Intersil ISL6609CRZ-T Synchronous rectified mosfet driver Datasheet

ISL6609, ISL6609A
®
Data Sheet
April 27, 2009
FN9221.2
Synchronous Rectified MOSFET Driver
Features
The ISL6609, ISL6609A is a high frequency, MOSFET driver
optimized to drive two N-Channel power MOSFETs in a
synchronous-rectified buck converter topology. This driver
combined with an Intersil ISL63xx or ISL65xx multiphase
PWM controller forms a complete single-stage core-voltage
regulator solution with high efficiency performance at high
switching frequency for advanced microprocessors.
• Drives Two N-Channel MOSFETs
The IC is biased by a single low voltage supply (5V),
minimizing driver switching losses in high MOSFET gate
capacitance and high switching frequency applications.
Each driver is capable of driving a 3nF load with less than
10ns rise/fall time. Bootstrapping of the upper gate driver is
implemented via an internal low forward drop diode,
reducing implementation cost, complexity, and allowing the
use of higher performance, cost effective N-Channel
MOSFETs. Adaptive shoot-through protection is integrated
to prevent both MOSFETs from conducting simultaneously.
• ISL6605 Replacement with Enhanced Performance
• Low Bias Supply Current
The ISL6609, ISL6609A features 4A typical sink current for
the lower gate driver, enhancing the lower MOSFET gate
hold-down capability during PHASE node rising edge,
preventing power loss caused by the self turn-on of the lower
MOSFET due to the high dV/dt of the switching node.
• Pb-Free (RoHS Compliant)
The ISL6609, ISL6609A also features an input that
recognizes a high-impedance state, working together with
Intersil multiphase PWM controllers to prevent negative
transients on the controlled output voltage when operation is
suspended. This feature eliminates the need for the schottky
diode that may be utilized in a power system to protect the
load from negative output voltage damage. In addition, the
ISL6609A’s bootstrap function is designed to prevent the
BOOT capacitor from overcharging, should excessively large
negative swings occur at the transitions of the PHASE node.
1
• Adaptive Shoot-Through Protection
• 0.4Ω On-Resistance and 4A Sink Current Capability
• Supports High Switching Frequency
- Fast Output Rise and Fall
- Ultra Low Three-State Hold-Off Time (20ns)
• BOOT Capacitor Overcharge Prevention (ISL6609A)
• Low VF Internal Bootstrap Diode
• Enable Input and Power-On Reset
• QFN Package
- Compliant to JEDEC PUB95 MO-220 QFN-Quad Flat
No Leads-Product Outline
- Near Chip-Scale Package Footprint; Improves PCB
Efficiency and Thinner in Profile
Applications
• Core Voltage Supplies for Intel® and AMD®
Microprocessors
• High Frequency Low Profile High Efficiency DC/DC
Converters
• High Current Low Voltage DC/DC Converters
• Synchronous Rectification for Isolated Power Supplies
Related Literature
• Technical Brief TB363 “Guidelines for Handling and
Processing Moisture Sensitive Surface Mount Devices
(SMDs)”
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 2005, 2006, 2009. All Rights Reserved. Intel® is a registered trademark of Intel Corporation.
AMD® is a registered trademark of Advanced Micro Devices, Inc. All other trademarks mentioned are the property of their respective owners.
ISL6609, ISL6609A
Ordering Information
PART NUMBER
(Note)
PART
MARKING
TEMP. RANGE
(°C)
PACKAGE
(Pb-Free)
PKG.
