Infineon BTS4141N Smart high-side power switch 1 channel: 1 x 200mâ ¦ Datasheet

BTS 4141N
Smart High-Side Power Switch
1 Channel: 1 x 200mΩ
Features
Product Summary
• Short circuit protection
Overvoltage protection
Vbb(AZ)
• Current limitation
Operating voltage
Vbb(on)
• Overload protection
On-state resistance
• Overvoltage protection (including load dump)
• Undervoltage shutdown with auto-
47
V
12...45 V
RON
200
mΩ
SOT-223
restart and hysteresis
• Switching inductive loads
4
• Clamp of negative voltage at output
with inductive loads
• CMOS compatible input
3
• Thermal shutdown with restart
2
• ESD - Protection
1
VPS05163
• Loss of GND and loss of Vbb protection
• Very low standby current
• Reverse battery protection with external resistor
• Improved electromagnetic compatibility (EMC)
Application
• All types of resistive, inductive and capacitive loads
• µC compatible power switch for 12 V and 24 V DC applications
• Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input,
monolithically integrated in Smart SIPMOS technology.
Providing embedded protective functions.
Page 1
2004-01-27
BTS 4141N
Block Diagram
+ Vbb
Voltage
Overvoltage
Current
Gate
source
protection
limit
protection
4
V Logic
Voltage
Charge pump
sensor
Level shifter
Limit for
unclamped
ind. loads
Rectifier
3
IN
OUT
1
Temperature
sensor
R
in
ESD
Load
Logic
miniPROFET®
GND
2
Load GND
Signal GND
Pin
Symbol
Function
1
OUT
Output to the load
2
GND
Logic ground
3
IN
Input, activates the power switch in case of logic high signal
4
Vbb
Positive power supply voltage
Page 2
2004-01-27
BTS 4141N
Maximum Ratings
Symbol
Parameter
Value
Unit
at Tj = 25°C, unless otherwise specified
Supply voltage
Vbb
-0,31)...48
Continuous input voltage2)
VIN
-10...Vbb
Load current (Short - circuit current, see page 5)
IL
self limited
Current through input pin (DC)
I IN
±5
Reverse current through GND-pin 3)
-I GND
Operating temperature
Tj
Storage temperature
T stg
-55 ... +150
Power dissipation 4)
Ptot
1.4
W
Inductive load switch-off energy dissipation 4)5)
EAS
0.7
J
V
A
mA
-0.5
A
internal limited
°C
single pulse
Tj = 125 °C, IL = 0.5 A
Load dump protection 5) VLoadDump6)= VA + VS
V
VLoaddump
RI=2Ω, td=400ms, VIN= low or high, VA=13,5V
RL = 47 Ω
83
kV
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
ESD STM5.1 - 1998
Input pin
±1
All other pins
±5
1defined by P
tot
2At V > Vbb, the input current is not allowed to exceed ±5 mA.
IN
3defined by P
tot
4Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V
bb
connection. PCB is vertical without blown air.
5not subject to production test, specified by design
6V
Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a
150Ω resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2004-01-27
BTS 4141N
Electrical Characteristics
Symbol
Parameter
at Tj = -40...125 °C, Vbb = 15...30 V unless otherwise specified
Values
Unit
min.
typ.
max.
Thermal Characteristics
Thermal resistance @ min. footprint
Rth(JA)
-
-
125
Thermal resistance @ 6 cm 2 cooling area 1)
Rth(JA)
-
-
70
Thermal resistance, junction - soldering point
RthJS
-
-
7
K/W
K/W
Load Switching Capabilities and Characteristics
On-state resistance
RON
mΩ
Tj = 25 °C, IL = 0.5 A
-
150
200
Tj = 125 °C
-
270
320
0.7
-
-
Nominal load current2)
IL(nom)
A
Device on PCB 1)
Turn-on time
to 90% VOUT
ton
RL = 47 Ω, VIN = 0 to 10 V
Turn-off time
to 10% VOUT
10 to 30% VOUT ,
50
100
-
75
150
dV/dton
RL = 47 Ω, Vbb = 15 V
Slew rate off
toff
RL = 47 Ω, VIN = 10 to 0 V
Slew rate on
µs
70 to 40% VOUT ,
V/µs
-
1
2
-
1
2
-dV/dtoff
RL = 47 Ω, Vbb = 15 V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V
bb
connection. PCB is vertical without blown air.
2Nominal load current is limited by the current limitation ( see page 5 )
Page 4
2004-01-27
BTS 4141N
Electrical Characteristics
Symbol
Parameter
at Tj = -40...125 °C, Vbb = 15...30 V unless otherwise specified
Values
Unit
min.
typ.
max.
Operating Parameters
Operating voltage
Vbb(on)
12
-
45
Undervoltage shutdown
Vbb(under)
7
-
10.5
Undervoltage restart
Vbb(u rst)
-
-
11
Undervoltage hysteresis
∆Vbb(under)
-
0.5
-
V
∆Vbb(under) = Vbb(u rst) - Vbb(under)
Standby current
µA
Ibb(off)
Tj = -40...85 °C, V IN ≤ 1,2 V
Tj = 125 °C1)
-
10
25
-
-
50
Operating current
IGND
-
1
1.6
mA
Leakage output current (included in Ibb(off))
IL(off)
-
3.5
10
µA
VIN ≤ 1,2 V
Protection Functions2)
Initial peak short circuit current limit
A
IL(SCp)
Tj = -40 °C, Vbb = 20 V, tm = 150 µs
-
-
2.1
Tj = 25 °C
-
1.4
-
Tj = 125 °C
0.7
-
-
-
1.1
-
Repetitive short circuit current limit
IL(SCr)
Tj = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
VON(CL)
62
68
-
V
at VOUT = Vbb - VON(CL), I bb = 4 mA
Overvoltage protection 3)
Vbb(AZ)
47
-
-
Thermal overload trip temperature 4)
Tjt
135
-
-
°C
Thermal hysteresis
∆Tjt
-
10
-
K
Ibb = 4 mA
1higher current due temperature sensor
2Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as "outside" normal operating range.
