlimited true back-to-back Read/Write operations with no wait state insertion. The CY7C1371S is equipped with the advanced No Bus Latency (NoBL) logic required to enable consecutive Read/Write operations with data being transferred on every clock cycle. This feature dramatically improves the throughput of data through the SRAM, especially in systems that require frequent Write-Read transitions. All synchronous inputs pass through input registers controlled by the rising edge of the clock. The clock input is qualified by the Clock Enable (CEN) signal, which when deasserted suspends operation and extends the previous clock cycle. Maximum access delay from the clock rise is 6.5 ns (133-MHz device). Write operations are controlled by the two or four Byte Write Select (BWX) and a Write Enable (WE) input. All writes are conducted with on-chip synchronous self-timed write circuitry. Three synchronous Chip Enables (CE1, CE2, CE3) and an asynchronous Output Enable (OE) provide for easy bank selection and output tri-state control. To avoid bus contention, the output drivers are synchronously tri-stated during the data portion of a write sequence. Selection Guide Description 133 MHz Unit Maximum Access Time 6.5 ns Maximum Operating Current 210 mA Maximum CMOS Standby Current 70 mA Cypress Semiconductor Corporation Document Number: 001-43826 Rev. *F • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised March 18, 2016 CY7C1371S Logic Block Diagram – CY7C1371S ADDRESS REGISTER A0, A1, A A1 D1 A0 D0 MODE CLK CEN C CE ADV/LD C BURST LOGIC Q1 A1' A0' Q0 WRITE ADDRESS REGISTER ADV/LD BW A WRITE REGISTRY AND DATA COHERENCY CONTROL LOGIC BW B BW C WRITE DRIVERS MEMORY ARRAY S E N S E A M P S BW D WE OE CE1 CE2 CE3 ZZ INPUT REGISTER D A T A S T E E R I N G O U T P U T B U F F E R S DQs DQP A DQP B DQP C DQP D E E READ LOGIC SLEEP CONTROL Document Number: 001-43826 Rev. *F Page 2 of 29 CY7C1371S Contents Pin Configurations ........................................................... 4 Pin Definitions .................................................................. 6 Functional Overview ........................................................ 7 Single Read Accesses ................................................ 7 Burst Read Accesses .................................................. 7 Single Write Accesses ................................................. 7 Burst Write Accesses .................................................. 8 Sleep Mode ................................................................. 8 Interleaved Burst Address Table ................................. 8 Linear Burst Address Table ......................................... 8 ZZ Mode Electrical Characteristics .............................. 8 Truth Table ........................................................................ 9 IEEE 1149.1 Serial Boundary Scan (JTAG) .................. 10 Disabling the JTAG Feature ...................................... 10 Test Access Port (TAP) ............................................. 10 PERFORMING A TAP RESET .................................. 10 TAP REGISTERS ...................................................... 10 TAP Instruction Set ................................................... 10 TAP Controller State Diagram ....................................... 12 TAP Controller Block Diagram ...................................... 13 TAP Timing ...................................................................... 14 TAP AC Switching Characteristics ............................... 14 3.3 V TAP AC Test Conditions ....................................... 15 3.3 V TAP AC Output Load Equivalent ......................... 15 2.5 V TAP AC Test Conditions ....................................... 15 2.5 V TAP AC Output Load Equivalent ......................... 15 TAP DC Electrical Characteristics and Operating Conditions ............................................. 15 Document Number: 001-43826 Rev. *F Identification Register Definitions ................................ 16 Scan Register Sizes ....................................................... 16 Identification Codes ....................................................... 16 Boundary Scan Order .................................................... 17 Maximum Ratings ........................................................... 18 Operating Range ............................................................. 18 Electrical Characteristics ............................................... 18 Capacitance .................................................................... 19 Thermal Resistance ........................................................ 19 AC Test Loads and Waveforms ..................................... 19 Switching Characteristics .............................................. 20 Switching Waveforms .................................................... 21 Ordering Information ...................................................... 24 Ordering Code Definitions ......................................... 24 Package Diagrams .......................................................... 25 Acronyms ........................................................................ 27 Document Conventions ................................................. 27 Units of Measure ....................................................... 27 Document History Page ................................................. 28 Sales, Solutions, and Legal Information ...................... 