TI CD74HCT4094MTE4 High-speed cmos logic 8-stage shift and store bus register,three-state Datasheet

[ /Title
(CD74H
C4094,
CD74H
CT4094
)
/Subject
(High
Speed
CMOS
Logic 8-
CD54HC4094, CD74HC4094,
CD74HCT4094
Data sheet acquired from Harris Semiconductor
SCHS211D
November 1997 - Revised October 2003
High-Speed CMOS Logic
8-Stage Shift and Store Bus Register, Three-State
Features
Two serial outputs are available for cascading a number of
these devices. Data is available at the QS1 serial output
terminal on positive clock edges to allow for high-speed
operation in cascaded system in which the clock rise time is
fast. The same serial information, available at the QS2
terminal on the next negative clock edge, provides a means
for cascading these devices when the clock rise time is slow.
• Buffered Inputs
• Separate Serial Outputs Synchronous to Both
Positive and Negative Clock Edges For Cascading
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
Ordering Information
• Wide Operating Temperature Range . . . -55oC to 125oC
• Balanced Propagation Delay and Transition Times
TEMP. RANGE
(oC)
PACKAGE
CD54HC4094F3A
-55 to 125
16 Ld CERDIP
CD74HC4094E
-55 to 125
16 Ld PDIP
CD74HC4094M
-55 to 125
16 Ld SOIC
CD74HC4094MT
-55 to 125
16 Ld SOIC
CD74HC4094M96
-55 to 125
16 Ld SOIC
CD74HC4094NSR
-55 to 125
16 Ld SOP
CD74HC4094PW
-55 to 125
16 Ld TSSOP
CD74HC4094PWR
-55 to 125
16 Ld TSSOP
CD74HC4094PWT
-55 to 125
16 Ld TSSOP
CD74HCT4094E
-55 to 125
16 Ld PDIP
CD74HCT4094M
-55 to 125
16 Ld SOIC
CD74HCT4094MT
-55 to 125
16 Ld SOIC
CD74HCT4094M96
-55 to 125
16 Ld SOIC
PART NUMBER
• Significant Power Reduction Compared to LSTTL
Logic ICs
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
Description
The ’HC4094 and CD74HCT4094 are 8-stage serial shift
registers having a storage latch associated with each stage
for strobing data from the serial input to parallel buffered
three-state outputs. The parallel outputs may be connected
directly to common bus lines. Data is shifted on positive
clock transitions. The data in each shift register stage is
transferred to the storage register when the Strobe input is
high. Data in the storage register appears at the outputs
whenever the Output-Enable signal is high.
NOTE: When ordering, use the entire part number. The suffixes 96
and R denote tape and reel. The suffix T denotes a small-quantity
reel of 250.
Pinout
CD54HC4094 (CERDIP)
CD74HC4094 (PDIP, SOIC, SOP, TSSOP)
CD74HCT4094 (PDIP, SOIC)
TOP VIEW
16 VCC
STROBE 1
DATA 2
15 OE
CP 3
14 Q4
Q0 4
13 Q5
Q1 5
12 Q6
Q2 6
11 Q7
Q3 7
10 QS2
GND 8
9 QS1
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2003, Texas Instruments Incorporated
1
CD54HC4094, CD74HC4094, CD74HCT4094
Functional Diagram
2
DATA
CP
3
1
STROBE
9
8-STAGE
SHIFT
REGISTER
QS1
10
QS2
8-BIT
STORAGE
REGISTER
4
Q0
5
Q1
6
Q2
7
15
OE
THREESTATE
OUTPUT
14
13
12
11
Q3
Q4
Q5
Q6
Q7
GND = 8
VCC = 16
TRUTH TABLE
INPUTS
PARALLEL OUTPUTS
SERIAL OUTPUTS
CP
OE
STR
D
Q0
Qn
QS1 (NOTE 1)
QS2
↑
L
X
X
Z
Z
Q’6
NC
↓
L
X
X
Z
Z
NC
Q7
↑
H
L
X
NC
NC
Q’6
NC
↑
H
H
L
L
Qn -1
Q’6
NC
↑
H
H
H
H
Qn -1
Q’6
NC
↓
H
H
H
NC
NC
NC
Q7
H = High Voltage Level, L = Low Voltage Level, X = Don’t Care, NC = No charge, Z = High Impedance Off-state,
↑ = Transition from Low to High Level, ↓ = Transition from High to Low.