DWG. #
ISL6609CBZ
ISL66 09CBZ
0 to +70
8 Ld SOIC
M8.15
ISL6609CBZ-T*
ISL66 09CBZ
0 to +70
8 Ld SOIC
M8.15
ISL6609CRZ
609Z
0 to +70
8 Ld 3x3 QFN
L8.3x3
ISL6609CRZ-T*
609Z
0 to +70
8 Ld 3x3 QFN
L8.3x3
ISL6609IBZ
ISL66 09IBZ
-40 to +85
8 Ld SOIC
M8.15
ISL6609IBZ-T*
ISL66 09IBZ
-40 to +85
8 Ld SOIC
M8.15
ISL6609IRZ
09IZ
-40 to +85
8 Ld 3x3 QFN
L8.3x3
ISL6609IRZ-T*
09IZ
-40 to +85
8 Ld 3x3 QFN
L8.3x3
ISL6609ACBZ
6609 ACBZ
0 to +70
8 Ld SOIC
M8.15
ISL6609ACBZ-T*
6609 ACBZ
0 to +70
8 Ld SOIC
M8.15
ISL6609ACRZ
09AZ
0 to +70
8 Ld 3x3 QFN
L8.3x3
ISL6609ACRZ-T*
09AZ
0 to +70
8 Ld 3x3 QFN
L8.3x3
ISL6609AIBZ
6609 AIBZ
-40 to +85
8 Ld SOIC
M8.15
ISL6609AIBZ-T*
6609 AIBZ
-40 to +85
8 Ld SOIC
M8.15
ISL6609AIRZ
9AIZ
-40 to +85
8 Ld 3x3 QFN
L8.3x3
ISL6609AIRZ-T*
9AIZ
-40 to +85
8 Ld 3x3 QFN
L8.3x3
ISL6609AIRZ-TK*
9AIZ
-40 to +85
8 Ld 3x3 QFN
L8.3x3
*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J
STD-020.
Pinouts
ISL6609, ISL6609A
(8 LD QFN)
TOP VIEW
UGATE
1
8
PHASE
UGATE
PHASE
ISL6609, ISL6609A
(8 LD SOIC)
TOP VIEW
BOOT
2
7
EN
8
7
PWM
3
6
VCC
GND
4
5
LGATE
66 EN
BOOT 1
PWM 2
2
3
4
GND
LGATE
5 VCC
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Block Diagram
ISL6609 and ISL6609A
RBOOT
VCC
BOOT
EN
UGATE
VCC
PWM
PHASE
SHOOTTHROUGH
PROTECTION
4.25k
CONTROL
LOGIC
VCC
4k
LGATE
GND
INTEGRATED 3Ω RESISTOR (RBOOT) AVAILABLE ONLY IN ISL6609A
3
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Typical Application - Multiphase Converter Using ISL6609 Gate Drivers
VIN
+5V
+5V
+5V
BOOT
VCC
FB
COMP
EN
VCC
VSEN
PWM1
PWM
ISL6609
PHASE
PWM2
PGOOD
RUGPH
UGATE
LGATE
PWM
CONTROL
(ISL63XX
or ISL65XX)
ISEN1
VID
(OPTIONAL)
+VCORE
+5V
ISEN2
VIN
BOOT
VCC
FS/EN
GND
EN
UGATE
RUGPH
PWM
ISL6609
PHASE
LGATE
RUGPH IS REQUIRED FOR SPECIAL POWER SEQUENCING APPLICATIONS
(SEE APPLICATION INFORMATION SECTION ON PAGE 8)
4
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Absolute Maximum Ratings
Thermal Information
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 7V
Input Voltage (VEN, VPWM) . . . . . . . . . . . . . . . -0.3V to VCC + 0.3V
BOOT Voltage (VBOOT-GND). . . -0.3V to 27V (DC) or 36V (<200ns)
BOOT To PHASE Voltage (VBOOT-PHASE) . . . . . . -0.3V to 7V (DC)
-0.3V to 9V (<10ns)
PHASE Voltage . . . . . . . . . . . . . . . . . . . . . GND - 0.3V to 27V (DC)
GND -8V (<20ns Pulse Width, 10μJ) to 30V (<100ns)
UGATE Voltage . . . . . . . . . . . . . . . . VPHASE - 0.3V (DC) to VBOOT
VPHASE - 5V (<20ns Pulse Width, 10μJ) to VBOOT
LGATE Voltage . . . . . . . . . . . . . . . GND - 0.3V (DC) to VCC + 0.3V
GND - 2.5V (<20ns Pulse Width, 5μJ) to VCC + 0.3V
Ambient Temperature Range . . . . . . . . . . . . . . . . . .-40°C to +125°C
Thermal Resistance (Notes 1, 2, 3)
θJA(°C/W)
θJC(°C/W)
SOIC Package (Note 1) . . . . . . . . . . . .