29 Worldwide Sales and Design Support ....................... 29 Products .................................................................... 29 PSoC® Solutions ...................................................... 29 Cypress Developer Community ................................. 29 Technical Support ..................................................... 29 Page 3 of 29 CY7C1371S Pin Configurations A 42 43 44 45 46 47 48 49 50 NC/72M A A A A A A A 41 NC/36M 40 37 A0 VSS 36 A1 VDD 35 A 39 34 A NC/144M 33 A 38 32 NC/288M 31 Document Number: 001-43826 Rev. *F 81 A 82 A 83 A 84 ADV/LD 90 85 VSS 91 OE VDD 92 86 CE3 93 CEN BWA 94 WE BWB 95 88 BWC 96 CLK BWD 97 89 CE1 CE2 A 98 87 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 CY7C1371S A BYTE D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 MODE BYTE C DQPC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSS DQD DQD DQD DQD VSS VDDQ DQD DQD DQPD 99 100 A Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout DQPB DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA DQPA BYTE B BYTE A Page 4 of 29 CY7C1371S Pin Configurations (continued) Figure 2. 119-ball BGA (14 × 22 × 2.4 mm) pinout CY7C1371S (512K × 36) A 1 VDDQ 2 A 3 A 4 A 5 A 6 A 7 VDDQ B C NC/576M NC/1G CE2 A A A ADV/LD VDD A A CE3 A NC NC D E DQC DQC DQPC DQC VSS VSS NC CE1 VSS VSS DQPB DQB DQB DQB F VDDQ DQC VSS VSS DQB VDDQ G H J K DQC DQC VDDQ DQD DQC DQC VDD DQD BWC VSS NC VSS BWB VSS NC VSS DQB DQB VDD DQA DQB DQB VDDQ DQA BWA VSS DQA DQA DQA VDDQ VSS DQA DQA L DQD DQD M VDDQ DQD BWD VSS N DQD DQD VSS OE A WE VDD CLK NC CEN A1 P DQD DQPD VSS A0 VSS DQPA DQA R NC/144M A MODE VDD NC A NC/288M T U NC VDDQ NC/72M TMS A TDI A TCK A TDO NC/36M NC ZZ VDDQ Document Number: 001-43826 Rev. *F Page 5 of 29 CY7C1371S Pin Definitions Name A0, A1, A I/O Description InputAddress Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the Synchronous CLK. A[1:0] are fed to the two-bit burst counter. InputByte Write Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on the BWA, BWB, BWC, BWD Synchronous rising edge of CLK. WE InputWrite Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal Synchronous must be asserted LOW to initiate a write sequence. ADV/LD InputAdvance/Load Input. Used to advance the on-chip address counter or load a new address. When HIGH Synchronous (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new address can be loaded into the device for an access. After being deselected, ADV/LD must be driven LOW to load a new address. CLK InputClock Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is only recognized if CEN is active LOW. CE1 InputChip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2 Synchronous and CE3 to select/deselect the device. CE2 InputChip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1 Synchronous and CE3 to select/deselect the device. CE3 InputChip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1 Synchronous and CE2 to select/deselect the device. OE Output Enable, Asynchronous Input, Active LOW. Combined with the synchronous logic block inside InputAsynchronou the device to control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during s the data portion of a write sequence, during the first clock when emerging from a deselected state, when the device has been deselected. CEN InputClock Enable Input, Active LOW. When asserted LOW the Clock signal is recognized by the SRAM. Synchronous When deasserted HIGH the Clock signal is masked. While deasserting CEN does not deselect the device, use CEN to extend the previous cycle when required. ZZ ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition with InputAsynchronou data integrity preserved. For normal operation, this pin must be LOW or left floating. ZZ pin has an internal pull down. s DQs I/OBidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by the Synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP[A:D] are placed in a tri-state condition.The outputs are automatically tri-stated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE. DQPX I/OBidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs. Synchronous MODE VDD VDDQ VSS TDO Input Strap Pin Mode Input. Selects the Burst Order of the Device. When tied to Gnd selects linear burst sequence. When tied to VDD or left floating selects interleaved burst sequence. Power Supply Power Supply Inputs to the Core of the Device. I/O Power Supply Ground Power Supply for the I/O Circuitry. Ground for the Device. JTAG serial Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If the JTAG feature output is not being used, this pin must be left unconnected. This pin is not available on TQFP packages. Synchronous Document Number: 001-43826 Rev. *F Page 6 of 29 CY7C1371S Pin Definitions (continued) Name I/O Description TDI JTAG serial Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being used, this pin can be left floating or connected to VDD through a pull up resistor. This pin is not available input Synchronous on TQFP packages. TMS JTAG serial Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being input used, this pin can be disconnected or connected to VDD. This pin is not available on TQFP packages. Synchronous TCK JTAGClock Clock Input to the JTAG Circuitry. If the JTAG feature is not being used, this pin must be connected to VSS. This pin is not available on TQFP packages. NC – No Connects. Not internally connected to the die. NC/(36M, 72M, 144M, 288M, 576M, 1G) are address expansion pins and are not internally connected to