StrongIRFET IRFH7446PbF HEXFET® Power MOSFET Applications l Brushed Motor drive applications l BLDC Motor drive applications l PWM Inverterized topologies l Battery powered circuits l Half-bridge and full-bridge topologies l Synchronous rectifier applications l Resonant mode power supplies l OR-ing and redundant power switches l DC/DC and AC/DC converters Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l RoHS Compliant containing no Lead, no Bromide, and no Halogen Base Part Number Package Type Standard Pack Form Tape and Reel Tape and Reel PQFN 5mm x 6mm PQFN 5mm x 6mm 8.0 ID (Package Limited) 85A c Orderable part number Quantity 4000 400 IRFH7446TRPBF IRFH7446TR2PBF 125 ID = 50A 7.0 Limited By Package 100 6.0 5.0 T J = 125°C 4.0 3.0 75 50 25 2.0 T J = 25°C 1.0 0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 40V 2.5m 3.3m 117A PQFN 5X6 mm ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) IRFH7446PBF VDSS RDS(on) typ. max. ID (Silicon Limited) www.irf.com © 2012 International Rectifier 25 50 75 100 125 150 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature October 23, 2012 IRFH7446PbF Absolute Maximum Ratings Symbol Parameter Max. ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range VGS TJ TSTG d Avalanche Characteristics e EAS (Thermally limited) Single Pulse Avalanche Energy EAS (tested) IAR EAR Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy d Thermal Resistance Symbol RJC (Top) k Junction-to-Case k RJA Junction-to-Ambient RJC (Bottom) RJA (<10s) Units c c 117 74 85 A 468 78 0.63 ± 20 -55 to + 150 W W/°C V °C mJ 78 l 153 See Fig. 14, 15, 22a, 22b d Parameter Junction-to-Case j Junction-to-Ambient j A mJ Typ. Max. ––– ––– 1.6 31 ––– ––– 35 23 Units °C/W Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS V(BR)DSS/TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Calculated continuous current based on maximum allowable junction temperature. Current is limited to 71A by source bond technology. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.062mH RG = 50, IAS = 50A, VGS =10V. ISD 50A, di/dt 1123A/μs, VDD V(BR)DSS, TJ 150°C. 2 www.irf.com © 2012 International Rectifier Min. Typ. Max. Units 40 ––– ––– ––– 2.2 ––– ––– ––– ––– ––– ––– 0.032 2.5 3.8 ––– ––– ––– ––– ––– 1.5 ––– ––– 3.3 ––– 3.9 1.0 150 100 -100 ––– V V/°C m m V μA nA Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 1.0mA VGS = 10V, ID = 50A VGS = 6.0V, ID = 50A VDS = VGS, ID = 100μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V g g d Pulse width 400μs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of FR-4 material. R is measured at TJ approximately 90°C. This value determined from sample failure population, starting T J = 25°C, L= 0.062mH, RG = 50, IAS = 50A, VGS =10V. October 23, 2012 IRFH7446PbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. 159 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 65 16 23 42 11 37 33 26 3174 479 332 637 656 Max. Units Min. Typ. Max. Units ––– ––– 85 ––– ––– 468 ––– ––– ––– ––– ––– ––– ––– 0.9 2.6 16 18 5.0 6.9 0.50 1.3 ––– ––– ––– ––– ––– ––– ––– 98 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 50A ID = 50A VDS =20V VGS = 10V ID = 50A, VDS =0V, VGS = 10V VDD = 20V ID = 30A R G = 2.7 VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz VGS = 0V, VDS = 0V to 32V VGS = 0V, VDS = 0V to 32V g ns pF g i h Diode Characteristics Symbol IS Parameter VSD dv/dt trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Peak Diode Recovery Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ISM d f 3 www.irf.com © 2012 International Rectifier c Conditions A MOSFET symbol showing the G A integral reverse p-n junction diode. V TJ = 25°C, IS = 50A, VGS = 0V V/ns TJ = 150°C, IS = 50A, VDS = 40V ns TJ = 25°C VR = 34V, TJ = 125°C IF = 50A di/dt = 100A/μs nC TJ = 25°C TJ = 125°C A TJ = 25°C g D S g October 23, 2012 IRFH7446PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 