110
N/A
QFN Package (Notes 2, 3). . . . . . . . . .
95
36
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150°C
Maximum Storage Temperature Range . . . . . . . . . . . -65°C to 150°C
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Recommended Operating Conditions
Ambient Temperature Range . . . . . . . . . . . . . . . . . . .-40°C to 100°C
Maximum Operating Junction Temperature . . . . . . . . . . . . . . 125°C
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ±10%
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTES:
1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
2. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features.
3. θJC, “case temperature” location is at the center of the package underside exposed pad. See Tech Brief TB379 for details.
Electrical Specifications
These specifications apply for TA = -40°C to 100°C, unless otherwise noted. Parameters with MIN and/or MAX
limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization
and are not production tested.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
132
-
μA
POR Rising
-
3.4
4.2
POR Falling
2.2
3.0
-
-
400
-
mV
VCC SUPPLY CURRENT
Bias Supply Current
IVCC
PWM pin floating, VVCC = 5V
Hysteresis
PWM INPUT
Sinking Impedance
RPWM_SNK
2.75
4
5.5
kΩ
Source Impedance
RPWM_SRC
3
4.25
5.75
kΩ
Three-State Rising Threshold
VVCC = 5V (100mV Hysteresis)
-
1.70
2.00
V
Three-State Falling Threshold
VVCC = 5V (100mV Hysteresis)
3.10
3.41
-
V
-
20
-
ns
EN LOW Threshold
1.0
1.3
-
V
EN HIGH Threshold
-
1.6
2.0
V
Three-State Shutdown Holdoff Time
tTSSHD
tPDLU or tPDLL + Gate Falling Time
EN INPUT
SWITCHING TIME (See Figure 1 on Page 7)
UGATE Rise Time (Note 4)
tRU
VVCC = 5V, 3nF Load
-
8.0
-
ns
LGATE Rise Time (Note 4)
tRL
VVCC = 5V, 3nF Load
-
8.0
-
ns
UGATE Fall Time (Note 4)
tFU
VVCC = 5V, 3nF Load
-
8.0
-
ns
LGATE Fall Time (Note 4)
tFL
VVCC = 5V, 3nF Load
-
4.0
-
ns
UGATE Turn-Off Propagation Delay
tPDLU
VVCC = 5V, Outputs Unloaded
-
18
-
ns
LGATE Turn-Off Propagation Delay
tPDLL
VVCC = 5V, Outputs Unloaded
-
25
-
ns
5
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Electrical Specifications
These specifications apply for TA = -40°C to 100°C, unless otherwise noted. Parameters with MIN and/or MAX
limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization
and are not production tested. (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
UGATE Turn-On Propagation Delay
tPDHU
VVCC = 5V, Outputs Unloaded
-
18
-
ns
LGATE Turn-On Propagation Delay
tPDHL
VVCC = 5V, Outputs Unloaded
-
23
-
ns
tPTS
VVCC = 5V, Outputs Unloaded
-
20
-
ns
Three-state to UG/LG Rising Propagation
Delay
OUTPUT
Upper Drive Source Resistance
RUG_SRC
250mA Source Current
-
1.0
2.5
Ω
Upper Drive Sink Resistance
RUG_SNK
250mA Sink Current
-
1.0
2.5
Ω
Lower Drive Source Resistance
RLG_SRC
250mA Source Current
-
1.0
2.5
Ω
Lower Drive Sink Resistance
RLG_SNK
250mA Sink Current
-
0.4
1.0
Ω
NOTE:
4. Limits established by characterization and are not production tested
Functional Pin Description
LGATE (Pin 5)
Note: Pin numbers refer to the SOIC package. Check
diagram for corresponding QFN pinout.
Lower gate drive output. Connect to gate of the low side
N-Channel power MOSFET. A gate resistor is never
recommended on this pin, as it interferes with the operation
shoot-through protection circuitry.
UGATE (Pin 1)
Upper gate drive output. Connect to gate of high-side
N-Channel power MOSFET. A gate resistor is never
recommended on this pin, as it interferes with the operation
shoot-through protection circuitry.