the die. Functional Overview The CY7C1371S is a synchronous flow through burst SRAM designed specifically to eliminate wait states during Write-Read transitions. All synchronous inputs pass through input registers controlled by the rising edge of the clock. The clock signal is qualified with the Clock Enable input signal (CEN). If CEN is HIGH, the clock signal is not recognized and all internal states are maintained. All synchronous operations are qualified with CEN. Maximum access delay from the clock rise (tCDV) is 6.5 ns (133-MHz device). Accesses can be initiated by asserting all three Chip Enables (CE1, CE2, CE3) active at the rising edge of the clock. If Clock Enable (CEN) is active LOW and ADV/LD is asserted LOW, the address presented to the device is latched. The access can either be a read or write operation, depending on the status of the Write Enable (WE). BWX can be used to conduct byte write operations. Write operations are qualified by the Write Enable (WE). All writes are simplified with on-chip synchronous self-timed write circuitry. Three synchronous Chip Enables (CE1, CE2, CE3) and an asynchronous Output Enable (OE) simplify depth expansion. All operations (Reads, Writes, and Deselects) are pipelined. ADV/LD must be driven LOW after the device has been deselected to load a new address for the next operation. Single Read Accesses A read access is initiated when these conditions are satisfied at clock rise: ■ CEN is asserted LOW ■ CE1, CE2, and CE3 are ALL asserted active ■ The Write Enable input signal WE is deasserted HIGH ■ ADV/LD is asserted LOW. The address presented to the address inputs is latched into the Address Register and presented to the memory array and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the output buffers. The data is available within 6.5 ns (133-MHz device) provided OE is active LOW. After the first clock of the read access, the output buffers are controlled by OE and the internal control logic. OE must be driven LOW in order for the Document Number: 001-43826 Rev. *F device to drive out the requested data. On the subsequent clock, another operation (Read/Write/Deselect) can be initiated. When the SRAM is deselected at clock rise by one of the chip enable signals, its output is tri-stated immediately. Burst Read Accesses The CY7C1371S has an on-chip burst counter that allows the user the ability to supply a single address and conduct up to four Reads without reasserting the address inputs. ADV/LD must be driven LOW to load a new address into the SRAM, as described in the Single Read Accesses section. The sequence of the burst counter is determined by the MODE input signal. A LOW input on MODE selects a linear burst mode, a HIGH selects an interleaved burst sequence. Both burst counters use A0 and A1 in the burst sequence, and wraps around when incremented sufficiently. A HIGH input on ADV/LD increments the internal burst counter regardless of the state of chip enable inputs or WE. WE is latched at the beginning of a burst cycle. Therefore, the type of access (Read or Write) is maintained throughout the burst sequence. Single Write Accesses Write access are initiated when the following conditions are satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2, and CE3 are ALL asserted active, and (3) the write signal WE is asserted LOW. The address presented to the address bus is loaded into the Address Register. The write signals are latched into the Control Logic block. The data lines are automatically tri-stated regardless of the state of the OE input signal. This allows the external logic to present the data on DQs and DQPX. On the next clock rise the data presented to DQs and DQPX (or a subset for byte write operations, see truth table for details) inputs is latched into the device and the write is complete. Additional accesses (Read/Write/Deselect) can be initiated on this cycle. The data written during the Write operation is controlled by BWX signals. The CY7C1371S provides byte write capability that is described in the truth table. Asserting the Write Enable input (WE) with the selected Byte Write Select input selectively writes to only the desired bytes. Bytes not selected during a byte write operation remains unaltered. A synchronous self-timed write mechanism has been provided to simplify the write operations. Byte write capability has been included to greatly simplify Read/Modify/Write sequences, which can be reduced to simple byte write operations. Page 7 of 29 CY7C1371S Because the CY7C1371S is a common I/O device, data must not be driven into the device while the outputs are active. The Output Enable (OE) can be deasserted HIGH before presenting data to the DQs and DQPX inputs. Doing so tri-states the output drivers. As a safety precaution, DQs and DQPX are automatically tri-stated during the data portion of a write cycle, regardless of the state of OE. Interleaved Burst Address Table (MODE = Floating or VDD) First Address A1:A0 Second Address A1:A0 Third Address A1:A0 Fourth Address A1:A0 Burst Write Accesses 00 01 10 11 The CY7C1371S has an on-chip burst counter that allows the user the ability to supply a single address and conduct up to four Write operations without reasserting the address inputs. ADV/LD must be driven LOW to load the initial address, as described in the Single Write Access section. When ADV/LD is driven HIGH on the subsequent clock rise, the Chip Enables (CE1, CE2, and CE3) and WE inputs are ignored and the burst