APT80GA90B APT80GA90S 900V High Speed PT IGBT T OPOWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved 24 7 through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT80GA90B poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Single die IGBT ® FEATURES APT80GA90S D3PAK TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 900 V IC1 Continuous Collector Current @ TC = 25°C 145 IC2 Continuous Collector Current @ TC = 100°C 80 ICM Pulsed Collector Current 239 VGE Gate-Emitter Voltage PD Total Power Dissipation @ TC = 25°C Vces Parameter 1 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol ±30 V 625 W 239A @ 900V -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A °C 300 TJ = 25°C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 1.0mA 900 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 3.1 VGE = 15V, TJ = 25°C 2.5 IC = 47A TJ = 125°C 2.2 VGE =VCE , IC = 1mA ICES Typ 3 4.5 V 6 VCE = 900V, TJ = 25°C 250 VGE = 0V TJ = 125°C 1000 VGS = ±30V Unit μA ±100 nA Typ Max Unit Thermal and Mechanical Characteristics Symbol Characteristic Min RθJC Junction to Case Thermal Resistance - - 0.2 °C/W WT Package Weight - 5.9 - g 10 in·lbf Torque Mounting Torque (TO-247 Package), 4-40 or M3 screw Microsemi Website - http://www.microsemi.com 052-6324 Rev B 3 - 2009 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg3 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf Gate- Collector Charge Switching Safe Operating Area Turn-On Delay Time APT80GA90B_S TJ = 25°C unless otherwise specified Test Conditions Min Typ Capacitance 4560 VGE = 0V, VCE = 25V 411 f = 1MHz 62 Gate Charge 200 VGE = 15V 30 VCE= 450V 72 239 Inductive Switching (25°C) VCC = 600V 29 Turn-Off Delay Time VGE = 15V 149 IC = 47A 85 RG = 4.7Ω4 1652 Eoff6 Turn-Off Switching Energy TJ = +25°C 1389 td(on Turn-On Delay Time Inductive Switching (125°C) 18 Current Rise Time VCC = 600V 31 Turn-Off Delay Time VGE = 15V 192 IC = 47A 128 Eon2 Turn-On Switching Energy RG = 4.7Ω4 2813 Eoff6 Turn-Off Switching Energy TJ = +125°C 2082 tf Current Fall Time nC 18 Turn-On Switching Energy tr pF A L= 100uH, VCE = 900V Eon2 td(off) Unit IC = 47A TJ = 150°C, RG = 4.7Ω4, VGE = 15V, Current Rise Time Current Fall Time Max ns μJ ns μJ 052-6324 Rev B 3 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves V GE = 15V TJ= 125°C IC, COLLECTOR CURRENT (A) TJ= 55°C 80 APT80GA90B_S 350 TJ= 150°C TJ= 25°C 60 40 20 IC, COLLECTOR CURRENT (A) 100 15V 13V 10V 300 250 9V 200 8V 150 7V 100 6V 50 5V 0 1 2 3 4 5 6 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 250 IC, COLLECTOR CURRENT (A) 150 100 TJ= 125°C TJ= 25°C 50 TJ= -55°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 6 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 94A IC = 47A 3 2 IC = 23.5A 1 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage I = 47A C T = 25°C J VCE = 180V 12 10 VCE = 450V 8 VCE = 720V 6 4 2 0 0 20 40 60 80 100 120 140 160 180 200 GATE CHARGE (nC) FIGURE 4, Gate charge 6 5 4 IC = 94A IC = 47A 3 2 IC = 23.5A 1 0 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 150 1.10 125 IC, DC COLLECTOR CURRENT (A) 1.05 1.00 100 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 75 50 25 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6324 Rev B 3 - 2009 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.15 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 14 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 0 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250μs PULSE TEST<0.5 % DUTY CYCLE 200 0 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 Typical Performance Curves APT80GA90B_S 300 VCE = 600V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 22 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 24 20 18 16 14 12 10 250 200 VGE =15V,TJ=125°C 150 VCE = 600V RG = 4.7Ω L = 100μH 50 0 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 100 VGE =15V,TJ=25°C 100 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 200 RG = 4.7Ω, L = 100μH, VCE = 600V 175 60 40 20 TJ = 25 or 125°C,VGE = 15V 0 0 20 40 60 80 100 Eon2, TURN ON ENERGY LOSS (μJ) G 5000 TJ = 125°C 4000 3000 2000 TJ = 25°C 1000 0 J Eoff,94A 6000 Eon2,47A Eoff,47A Eon2,23.5A Eoff,23.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) Eon2,94A 8000 0 5000 G 4000 TJ = 125°C 3000 2000 TJ = 25°C 1000 7000 V = 600V CE V = +15V GE T = 125°C V = 600V CE V = +15V GE R = 4.7Ω 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 12000 2000 RG = 4.7Ω, L = 100μH, VCE = 600V 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 4000 TJ = 25°C, VGE = 15V 50 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 0 10000 75 6000 V = 600V CE V = +15V GE R =4.7Ω 6000 100 0 EOFF, TURN OFF ENERGY LOSS (μJ) 7000 125 25 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 052-6324 Rev B 3 - 2009 TJ = 125°C, VGE = 15V 150 tr, FALL TIME (ns) tr, RISE TIME (ns) 80 6000 V = 600V CE V = +15V GE R = 4.7Ω G Eon294A Eoff,94A 5000 4000 3000 Eon2,47A Eoff,47A 2000 Eon2,23.5A 1000 0 Eoff,23.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT80GA90B_S 1000 Cies IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 10000 1000 Coes 100 Cres 10 0 200 400 600 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 100 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.20 D = 0.9 0.15 0.5 Note: 0.3 PDM 0.7 0.10 t2 0.05 t 0.1 0 SINGLE PULSE 0.05 10 10 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-2 10-3 0.1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration -5 TJ (°C) Dissipated Power (Watts) t1 -4 1 TC (°C) .04874 .1508 .00909 .3886 ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. 052-6324 Rev B 3 - 2009 FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL APT80GA90B_S 10% Gate Voltage TJ = 125°C td(on) APT30DQ100 90% Collector Current tr IC V CC V CE 5% 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125°C 90% td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 22, Turn-off Switching Waveforms and Definitions D3PAK Package Outline TO-247 (B) Package Outline 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) (Heat Sink) e3 100% Sn Plated 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 052-6324 Rev B 3 - 2009 13.41 (.528) 13.51(.532) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Gate Collector 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Drain) and Leads are Plated Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter Collector Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.