VCC (Pin 6)
Connect this pin to a +5V bias supply. Locally bypass with a
high quality ceramic capacitor to ground.
BOOT (Pin 2)
EN (Pin 7)
Floating bootstrap supply pin for the upper gate drive.
Connect a bootstrap capacitor between this pin and the
PHASE pin. The bootstrap capacitor provides the charge
used to turn on the upper MOSFET. See “Bootstrap
Considerations” on page 7 for guidance in choosing the
appropriate capacitor value.
Enable input pin. Connect this pin high to enable and low to
disable the driver.
PHASE (Pin 8)
Connect this pin to the source of the upper MOSFET. This
pin provides the return path for the upper gate driver current.
Thermal Pad (in QFN only)
PWM (Pin 3)
The PWM signal is the control input for the driver. The PWM
signal can enter three distinct states during operation, see
“Three-State PWM Input” on page 7 for further details. Connect
this pin to the PWM output of the controller.
GND (Pin 4)
Ground pin. All signals are referenced to this node.
6
The metal pad underneath the center of the IC is a thermal
substrate. The PCB “thermal land” design for this exposed
die pad should include vias that drop down and connect to
one or more buried copper plane(s). This combination of
vias for vertical heat escape and buried planes for heat
spreading allows the QFN to achieve its full thermal
potential. This pad should be either grounded or floating,
and it should not be connected to other nodes. Refer to
TB389 for design guidelines.
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Timing Diagram
2.5V
PWM
tPDHU
tPDLU
tTSSHD
tRU
tRU
tFU
tPTS
1V
UGATE
LGATE
tPTS
1V
tRL
tTSSHD
tPDHL
tPDLL
tFL
FIGURE 1. TIMING DIAGRAM
Operation and Adaptive Shoot-Through Protection
Designed for high speed switching, the ISL6609, ISL6609A
MOSFET driver controls both high-side and low-side NChannel FETs from one externally provided PWM signal.
A rising transition on PWM initiates the turn-off of the lower
MOSFET (see “Timing Diagram”). After a short propagation
delay [tPDLL], the lower gate begins to fall. Typical fall times
[tFL] are provided in the “Electrical Specifications” table on
page 5. Adaptive shoot-through circuitry monitors the
LGATE voltage and turns on the upper gate following a short
delay time [tPDHU] after the LGATE voltage drops below
~1V. The upper gate drive then begins to rise [tRU] and the
upper MOSFET turns on.
A falling transition on PWM indicates the turn-off of the upper
MOSFET and the turn-on of the lower MOSFET. A short
propagation delay [tPDLU] is encountered before the upper
gate begins to fall [tFU]. The adaptive shoot-through circuitry
monitors the UGATE-PHASE voltage and turns on the lower
MOSFET a short delay time, tPDHL, after the upper
MOSFET’s gate voltage drops below 1V. The lower gate then
rises [tRL], turning on the lower MOSFET. These methods
prevent both the lower and upper MOSFETs from conducting
simultaneously (shoot-through), while adapting the dead
time to the gate charge characteristics of the MOSFETs
being used.
This driver is optimized for voltage regulators with large step
down ratio. The lower MOSFET is usually sized larger
compared to the upper MOSFET because the lower MOSFET
conducts for a longer time during a switching period. The
lower gate driver is therefore sized much larger to meet this
application requirement. The 0.4Ω ON-resistance and 4A sink
7
current capability enable the lower gate driver to absorb the
current injected into the lower gate through the drain-to-gate
capacitor of the lower MOSFET and help prevent shoot
through caused by the self turn-on of the lower MOSFET due
to high dV/dt of the switching node.
Three-State PWM Input
A unique feature of the ISL6609, ISL6609A is the adaptable
three-state PWM input. Once the PWM signal enters the
shutdown window, either MOSFET previously conducting is
turned off. If the PWM signal remains within the shutdown
window for longer than the gate turn-off propagation delay of
the previously conducting MOSFET, the output drivers are
disabled and both MOSFET gates are pulled and held low.