counter is incremented. The correct BWX inputs must be driven in each cycle of the burst write, to write the correct bytes of data. 01 00 11 10 10 11 00 01 11 10 01 00 Fourth Address A1:A0 Linear Burst Address Table (MODE = GND) Sleep Mode The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation “sleep” mode. Two clock cycles are required to enter into or exit from this “sleep” mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the “sleep” mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the “sleep” mode. CE1, CE2, and CE3, must remain inactive for the duration of tZZREC after the ZZ input returns LOW. First Address A1:A0 Second Address A1:A0 Third Address A1:A0 00 01 10 11 01 10 11 00 10 11 00 01 11 00 01 10 ZZ Mode Electrical Characteristics Parameter Description Test Conditions Min Max Unit IDDZZ Sleep mode standby current ZZ > VDD– 0.2 V – 80 mA tZZS Device operation to ZZ ZZ > VDD – 0.2 V – 2tCYC ns tZZREC ZZ recovery time ZZ < 0.2 V 2tCYC – ns tZZI ZZ active to sleep current This parameter is sampled – 2tCYC ns tRZZI ZZ Inactive to exit sleep current This parameter is sampled 0 – ns Document Number: 001-43826 Rev. *F Page 8 of 29 CY7C1371S Truth Table The truth table for CY7C1371S follows. [1, 2, 3, 4, 5, 6, 7] Operation Address Used CE1 CE2 CE3 ZZ ADV/LD WE BWX OE CEN CLK DQ Deselect Cycle None H X X L L X X X L L–>H Tri-State Deselect Cycle None X X H L L X X X L L–>H Tri-State Deselect Cycle None X L X L L X X X L L–>H Tri-State Continue Deselect Cycle None X X X L H X X X L L–>H Tri-State Read Cycle (Begin Burst) External L H L L L H X L L L–>H Data Out (Q) Next X X X L H X X L L L–>H Data Out (Q) External L H L L L H X H L L–>H Tri-State Next X X X L H X X H L L–>H Tri-State External L H L L L L L X L L–>H Data In (D) Write Cycle (Continue Burst) Next X X X L H X L X L L–>H Data In (D) NOP/Write Abort (Begin Burst) None L H L L L L H X L L–>H Tri-State Write Abort (Continue Burst) Next X X X L H X H X L L–>H Tri-State Current X X X L X X X X H L–>H – None X X X H X X X X X X Tri-State Read Cycle (Continue Burst) NOP/Dummy Read (Begin Burst) Dummy Read (Continue Burst) Write Cycle (Begin Burst) Ignore Clock Edge (Stall) Sleep Mode Partial Truth Table for Read/Write Function (CY7C1371S) [1, 2, 8] WE BWA BWB BWC BWD Read H X X X X Write No bytes written L H H H H Write Byte A – (DQA and DQPA) L L H H H Write Byte B – (DQB and DQPB) L H L H H Write Byte C – (DQC and DQPC) L H H L H Write Byte D – (DQD and DQPD) L H H H L Write All Bytes L L L L L Notes 1. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BWX = 0 signifies at least one Byte Write Select is active, BWX = Valid signifies that the desired byte write selects are asserted, see truth table for details. 2. Write is defined by BWX, and WE. See truth table for Read/Write. 3. When a write cycle is detected, all IOs are tri-stated, even during byte writes. 4. The DQs and DQPX pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock. 5. CEN = H, inserts wait states. 6. Device powers up deselected and the IOs in a tri-state condition, regardless of OE. 7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQPX = Tri-state when OE is inactive or when the device is deselected, and DQs and DQPX = data when OE is active. 8. Table only lists a partial listing of the byte write combinations. Any Combination of BWX is valid Appropriate write is based on which byte write is active. Document Number: 001-43826 Rev. *F Page 9 of 29 CY7C1371S IEEE 1149.1 Serial Boundary Scan (JTAG) The CY7C1371S incorporates a serial boundary scan test access port (TAP).This part is fully compliant with 1149.1. The TAP operates using JEDEC-standard 3.3 V or 2.5 V I/O logic levels. The CY7C1371S contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. Disabling the JTAG Feature It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately be connected to VDD through a pull up resistor. TDO must be left unconnected. Upon power up, the device is up in a reset state which does not interfere with the operation of the device. Test Access Port (TAP) Test Clock (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. Test Mode Select (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level. Test Data-In (TDI) The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register, see TAP Controller State Diagram on page 12. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. Test Data-Out (TDO) The TDO output ball is used to serially clock data-out from the registers. The output is active depending upon the current state of the TAP state machine (see Identification Codes on page 16). The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. Performing a TAP Reset A RESET is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating. At power up, the TAP is reset internally to ensure that TDO comes up in a High Z state. TAP Registers Registers are connected between the TDI and TDO balls and scans data into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Document Number: 001-43826 Rev. *F Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK. Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls as shown in the TAP Controller Block Diagram on page 13. Upon power up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board level serial test data path. Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This shifts data through the SRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed. Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be used to capture the contents of the I/O ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI and the LSB is connected to TDO. Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions on page 16. TAP Instruction Set Overview Eight different instructions are possible with the three bit instruction register. All combinations are listed in the Identification Codes on page 16. Three of these instructions are listed as RESERVED and must not be used. The other five instructions are described in this section in detail. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction after it is shifted in, the TAP controller is moved into the Update-IR state. Page 10 of 29 CY7C1371S EXTEST The EXTEST instruction drives the preloaded data out through the system output pins. This instruction also connects the boundary scan register for serial access between the TDI and TDO in the shift-DR controller state. IDCODE The IDCODE instruction loads a vendor-specific, 32-bit code into the instruction register. It also places the instruction register between the TDI and TDO balls and shifts the IDCODE out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power up or whenever the TAP controller is supplied a test logic reset state. SAMPLE Z The SAMPLE Z instruction connects the boundary scan register between the TDI and TDO balls when the TAP controller is in a Shift-DR state. It also places all SRAM outputs into a High Z state. SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output undergoes a transition. The TAP may then try to capture a signal while in transition (metastable state). This does not harm the device, but there is no guarantee as to the value that is captured. Repeatable results may not be possible. To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller’s capture setup plus hold times (tCS and tCH). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is Document Number: 001-43826 Rev. *F still possible to capture all other signals and simply ignore the value of the CK and CK captured in the boundary scan register. After the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. PRELOAD places an initial data pattern at the latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation. The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required – that is, while data captured is shifted out, the preloaded data can be shifted in. BYPASS When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO balls. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. EXTEST Output Bus Tri-State IEEE Standard 1149.1 mandates that the TAP controller be able to put the output bus into a tri-state mode. The boundary scan register has a special bit located at bit #85 (for 119-ball BGA package). When this scan cell, called the “extest output bus tri-state,” is latched into the preload register during the “Update-DR” state in the TAP controller, it directly controls the state of the output (Q-bus) pins, when the EXTEST is entered as the current instruction. When HIGH, it enables the output buffers to drive the output bus. When LOW, this bit places the output bus into a High Z condition. This bit can be set by entering the SAMPLE/PRELOAD or EXTEST command, and then shifting the desired bit into that cell, during the “Shift-DR” state. During “Update-DR,” the value loaded into that shift-register cell latches into the preload register. When the EXTEST instruction is entered, this bit directly controls the output Q-bus pins. Note that this bit is preset HIGH to enable the output when the device is powered-up, and also when the TAP controller is in the “Test-Logic-Reset” state. Reserved These instructions are not implemented but are reserved for future use. Do not use these instructions. Page 11 of 29 CY7C1371S TAP Controller State Diagram 1 TEST-LOGIC RESET 0 0 RUN-TEST/ IDLE 1 SELECT DR-SCAN 1 SELECT IR-SCAN 0 1 0 1 CAPTURE-DR CAPTURE-IR 0 0 SHIFT-DR 0 SHIFT-IR 1 1 EXIT1-IR 0 1 0 PAUSE-DR 0 PAUSE-IR 1 0 1 EXIT2-DR 0 EXIT2-IR 1 1 UPDATE-DR UPDATE-IR 1 0 1 EXIT1-DR 0 1 0 1 0 The 0/1 next to each state represents the value of TMS at the rising edge of TCK. Document Number: 001-43826 Rev. *F Page 12 of 29 CY7C1371S TAP Controller Block Diagram 0 Bypass Register 2 1 0 TDI Selection Circuitry Instruction Register Selection Circuitry TDO 31 30 29 . . . 2 1 0 Identification Register x . . . . . 2 1 0 Boundary Scan Register TCK TAP CONTROLLER TMS Document Number: 001-43826 Rev. *F Page 13 of 29 CY7C1371S TAP Timing Figure 3. TAP Timing 1 2 3 4 5 6 Test Clock (TCK) t t TH t TMSS t TMSH t TDIS t TDIH TL t CYC Test Mode Select (TMS) Test Data-In (TDI) t TDOV t TDOX Test Data-Out (TDO) DON’T CARE UNDEFINED TAP AC Switching Characteristics Over the Operating Range Parameter [9, 10] Description Min Max Unit Clock tTCYC TCK Clock Cycle Time 50 – ns tTF TCK Clock Frequency – 20 MHz tTH TCK Clock HIGH time 20 – ns tTL TCK Clock LOW time 20 – ns tTDOV TCK Clock LOW to TDO Valid – 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 – ns tTMSS TMS Setup to TCK Clock Rise 5 – ns tTDIS TDI Setup to TCK Clock Rise 5 – ns tCS Capture Setup to TCK Rise 5 – ns tTMSH TMS Hold after TCK Clock Rise 5 – ns tTDIH TDI Hold after Clock Rise 5 – ns tCH Capture Hold after Clock Rise 5 – ns Output Times Setup Times Hold Times Notes 9. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register. 