NOTE:
1. At the positive clock edge the information in the seventh register stage is transferred to the 8th register stage and QS1 output.
2
3
OE
STR
CP
DATA
15
1
3
2
Q
CP
CP
FFO
D
LO
OE OE
4
Q0
Q
STR STR
FF1
L1
FF2
5
Q1
L2
FF3
6
Q2
L3
FF4
7
Q3
L4
FF5
14
Q4
L5
FF6
13
Q5
L6
FF7
12
Q6
D
CP
L7
L8
Q
11
Q7
CP
QS2
QS1
10
9
CD54HC4094, CD74HC4094, CD74HCT4094
Logic Diagram
CD54HC4094, CD74HC4094, CD74HCT4094
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Package Thermal Impedance, θJA (see Note 2):
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67oC/W
M (SOIC) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73oC/W
NS (SOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64oC/W
PW (TSSOP) Package. . . . . . . . . . . . . . . . . . . . . . . . . . 108oC/W
Maximum Junction Temperature (Plastic Package) . . . . . . . . . 150o
Maximum Storage Temperature Range . . . . . . . . . . . -65oC to 150o
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . 300o
SOIC - Lead Tips Only)
Operating Conditions
Temperature Range (TA) . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
2. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
VIH
-
-
2
1.5
-
-
1.5
4.5
3.15
-
-
3.15
-
3.15
-
V
6
4.2
-
-
4.2
-
4.2
-
V
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
-
1.5
-
V
HC TYPES
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
CMOS Loads
VIL
VOH
-
VIH or VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
Quiescent Device
Current
-
2
-
-
0.5
-
0.5
-
0.5
V
4.5
-
-
1.35
-
1.35
-
1.35
V
6
-
-
1.8
-
1.8
-
1.8
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
-5.2
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
-
-
-
-
-
-
-
-
-
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
5.2
6
-
-
0.26
-
0.33
-
0.4
V
II
VCC or
GND
-
6
-
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
4
CD54HC4094, CD74HC4094, CD74HCT4094
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
SYMBOL
VI (V)
IO (mA)
High Level Input
Voltage
VIH
-
-
Low Level Input
Voltage
VIL
-
High Level Output
Voltage
CMOS Loads
VOH
VIH or VIL
PARAMETER
VCC
(V)
25oC
-40oC TO 85oC -55oC TO 125oC
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
4.5 to
5.5
2
-
-
2
-
2
-
V
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
II
VCC and
GND
0
5.5
-
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
5.5
-
-
8
-
80
-
160
µA
∆ICC
(Note 3)
VCC
-2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
Input Leakage
Current
Quiescent Device
Current
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
NOTE:
3. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
D
0.4
CP, OE
1.5
STR
1.0
NOTE: Unit Load is ∆ICC limit specified in DC Electrical Table, e.g.,
360µA max at 25oC.
Prerequisite for Switching Specifications
25oC
CHARACTERISTIC
-40oC TO 85oC
-55oC TO 125oC
SYMBOL
VCC (V)
MIN
MAX
MIN
MAX
MIN
MAX
UNITS
tW
2
80
-
100
-
120
-
ns
4.5
16
-
20
-
24
-
ns
6
14
-
17
-
20
-
ns
2
80
-
100
-
120
-
ns
4.5
16
-
20
-
24
-
ns
6
14
-
17
-
20
-
ns
HC TYPES
CP Pulse Width
STR Pulse Width
tWH
5
CD54HC4094, CD74HC4094, CD74HCT4094
Prerequisite for Switching Specifications
(Continued)
25oC
CHARACTERISTIC
Data Set-up Time
Data Hold Time
STR Set-up Time