The shutdown state is removed when the PWM signal moves
outside the shutdown window. The PWM rising and falling
thresholds outlined in the “Electrical Specifications” table on
page 5 determine when the lower and upper gates are
enabled. During normal operation in a typical application, the
PWM rise and fall times through the shutdown window should
not exceed either output’s turn-off propagation delay plus the
MOSFET gate discharge time to ~1V. Abnormally long PWM
signal transition times through the shutdown window will
simply introduce additional dead time between turn off and
turn on of the synchronous bridge’s MOSFETs. For optimal
performance, no more than 100pF parasitic capacitive load
should be present on the PWM line of ISL6609, ISL6609A
(assuming an Intersil PWM controller is used).
Bootstrap Considerations
This driver features an internal bootstrap diode. Simply
adding an external capacitor across the BOOT and PHASE
pins completes the bootstrap circuit. The ISL6609A’s internal
FN9221.2
April 27, 2009
ISL6609, ISL6609A
bootstrap resistor is designed to reduce the overcharging of
the bootstrap capacitor when exposed to excessively large
negative voltage swing at the PHASE node. Typically, such
large negative excursions occur in high current applications
that use D2-PAK and D-PAK MOSFETs or excessive layout
parasitic inductance.
The following equation helps select a proper bootstrap
capacitor size:
Q GATE
C BOOT_CAP ≥ -------------------------------------ΔV BOOT_CAP
(EQ. 1)
Q G1 • VCC
Q GATE = ------------------------------- • N Q1
V GS1
where QG1 is the amount of gate charge per upper MOSFET
at VGS1 gate-source voltage and NQ1 is the number of
control MOSFETs. The ΔVBOOT_CAP term is defined as the
allowable droop in the rail of the upper gate drive.
As an example, suppose two IRLR7821 FETs are chosen as
the upper MOSFETs. The gate charge, QG, from the data
sheet is 10nC at 4.5V (VGS) gate-source voltage. Then the
QGATE is calculated to be 22nC at VCC level. We will
assume a 200mV droop in drive voltage over the PWM
cycle. We find that a bootstrap capacitance of at least
0.110µF is required. The next larger standard value
capacitance is 0.22µF. A good quality ceramic capacitor is
recommended.
2.0
1.8
1.6
CBOOT_CAP (µF)
1.4
1.2
1.0
0.8
0.6
QGATE = 100nC
0.4
50nC
0.2
20nC
0.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
ΔVBOOT (V)
FIGURE 2. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
VOLTAGE
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency (FSW), the output drive impedance, the
external gate resistance, and the selected MOSFET’s
internal gate resistance and total gate charge. Calculating
the power dissipation in the driver for a desired application is
critical to ensure safe operation. Exceeding the maximum
8
allowable power dissipation level will push the IC beyond the
maximum recommended operating junction temperature of
+125°C. The maximum allowable IC power dissipation for
the SO8 package is approximately 800mW at room
temperature, while the power dissipation capacity in the
QFN package, with an exposed heat escape pad, is slightly
better. See “Layout Considerations” on page 9 for thermal
transfer improvement suggestions. When designing the
driver into an application, it is recommended that the
following calculation is used to ensure safe operation at the
desired frequency for the selected MOSFETs. The total gate
drive power losses due to the gate charge of MOSFETs and
the driver’s internal circuitry and their corresponding average
driver current can be estimated with Equations 2 and 3,
respectively,
P Qg_TOT = P Qg_Q1 + P Qg_Q2 + I Q • VCC
(EQ. 2)
Q G1 • VCC 2
P Qg_Q1 = ---------------------------------- • F SW • N Q1
V GS1
Q G2 • VCC 2
P Qg_Q2 = ---------------------------------- • F SW • N Q2
V GS2
⎛ Q G1 • UVCC • N Q1 Q G2 • LVCC • N Q2⎞
I DR = ⎜ ------------------------------------------------------ + -----------------------------------------------------⎟ • F SW + I Q
V GS1
V GS2
⎝
⎠
(EQ. 3)
where the gate charge (QG1 and QG2) is defined at a
particular gate to source voltage (VGS1and VGS2) in the
corresponding MOSFET datasheet; IQ is the driver’s total
quiescent current with no load at both drive outputs; NQ1
and NQ2 are number of upper and lower MOSFETs,
respectively. The IQ VCC product is the quiescent power of
the driver without capacitive load and is typically negligible.