10. Test conditions are specified using the load in TAP AC test Conditions. tR/tF = 1 ns. Document Number: 001-43826 Rev. *F Page 14 of 29 CY7C1371S 3.3 V TAP AC Test Conditions 2.5 V TAP AC Test Conditions Input pulse levels ...............................................VSS to 3.3 V Input pulse level ................................................. VSS to 2.5 V Input rise and fall times ...................................................1 ns Input rise and fall time ....................................................1 ns Input timing reference levels ......................................... 1.5 V Input timing reference levels ...................................... .1.25 V Output reference levels ................................................ 1.5 V Output reference levels .............................................. 1.25 V Test load termination supply voltage ............................ 1.5 V Test load termination supply voltage .......................... 1.25 V 3.3 V TAP AC Output Load Equivalent 2.5 V TAP AC Output Load Equivalent 1.25V 1.5V 50Ω 50Ω TDO TDO Z O= 50Ω Z O= 50Ω 20pF 20pF TAP DC Electrical Characteristics and Operating Conditions (0 °C < TA < +70 °C; VDD = 3.3 V ± 0.165 V unless otherwise noted) Parameter [11] Description VOH1 Output HIGH Voltage VOH2 Output HIGH Voltage Conditions Min Max Unit IOH = –4.0 mA VDDQ = 3.3 V 2.4 – V IOH = –1.0 mA VDDQ = 2.5 V 2.0 – V IOH = –100 µA VDDQ = 3.3 V 2.9 – V VDDQ = 2.5 V 2.1 – V VDDQ = 3.3 V – 0.4 V VOL1 Output LOW Voltage IOL = 8.0 mA IOL = 1.0 mA VDDQ = 2.5 V – 0.4 V VOL2 Output LOW Voltage IOL = 100 µA VDDQ = 3.3 V – 0.2 V VDDQ = 2.5 V – 0.2 V 2.0 VDD + 0.3 V VIH Input HIGH Voltage VDDQ = 3.3 V VDDQ = 2.5 V 1.7 VDD + 0.3 V VIL Input LOW Voltage VDDQ = 3.3 V –0.5 0.7 V VDDQ = 2.5 V –0.3 0.7 V –5 5 µA IX Input Load Current GND < VIN < VDDQ Note 11. All voltages referenced to VSS (GND). Document Number: 001-43826 Rev. *F Page 15 of 29 CY7C1371S Identification Register Definitions CY7C1371S (512K × 36) Instruction Field Revision Number (31:29) 000 Device Depth (28:24) 01011 Description Describes the version number Reserved for internal use Device Width (23:18) 001001 Defines memory type and architecture Cypress Device ID (17:12) 100101 Defines width and density Cypress JEDEC ID Code (11:1) 00000110100 ID Register Presence Indicator (0) 1 Allows unique identification of SRAM vendor Indicates the presence of an ID register Scan Register Sizes Register Name Bit Size (× 36) Instruction 3 Bypass 1 ID 32 Boundary Scan Order (119-ball BGA package) 85 Identification Codes Instruction Code Description EXTEST 000 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM outputs to High Z state. IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operations. SAMPLE Z 010 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High Z state. RESERVED 011 Do Not Use: This instruction is reserved for future use. SAMPLE/PRELOAD 100 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. RESERVED 101 Do Not Use: This instruction is reserved for future use. RESERVED 110 Do Not Use: This instruction is reserved for future use. BYPASS 111 Places the bypass register between TDI and TDO. This operation does not affect SRAM operations. Document Number: 001-43826 Rev. *F Page 16 of 29 CY7C1371S Boundary Scan Order 119-ball BGA [12, 13] Bit # Ball ID Bit # 1 H4 T4 23 2 24 3 T5 25 4 T6 26 5 R5 6 L5 7 8 Ball ID Bit # Ball ID Bit # Ball ID F6 45 G4 67 L1 E7 46 A4 68 M2 D7 47 G3 69 N1 H7 48 C3 70 P1 27 G6 49 B2 71 K1 28 E6 50 B3 72 L2 R6 29 D6 51 A3 73 U6 30 C7 52 C2 74 N2 P2 9 R7 31 B7 53 A2 75 R3 10 T7 32 C6 54 B1 76 T1 11 P6 33 A6 55 C1 77 R1 12 N7 34 C5 56 D2 78 T2 13 M6 35 B5 57 E1 79 L3 14 L7 36 G5 58 F2 80 R2 15 K6 37 B6 59 G1 81 T3 16 P7 38 D4 60 H2 82 L4 17 N6 39 B4 61 D1 83 N4 18 L6 40 F4 62 E2 84 P4 19 K7 41 M4 63 G2 85 Internal 20 J5 42 A5 64 H1 21 H6 43 K4 65 J3 22 G7 44 E4 66 2K Notes 12. Balls which are NC (No Connect) are pre-set LOW. 13. Bit# 85 is pre-set HIGH. Document Number: 001-43826 Rev. *F Page 17 of 29 CY7C1371S Maximum Ratings DC Input Voltage ................................ –0.5 V to VDD + 0.5 V Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature ............................... –65 °C to +150 °C Ambient Temperature with Power Applied ......................................... –55 °C to +125 °C Current into Outputs (LOW) ........................................ 20 mA Static Discharge Voltage (MIL-STD-883, Method 3015) ................................. > 2001 V Latch up Current .................................................... > 200 mA Operating Range Supply Voltage on VDD Relative to GND .....–0.5 V to +4.6 V Range Ambient Temperature Commercial 0 °C to +70 °C Supply Voltage on VDDQ Relative to GND .... –0.5 V to +VDD DC Voltage Applied to Outputs in Tri-State ........................................–0.5 V to VDDQ + 0.5 V VDD VDDQ 3.3 V– 5% / 2.5 V – 5% to + 10% VDD Electrical Characteristics Over the Operating Range Parameter [14, 15] Description VDD Power Supply Voltage VDDQ I/O Supply Voltage VOH VOL Output HIGH Voltage Output LOW Voltage [14] Test Conditions Min Max Unit 3.135 3.6 V for 3.3 V I/O 3.135 VDD V for 2.5 V I/O 2.375 2.625 V for 3.3 V I/O, IOH = –4.0 mA 2.4 – V for 2.5 V I/O, IOH = –1.0 mA 2.0 – V for 3.3 V I/O, IOL = 8.0 mA – 0.4 V for 2.5 V I/O, IOL = 1.0 mA – 0.4 V 2.0 VDD + 0.3 V for 2.5 V I/O 1.7 VDD + 0.3 V for 3.3 V I/O –0.3 0.8 V for 2.5 V I/O VIH Input HIGH Voltage VIL Input LOW Voltage [14] –0.3 0.7 V IX Input Leakage Current except ZZ GND VI VDDQ and MODE –5 5 A Input Current of MODE –30 – A Input = VDD – 5 A Input = VSS –5 – A Input = VDD – 30 A Input Current of ZZ IDD [16] for 3.3 V I/O Input = VSS VDD Operating Supply Current VDD = Max, IOUT = 0 mA, f = fMAX = 1/tCYC 7.5 ns cycle, 133 MHz – 210 mA ISB1 Automatic CE Power down Current – TTL Inputs VDD = Max, Device Deselected, 7.5 ns cycle, VIN VIH or VIN VIL, 133 MHz f = fMAX, inputs switching – 140 mA ISB2 Automatic CE Power down Current – CMOS Inputs VDD = Max, Device Deselected, 7.5 ns cycle, VIN 0.3V or VIN > VDD – 0.3 V, 133 MHz f = 0, inputs static – 70 mA ISB3 Automatic CE Power down Current – CMOS Inputs VDD = Max, Device Deselected, 7.5 ns cycle, VIN 0.3 V or VIN > VDDQ – 0.3 V, 133 MHz f = fMAX, inputs switching – 130 mA ISB4 Automatic CE Power down Current – TTL Inputs VDD = Max, Device Deselected, 7.5 ns cycle, VIN VDD – 0.3 V or VIN 0.3 V, 133 MHz f = 0, inputs static – 80 mA Notes 14. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2), undershoot: VIL(AC) > –2V (Pulse width less than tCYC/2). 15. TPower up: Assumes a linear ramp from 0V to VDD(min.) within 200 ms. During this time VIH < VDD and VDDQ < VDD. 16. The operation current is calculated with 50% read cycle and 50% write cycle. Document Number: 001-43826 Rev. *F Page 18 of 29 CY7C1371S Capacitance Parameter [17] Description CIN Input capacitance CCLK Clock input capacitance CIO Input/Output capacitance 100-pin TQFP 119-ball BGA Package Package Test Conditions TA = 25 C, f = 1 MHz, VDD = 3.3 V, VDDQ = 2.5 V Unit 5 8 pF 5 8 pF 5 8 pF Thermal Resistance Parameter [17] Description JA Thermal resistance (junction to ambient) JC Thermal resistance (junction to case) 100-pin TQFP 119-ball BGA Package Package Test Conditions Test conditions follow standard test methods and procedures for measuring thermal impedance, according to EIA/JESD51. Unit 28.66 23.8 C/W 4.08 6.2 C/W AC Test Loads and Waveforms Figure 4. AC Test Loads and Waveforms 3.3 V I/O Test Load R = 317 3.3 V OUTPUT OUTPUT RL = 50 Z0 = 50 GND 5 pF R = 351 VT = 1.5 V INCLUDING JIG AND SCOPE (a) ALL INPUT PULSES VDDQ 10% 90% 10% 90% 1ns 1ns (c) (b) 2.5 V I/O Test Load R = 1667 2.5 V OUTPUT OUTPUT RL = 50 Z0 = 50 GND 5 pF R = 1538 VT = 1.25 V (a) ALL INPUT PULSES VDDQ INCLUDING JIG AND SCOPE (b) 10% 90% 10% 90% 1ns 1ns (c) Note 17. Tested initially and after any design or process change that may affect these parameters. Document Number: 001-43826 Rev. *F Page 19 of 29 CY7C1371S Switching Characteristics Over the Operating Range Parameter [18, 19] Description tPOWER[20] 133 MHz Unit Min Max 1 – ms Clock tCYC Clock Cycle Time 7.5 – ns tCH Clock HIGH 2.1 – ns tCL Clock LOW 2.1 – ns Output Times tCDV Data Output Valid After CLK Rise – 6.5 ns tDOH Data Output Hold After CLK Rise 2.0 – ns 2.0 – ns – 4.0 ns – 3.2 ns 0 – ns – 4.0 ns [21, 22, 23] tCLZ Clock to Low Z tCHZ Clock to High Z [21, 22, 23] tOEV OE LOW to Output Valid tOELZ tOEHZ OE LOW to Output Low Z [21, 22, 23] OE HIGH to Output High Z [21, 22, 23] Setup Times tAS Address Setup Before CLK Rise 1.5 – ns tALS ADV/LD Setup Before CLK Rise 1.5 – ns tWES WE, BWX Setup Before CLK Rise 1.5 – ns tCENS CEN Setup Before CLK Rise 1.5 – ns tDS Data Input Setup Before CLK Rise 1.5 – ns tCES Chip Enable Setup Before CLK Rise 1.5 – ns tAH Address Hold After CLK Rise 0.5 – ns tALH ADV/LD Hold After CLK Rise 0.5 – ns tWEH WE, BWX Hold After CLK Rise 0.5 – ns tCENH CEN Hold After CLK Rise 0.5 – ns tDH Data Input Hold After CLK Rise 0.5 – ns tCEH Chip Enable Hold After CLK Rise 0.5 – ns Hold Times Notes 18. Timing reference level is 1.5 V when VDDQ = 3.3 V and is 1.25 V when VDDQ = 2.5 V. 19. Test conditions shown in (a) of Figure 4 on page 19 unless otherwise noted. 20. This part has a voltage regulator internally; tPOWER is the time that the power is supplied above VDD(minimum) initially, before a read or write operation can be initiated. 21. tCHZ, tCLZ, tOELZ, and tOEHZ are specified with AC test conditions shown in part (b) of Figure 4 on page 19. Transition is measured ±200 mV from steady-state voltage. 22. At any voltage and temperature, tOEHZ is less than tOELZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High Z prior to Low Z under the same system conditions. 23. This parameter is sampled and not 100% tested. Document Number: 001-43826 Rev. *F Page 20 of 29 CY7C1371S Switching Waveforms Figure 5. Read/Write Waveforms [24, 25, 26] 1 2 3 t CYC 4 5 A3 A4 6 7 8 9 A5 A6 A7 10 CLK t CENS t CENH t CES t CEH t CH t CL CEN CE ADV/LD WE BW X A1 ADDRESS t AS A2 t CDV t AH t DOH t CLZ DQ D(A1) t DS D(A2) Q(A3) D(A2+1) t OEV Q(A4+1) Q(A4) t OELZ W RITE D(A1) W RITE D(A2) D(A5) Q(A6) D(A7) W RITE D(A7) DESELECT t OEHZ t DH OE COM M AND t CHZ BURST W RITE D(A2+1) READ Q(A3) READ Q(A4) DON’T CARE BURST READ Q(A4+1) t DOH W RITE D(A5) READ Q(A6) UNDEFINED Notes 24. For this waveform ZZ is tied LOW. 25. When CE is LOW, CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH, CE1 is HIGH or CE2 is LOW or CE3 is HIGH. 26. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional. Document Number: 001-43826 Rev. *F Page 21 of 29 CY7C1371S Switching Waveforms (continued) Figure 6. NOP, STALL AND DESELECT Cycles [27, 28, 29] 1 2 A1 A2 3 4 5 A3 A4 6 7 8 9 10 CLK CEN CE ADV/LD WE BW [A:D] ADDRESS A5 t CHZ D(A1) DQ Q(A2) Q(A3) D(A4) Q(A5) t DOH COMMAND WRITE D(A1) READ Q(A2) STALL READ Q(A3) WRITE D(A4) DON’T CARE STALL NOP READ Q(A5) DESELECT CONTINUE DESELECT UNDEFINED Notes 27. For this waveform ZZ is tied LOW. 28. When CE is LOW, CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH, CE1 is HIGH or CE2 is LOW or CE3 is HIGH. 29. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle. Document Number: 001-43826 Rev. *F Page 22 of 29 CY7C1371S Switching Waveforms (continued) Figure 7. ZZ Mode Timing [30, 31] CLK t ZZ ZZ I t ZZREC t ZZI SUPPLY I DDZZ t RZZI ALL INPUTS (except ZZ) Outputs (Q) DESELECT or READ Only High-Z DON’T CARE Notes 30. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device. 31. DQs are in high Z when exiting ZZ sleep mode. Document Number: 001-43826 Rev. *F Page 23 of 29 CY7C1371S Ordering Information Cypress offers other versions of this type of product in many different configurations and features. The below table contains only the list of parts that are currently available.For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative. Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices. Speed (MHz) 133 Package Diagram Ordering Code Part and Package Type CY7C1371S-133AXC 51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free CY7C1371S-133BGC 51-85115 119-ball BGA (14 × 22 × 2.4 mm) Operating Range Commercial Ordering Code Definitions CY 7 C 1371 S - 133 XX X C Temperature Range: C = Commercial Pb-free Package Type: XX = A or BG A = 100-pin TQFP BG = 119-ball BGA Frequency Range: 133 MHz Die Revision Part Identifier: 1371 = FT, 512Kb × 36 (18 Mb) Technology Code: C = CMOS Marketing Code: 7 = SRAM Company ID: CY = Cypress Document Number: 001-43826 Rev. *F Page 24 of 29 CY7C1371S Package Diagrams Figure 8. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050 51-85050 *E Document Number: 001-43826 Rev. *F Page 25 of 29 CY7C1371S Package Diagrams (continued) Figure 9. 119-ball BGA (14 × 22 × 2.4 mm) BG119 Package Outline, 51-85115 51-85115 *D Document Number: 001-43826 Rev. *F Page 26 of 29 CY7C1371S Acronyms Acronym Document Conventions Description Units of Measure BGA Ball Grid Array CMOS Complementary Metal Oxide Semiconductor °C degree Celsius I/O Input/Output MHz megahertz JTAG Joint Test Action Group µA microampere LSB Least Significant Bit mA milliampere MSB Most Significant Bit mm millimeter OE Output Enable ms millisecond SRAM Static Random Access Memory mV millivolt TAP Test Access Port ns nanosecond TCK Test Clock TMS Test Mode Select TDI Test Data-In TDO Test Data-Out TQFP Thin Quad Flat Pack TTL Transistor-Transistor Logic WE Write Enable Document Number: 001-43826 Rev. *F Symbol Unit of Measure ohm % percent pF picofarad V volt W watt Page 27 of 29 CY7C1371S Document History Page Document Title: CY7C1371S, 18-Mbit (512K × 36) Flow-Through SRAM with NoBL™ Architecture Document Number: 001-43826 Rev. ECN No. Issue Date Orig. of Change ** 1898286 See ECN VKN / AESA New data sheet. *A 2082246 See ECN JASM Changed status from Preliminary to Final. *B 2897885 03/23/10 NJY Updated Ordering Information (Removed inactive parts). Updated Package Diagrams. *C 3203729 03/23/2011 NJY Updated Ordering Information (Updated part numbers) and added Ordering Code Definitions. Updated Package Diagrams. Added Acronyms and Units of Measure. Updated to new template. *D 3571224 04/03/2012 PRIT Updated Features (Removed 165-ball FBGA package and Pb-free 119-ball BGA related information). Updated Functional Description (Removed CY7C1373S related information, removed the Note For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.” and its reference). Updated Selection Guide (Removed 100 MHz frequency related information). Removed Logic Block Diagram – CY7C1373S. Updated Pin Configurations (Removed CY7C1373S related information, and 165-ball FBGA package related information). Updated Functional Overview (Removed CY7C1373S related information). Updated Truth Table (Removed CY7C1373S related information). Removed Partial Truth Table for Read/Write (Corresponding to CY7C1373S). Updated IEEE 1149.1 Serial Boundary Scan (JTAG) (Removed CY7C1373S related information). Updated Identification Register Definitions (Removed CY7C1373S related information). Updated Scan Register Sizes (Removed 165-ball FBGA package related information and removed Bit Size (× 18) column). Removed Boundary Scan Order (Corresponding to 165-ball FBGA package). Updated Operating Range (Removed Industrial Temperature range). Updated Electrical Characteristics (Removed 100 MHz frequency related information). Updated Capacitance (Removed 165-ball FBGA package related information). Updated Thermal Resistance (Removed 165-ball FBGA package related information). Updated Switching Characteristics (Removed 100 MHz frequency related information). Updated Package Diagrams (Removed 165-ball FBGA package related information). Replaced all instances of IO with I/O across the document. *E 3978170 04/22/2013 PRIT Updated Package Diagrams: spec 51-85115 – Changed revision from *C to *D. Completing Sunset Review. *F 5181234 03/18/2016 PRIT Updated Package Diagrams: spec 51-85050 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review. Document Number: 001-43826 Rev. *F Description of Change Page 28 of 29 CY7C1371S Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products ARM® Cortex® Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface Lighting & Power Control Memory cypress.com/clocks cypress.com/interface cypress.com/powerpsoc cypress.com/memory PSoC cypress.com/psoc Touch Sensing PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/support cypress.com/touch USB Controllers Wireless/RF cypress.com/psoc cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 001-43826 Rev. *F Revised March 18, 2016 NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. Page 29 of 29