100 BOTTOM 4.5V 10 60μs PULSE WIDTH 60μs PULSE WIDTH Tj = 150°C Tj = 25°C 1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 1.8 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 T J = 150°C 100 T J = 25°C 10 VDS = 10V 60μs PULSE WIDTH 1.0 ID = 50A VGS = 10V 1.6 1.4 1.2 1.0 0.8 0.6 3 4 5 6 7 8 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + Cgd, C ds SHORTED C rss = C gd C oss = C ds + Cgd 10000 Ciss Coss Crss 1000 20 40 60 80 100 120 140 160 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 100 ID= 50A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V www.irf.com © 2012 International Rectifier 0 10 20 30 40 50 60 70 80 90 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage October 23, 2012 IRFH7446PbF 1000 10000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 150°C T J = 25°C 10 1000 100μsec 100 1msec 10 10msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1.0 0.1 0.0 0.4 0.8 1.2 1.6 2.0 0.1 1 VSD, Source-to-Drain Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 0.50 50 Id = 1.0mA 0.45 0.40 48 0.35 46 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) DC 44 0.30 0.25 0.20 0.15 0.10 42 0.05 0.00 40 -60 -40 -20 0 -5 20 40 60 80 100 120 140 160 0 T J , Temperature ( °C ) 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( m) 5 Fig 12. Typical COSS Stored Energy 140 VGS = 5.0V VGS = 6.0V 120 VGS = 7.0V VGS = 8.0V 100 VGS =10V 80 60 40 20 0 0 100 200 300 400 500 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2012 International Rectifier October 23, 2012 IRFH7446PbF Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 80 70 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 50A 60 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2012 International Rectifier October 23, 2012 IRFH7446PbF 7 IF = 30A V R = 34V 6 4.0 TJ = 25°C TJ = 125°C 5 3.5 3.0 IRRM (A) VGS(th), Gate threshold Voltage (V) 4.5 ID = 100μA ID = 1.0mA ID = 1.0A 2.5 4 3 2 2.0 1 0 1.5 -75 -50 -25 0 25 50 0 75 100 125 150 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 7 100 IF = 50A V R = 34V 6 IF = 30A V R = 34V 80 TJ = 25°C TJ = 125°C QRR (nC) 5 IRRM (A) 400 diF /dt (A/μs) 4 3 TJ = 25°C TJ = 125°C 60 40 2 20 1 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt 100 IF = 50A V R = 34V QRR (nC) 80 TJ = 25°C TJ = 125°C 60 40 20 0 0 200 400 600 800 1000 diF /dt (A/μs) 7 Fig. 21 - Typical Stored Charge vs. dif/dt www.irf.com © 2012 International Rectifier October 23, 2012 IRFH7446PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01 tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width µs Duty Factor td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50K 12V tf .2F .3F D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 www.irf.com © 2012 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform October 23, 2012 IRFH7446PbF PQFN 5x6 Outline "E" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "E" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 9 www.irf.com © 2012 International Rectifier October 23, 2012 IRFH7446PbF PQFN 5x6 Outline "E" Tape and Reel NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. REEL DIMENSIONS STANDARD OPTION (QTY 4000) TR1 OPTION (QTY 400) METRIC IMPERIAL IMPERIAL METRIC MIN MIN MAX CODE MIN MIN MAX MAX MAX A 6.988 12.972 7.028 329.5 330.5 178.5 13.011 177.5 B 0.823 0.823 0.846 20.9 20.9 0.846 21.5 21.5 C 0.520 0.504 0.543 12.8 13.5 13.8 13.2 0.532 D 0.075 0.067 0.091 0.091 1.7 2.3 2.3 1.9 E 2.350 3.819 2.598 97 99 66 65 3.898 F Ref 17.4 12 Ref G 0.512 0.512 0.571 13 0.571 13 14.5 14.5 10 www.irf.com © 2012 International Rectifier October 23, 2012 IRFH7446PbF Qualification information† Indus trial (per JE DE C JE S D47F guidelines ) †† Qualification level Moisture Sensitivity Level MS L1 (per JE DE C J-S TD-020D†† ) PQFN 5mm x 6mm RoHS compliant Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11 www.irf.com © 2012 International Rectifier October 23, 2012