The total gate drive power losses are dissipated among the
resistive components along the transition path. The drive
resistance dissipates a portion of the total gate drive power
losses, the rest will be dissipated by the external gate
resistors (RG1 and RG2, should be a short to avoid
interfering with the operation shoot-through protection
circuitry) and the internal gate resistors (RGI1 and RGI2) of
MOSFETs. Figures 3 and 4 show the typical upper and lower
gate drives turn-on transition path. The power dissipation on
the driver can be roughly estimated as:
P DR = P DR_UP + P DR_LOW + I Q • VCC
(EQ. 4)
R LO1
R HI1
⎛
⎞ P Qg_Q1
P DR_UP = ⎜ -------------------------------------- + ----------------------------------------⎟ • --------------------R
+
R
R
+
R
2
⎝ HI1
EXT1
LO1
EXT1⎠
R LO2
R HI2
⎛
⎞ P Qg_Q2
P DR_LOW = ⎜ -------------------------------------- + ----------------------------------------⎟ • --------------------2
⎝ R HI2 + R EXT2 R LO2 + R EXT2⎠
R GI1
R EXT2 = R G1 + ------------N
Q1
R GI2
R EXT2 = R G2 + ------------N
Q2
FN9221.2
April 27, 2009
ISL6609, ISL6609A
VCC
Layout Considerations
BOOT
D
CGD
RHI1
RLO1
G
UGATE
CDS
RGI1
RG1
CGS
Q1
A good layout helps reduce the ringing on the switching
node (PHASE) and significantly lower the stress applied to
the output drives. The following advice is meant to lead to an
optimized layout:
• Keep decoupling loops (VCC-GND and BOOT-PHASE) as
short as possible.
• Minimize trace inductance, especially on low-impedance
lines. All power traces (UGATE, PHASE, LGATE, GND,
VCC) should be short and wide, as much as possible.
S
PHASE
FIGURE 3. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
• Minimize the inductance of the PHASE node. Ideally, the
source of the upper and the drain of the lower MOSFET
should be as close as thermally allowable.
VCC
D
CGD
RHI2
LGATE
RLO2
G
RG2
CDS
RGI2
CGS
Q2
S
GND
FIGURE 4. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
Application Information
MOSFET and Driver Selection
The parasitic inductances of the PCB and of the power
devices’ packaging (both upper and lower MOSFETs) can
cause serious ringing, exceeding absolute maximum rating
of the devices. The negative ringing at the edges of the
PHASE node could increase the bootstrap capacitor voltage
through the internal bootstrap diode, and in some cases, it
may overstress the upper MOSFET driver. Careful layout,
proper selection of MOSFETs and packaging, as well as the
proper driver can go a long way toward minimizing such
unwanted stress.
The selection of D2-PAK, or D-PAK packaged MOSFETs, is a
much better match (for the reasons discussed) for the
ISL6609A. Low-profile MOSFETs, such as Direct FETs and
multi-SOURCE leads devices (SO-8, LFPAK, PowerPAK),
have low parasitic lead inductances and can be driven by
either ISL6609 or ISL6609A (assuming proper layout design).
The ISL6609, missing the 3Ω integrated BOOT resistor,
typically yields slightly higher efficiency than the ISL6609A.
• Minimize the current loop of the output and input power
trains. Short the source connection of the lower MOSFET
to ground as close to the transistor pin as feasible. Input
capacitors (especially ceramic decoupling) should be
placed as close to the drain of upper and source of lower
MOSFETs as possible.
In addition, connecting the thermal pad of the QFN package
to the power ground through a via, or placing a low noise
copper plane underneath the SOIC part is recommended for
high switching frequency, high current applications. This is to
improve heat dissipation and allow the part to achieve its
full thermal potential.
Upper MOSFET Self Turn-On Effects at Startup
Should the driver have insufficient bias voltage applied, its
outputs are floating. If the input bus is energized at a high
dV/dt rate while the driver outputs are floating, because of
self-coupling via the internal CGD of the MOSFET, the
UGATE could momentarily rise up to a level greater than the
threshold voltage of the MOSFET. This could potentially turn
on the upper switch and result in damaging inrush energy.