STR Hold Time
Maximum CP Frequency
SYMBOL
-40oC TO 85oC
-55oC TO 125oC
VCC (V)
MIN
MAX
MIN
MAX
MIN
MAX
UNITS
tSU
tH
tSU
tH
fCL (MAX)
2
50
-
65
-
75
-
ns
4.5
10
-
13
-
15
-
ns
6
9
-
11
-
13
-
ns
2
3
-
3
-
3
-
ns
4.5
3
-
3
-
3
-
ns
6
3
-
3
-
3
-
ns
2
100
-
125
-
150
-
ns
4.5
20
-
25
-
30
-
ns
6
17
-
21
-
26
-
ns
2
0
-
0
-
0
-
ns
4.5
0
-
0
-
0
-
ns
6
0
-
0
-
0
-
ns
2
6
-
5
-
4
-
MHz
4.5
30
-
24
-
20
-
MHz
6
35
-
28
-
24
-
MHz
HCT TYPES
tW
4.5
16
-
20
-
24
-
ns
STR Pulse Width
tWH
4.5
16
-
20
-
24
-
ns
Data Set-up Time
tSU
4.5
10
-
13
-
15
-
ns
Data Hold Time
tH
4.5
4
-
4
-
4
-
ns
STR Set-up Time
tSU
4.5
20
-
25
-
30
-
ns
STR Hold Time
tH
4.5
0
-
0
-
0
-
ns
fCL (MAX)
4.5
30
-
24
-
20
-
MHz
CP Pulse Width
Maximum CP Frequency
Switching Specifications Input tr, tf = 6ns
PARAMETER
HC TYPES
Propagation Delay Time
(Figure 1)
TEST
SYMBOL CONDITIONS
tPLH,
tPHL
CP to Qn
STR to Qn
tPLH,
tPHL
tPLH,
tPHL
tPLH,
tPHL
-40oC TO 85oC -55oC TO 125oC
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
150
-
190
-
225
ns
4.5
-
-
30
-
38
-
45
ns
CL =15pF
5
-
12
-
-
-
-
-
ns
CL = 50pF
6
-
-
26
-
33
-
38
ns
CL = 50pF
CP to QS1
CP to QS2
25oC
VCC
(V)
CL = 50pF
2
-
-
135
-
170
-
205
ns
4.5
-
-
27
-
34
-
41
ns
CL =15pF
5
-
11
-
-
-
-
-
ns
CL = 50pF
6
-
-
23
-
29
-
35
ns
CL = 50pF
2
-
-
195
-
245
-
295
ns
4.5
-
-
39
-
49
-
59
ns
5
-
16
-
-
-
-
-
ns
6
-
-
33
-
42
-
50
ns
2
-
-
180
-
225
-
270
ns
4.5
-
-
36
-
45
-
54
ns
6
-
-
31
-
38
-
46
ns
CL = 50pF
6
CD54HC4094, CD74HC4094, CD74HCT4094
Switching Specifications Input tr, tf = 6ns
PARAMETER
Output Enable to Qn
Output Disable to Qn
Output Transition Time
Output Disabling Time
Maximum CP Frequency
(Continued)
TEST
SYMBOL CONDITIONS
tPZH, tPZL CL = 50pF
tPHZ, tPLZ CL = 50pF
tTLH, tTHL CL = 50pF
tPHZ, tPLZ CL =15pF
25oC
-40oC TO 85oC -55oC TO 125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
175
-
220
-
265
ns
4.5
-
-
35
-
44
-
53
ns
6
-
-
30
-
37
-
45
ns
2
-
-
125
-
155
-
190
ns
4.5
-
-
25
-
31
-
38
ns
6
-
-
21
-
26
-
32
ns
2
-
-
75
-
95
-
110
ns
4.5
-
-
15
-
19
-
22
ns
6
-
-
13
-
16
-
19
ns
5
-
10
-
-
-
-
-
ns
5
-
60
-
-
-
-
-
MHz
fMAX
CL =15pF
Input Capacitance
CIN
CL = 50pF
-
-
-
10
-
10
-
10
pF
Power Dissipation Capacitance
(Notes 4, 5)
CPD
CL =15pF
5
-
90
-
-
-
-
-
pF
Three-State Output
Capacitance
CO
CL = 50pF
-
-
-
15
-
15
-
15
pF
tPLH,
tPHL
CL = 50pF
4.5
-
-
39
-
-
-
-
ns
CL =15pF
5
-
16
-
-
-
-
-
ns
tPLH,
tPHL
CL = 50pF
4.5
-
-
36
-
-
-
-
ns
CL =15pF
5
-
15
-
-
-
-
-
ns
CP to Qn
tPLH,
tPHL
CL = 50pF
4.5
-
-
43
-
-
-
-
ns
CL =15pF
5
-
18
-
-
-
-
-
ns
STR to Qn
tPLH,
tPHL
CL = 50pF
4.5
-
-
39
-
-
-
-
ns
Output Enable to Qn
tPZH, tPZL CL = 50pF
4.5
-
-
35
-
-
-
-
ns
Output Disable to Qn
tPHZ, tPLZ CL = 50pF
4.5
-
-
35
-
-
-
-
ns
Output Transition Time
tTLH, tTHL CL = 50pF
4.5
-
-
15
-
-
-
-
ns
Output Disabling Time
tPHZ, tPLZ CL =15pF
HCT TYPES
Propagation Delay Time
(Figure 1)
CP to QS1
CP to QS2
5
-
14
-
-
-
-
-
ns
fMAX
CL =15pF
5
-
60
-
-
-
-
-
MHz
Input Capacitance
CIN
CL = 50pF
-
-
-
10
-
10
-
10
pF
Power Dissipation Capacitance
(Notes 4, 5)
CPD
CL =15pF
5
-
110
-
-
-
-
-
pF
Three-State Output
Capacitance
CO
CL = 50pF
-
-
-
15
-
15
-
15
pF
Maximum CP Frequency
NOTES:
4. CPD is used to determine the dynamic power consumption, per register.
5. PD = VCC2 fi (CPD + CL) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage.
7
CD54/74HC4094, CD74HCT4094
Test Circuits and Waveforms
6ns
6ns
90%
VS
10%
INPUT LEVEL
VS
GND
CLOCK
tSU
tH
tW
tW
INPUT LEVEL
SERIAL IN
GND
tPLH
tPHL
VOH
VS
Qn, QS1
VOL
tPHL
VOH
tPLH
VS
VOL
QS2
FIGURE 1. DATA PROPAGATION DELAYS, SET-UP AND HOLD TIMES
INPUT LEVEL
tr = 6ns
SERIAL IN
GND
tSU
tH
VS
CLOCK
OE
VOH
VS
VOL
OUTPUT
HIGH TO OFF
OUTPUTS
CONNECTED
VOH
VS
VOL
FIGURE 2. STROBE PROPAGATION DELAYS AND SET-UP
AND HOLD TIMES
VS
10%
tPHZ
tPLH, tPHL
Qn
OUTPUT
LOW TO OFF
10%
tPZL
tPLZ
GND
STROBE
90%
VS
INPUT LEVEL
VS
tW
tf = 6ns
tPZH
90%
OUTPUTS
DISCONNECTED
VS
OUTPUTS
CONNECTED
FIGURE 3. ENABLE AND DISABLE TIMES
8
PACKAGE OPTION ADDENDUM
www.ti.com
9-Apr-2010
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
CD54HC4094F3A
ACTIVE
CDIP
J
16
1
TBD
A42
N / A for Pkg Type
CD74HC4094E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC4094EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC4094M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094M96
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094M96E4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094M96G3
PREVIEW
SOIC
D
16
2500
CD74HC4094M96G4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CD74HC4094ME4
ACTIVE
SOIC
D
16
40
CD74HC4094MG4
ACTIVE
SOIC
D
16
CD74HC4094MT
ACTIVE
SOIC
D
CD74HC4094MTE4
ACTIVE
SOIC
CD74HC4094MTG4
ACTIVE
CD74HC4094NSR
Package
Drawing
Pins Package Eco Plan (2)
Qty
TBD
Lead/Ball Finish
Call TI
MSL Peak Temp (3)
Call TI
CU NIPDAU
Level-1-260C-UNLIM
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094NSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094NSRG4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWE4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWRG3
PREVIEW
TSSOP
PW
16
2000
CD74HC4094PWRG4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWT
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWTE4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC4094PWTG4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
TBD
Call TI
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
9-Apr-2010
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CD74HCT4094E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT4094EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT4094M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094M96
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094M96E4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094M96G4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094ME4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094MG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094MT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094MTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT4094MTG4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jul-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
CD74HC4094M96
Package Package Pins
Type Drawing
SOIC
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
CD74HC4094NSR
SO
NS
16
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
CD74HC4094PWR
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
CD74HCT4094M96
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jul-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HC4094M96
SOIC
D
16
2500
333.2
345.9
28.6
CD74HC4094NSR
SO
NS
16
2000
346.0
346.0
33.0
CD74HC4094PWR
TSSOP
PW
16
2000
346.0
346.0
29.0
CD74HCT4094M96
SOIC
D
16
2500
333.2
345.9
28.6
Pack Materials-Page 2
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated
Similar pages