Therefore, if such a situation (when input bus powered up
before the bias of the controller and driver is ready) could
conceivably be encountered, it is a common practice to
place a resistor (RUGPH) across the gate and source of the
upper MOSFET to suppress the Miller coupling effect. The
value of the resistor depends mainly on the input voltage’s
rate of rise, the CGD/CGS ratio, as well as the gate-source
threshold of the upper MOSFET. A higher dV/dt, a lower
CDS/CGS ratio, and a lower gate-source threshold upper
FET will require a smaller resistor to diminish the effect of
the internal capacitive coupling. For most applications, a
5k to 10kΩ resistor is typically sufficient, not affecting normal
performance and efficiency.
The coupling effect can be roughly estimated with the
following equations, which assume a fixed linear input ramp
and neglect the clamping effect of the body diode of the
upper drive and the bootstrap capacitor. Other parasitic
components such as lead inductances and PCB
capacitances are also not taken into account. These
equations are provided for guidance purpose only.
9
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Therefore, the actual coupling effect should be examined
using a very high impedance (10MΩ or greater) probe to
ensure a safe design margin.
–V
DS
⎛
----------------------------------⎞
dV
⎜
-----⋅
R
⋅C ⎟
dV
iss⎟
V GS_MILLER = ------- ⋅ R ⋅ C rss ⎜ 1 – e dt
⎜
⎟
dt
⎜
⎟
⎝
⎠
R = R UGPH + R GI
VCC
(EQ. 5)
C iss = C GD + C GS
C rss = C GD
VIN
BOOT
D
CBOOT
DU
DL
UGATE
RUGPH
ISL6609/A
CGD
G
CDS
RGI
CGS
QUPPER
S
PHASE
FIGURE 5. GATE TO SOURCE RESISTOR TO REDUCE
UPPER MOSFET MILLER COUPLING
10
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Package Outline Drawing
L8.3x3
8 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 2, 3/07
3.00
4X 0.65
A
B
6
PIN #1 INDEX AREA
8
7
6
PIN 1
INDEX AREA
1
5
2
3.00
6
(4X)
1 .10 ± 0 . 15
0.15
4
3
0.10 M C A B
4 8X 0.28 ± 0.05
TOP VIEW
8X 0.60 ± 0.15
BOTTOM VIEW
SEE DETAIL "X"
0.10 C
C
0 . 90 ± 0.1
( 4X 0 . 65 )
( 2. 60 TYP )
BASE PLANE
SEATING PLANE
0.08 C
(
1. 10 )
SIDE VIEW
( 8X 0 . 28 )
C
0 . 2 REF
5
0 . 00 MIN.
0 . 05 MAX.
( 8X 0 . 80)
TYPICAL RECOMMENDED LAND PATTERN
DETAIL "X"
NOTES:
1. Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 indentifier may be
either a mold or mark feature.
11
FN9221.2
April 27, 2009
ISL6609, ISL6609A
Small Outline Plastic Packages (SOIC)
M8.15 (JEDEC MS-012-AA ISSUE C)
N
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
H
0.25(0.010) M
B M
INCHES
E
SYMBOL
-B-
1
2
3
L
SEATING PLANE
-A-
A
D
h x 45°
-C-
e
A1
B
0.25(0.010) M
C
0.10(0.004)
C A M
MIN
MAX
MIN
MAX
NOTES
A
0.0532
0.0688
1.35
1.75
-
A1
0.0040
0.0098
0.10
0.25
-
B
0.013
0.020
0.33
0.51
9
C
0.0075
0.0098
0.19
0.25
-
D
0.1890
0.1968
4.80
5.00
3
E
0.1497
0.1574
3.80
4.00
4
e
α
B S
0.050 BSC
1.27 BSC
-
H
0.2284
0.2440
5.80
6.20
-
h
0.0099
0.0196
0.25
0.50
5
L
0.016
0.050
0.40
1.27
6
N
α
NOTES:
MILLIMETERS
8
0°
8
8°
0°
7
8°
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
Rev. 1 6/05
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per
side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
12
FN9221.2
April 27, 2009
Similar pages