Protection functions are not designed for continuous repetitive operation.
3see also V
ON(CL) in circuit diagram
4 higher operating temperature at normal function available
Page 5
2004-01-27
BTS 4141N
Electrical Characteristics
Parameter
Symbol
at Tj = -40...125 °C, Vbb = 15...30 V unless otherwise specified
Values
Unit
min.
typ.
max.
-102)
-
Vbb
Input
Continuous input voltage1)
VIN
Input turn-on threshold voltage
VIN(T+)
-
-
3.0
Input turn-off threshold voltage
VIN(T-)
1.82
-
-
Input threshold hysteresis
∆VIN(T)
-
0.2
-
Off state input current
IIN(off)
VIN ≤ 1,8 V
V
µA
20
-
-
-
-
110
On state input current
IIN(on)
Input delay time at switch on Vbb
td(Vbbon)
150
340
-
µs
Input resistance (see page 8)
RI
1.5
3
5
kΩ
Reverse Battery
Reverse battery voltage3)2)
V
-Vbb
RGND = 0 Ω
-
-
0.3
RGND = 150 Ω
-
-
45
IS
-
-
1
A
-VON
-
0.6
1.2
V
Continuous reverse drain current2)
Tj = 25 °C
Drain-source diode voltage (VOUT > Vbb)
IF = 1 A
1At V > Vbb, the input current is not allowed to exceed ±5 mA.
IN
2not subject to production test, guaranted by design
3defined by P
tot
Page 6
2004-01-27
BTS 4141N
EMC-Characteristics
All EMC-Characteristics are based on limited number of sampels and no part of production test.
Test Conditions:
If not other specified the test circuitry is the minimal functional configuration without any external
components for protection or filtering.
Supply voltage:
Vbb = 13.5V
Load:
RL = 220Ω
Operation mode:
PWM
DC On/Off
RGND
DUT-Specific.:
Temperature:
Ta = 23 ±5°C ;
Frequency:
100Hz / Duty Cycle:
50%
Fast electrical transients
Acc. ISO 7637
Test Pulse
Test Level
1
2
3a
3b
41)
5
-200 V
+200 V
-200 V
+ 200 V
-7 V
175 V
Test Results
On
Off
C
C
C
C
C
E (70V)
C
C
C
C
C
E (70V)
Pulse Cycle Time and
Generator Impedance
500ms ; 10Ω
500ms ; 10Ω
100ms ; 50Ω
100ms ; 50Ω
0,01Ω
400ms ; 2Ω
The test pulses are applied at Vbb
Definition of functional status
Class
C
E
Content
All functions of the device are performed as designed after exposure to disturbance.
One or more function of a device does not perform as designed after exposure
and can not be returned to proper operation without repairing or replacing the
device. The value after the character shows the limit.
Test circuit:
Pulse
Bat.
Vbb
IN
PROFET
OUT
GND
R GND
RL
1Supply voltage V = 12 V instead of 13,5 V.
bb
Page 7
2004-01-27
BTS 4141N
Conducted Emission
Acc. IEC 61967-4 (1Ω / 150Ω method)
Typ. Vbb-Pin Emission at DC-On with 150 Ω-matching network
100
1 5 0 o h m C la s s 6
1 5 0 o h m C la s s 1
V B B , n o is e f lo o r
VBB, ON
90
80
70
60
dBµV
50
1 5 0 Ω / 8 -H
40
30
20
1 5 0 Ω / 1 3 -N
10
0
-1 0
-2 0
0 ,1
1
10
100
1000
f / MHz
Typ. Vbb -Pin Emission at PWM-Mode with 150 Ω-matching network
100
90
1 5 0 o h m C la s s 6
1 5 0 o h m C la s s 1
V B B , n o is e f lo o r
VBB, PW M
80
70
60
dBµV
50
1 5 0 Ω / 8 -H
40
30
20
1 5 0 Ω / 1 3 -N
10
0
-1 0
-2 0
0 ,1
1
10
100
1000
f / MHz
Test circuit:
150Ω-Network
5µH
Vbb
IN
PROFET
OUT
GND
5µH
R GND
R
For defined decoupling and high reproducibility a defined choke (5µH at 1 MHz)
is inserted between supply and Vbb-pin.
Page 8
2004-01-27
BTS 4141N
Conducted Susceptibility
Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection)
Direct Power Injection:
Failure criteria:
Forward Power CW
Amplitude and frequency deviation max. 10% at Out
Typ. Vbb-Pin Susceptibility at DC-On/Off
40
35
30
dBm
25
20
15
L im it
D e v ic e :
Load:
O -M o d e :
C o u p lin g P o in t :
M o n it o r in g :
M o d u la t io n :
VBB, ON
10
VBB, OFF
5
BTS 4142
47 O hm s
O N / O FF / PW M
VBB
O ut
CW
0
1
10
100
1000
f / MHz
Typ. Vbb -Pin Susceptibility at PWM-Mode
40
35
30
dBm
25
20
15
L im it
D e v ic e :
Load:
O -M o d e :
C o u p lin g P o in t :
M o n it o r in g :
M o d u la t io n :
VBB, PW M
10
5
BTS 4142
47 O hm s
ON / OFF / PW M
VBB
O ut
CW
0
1
10
100
1000
f / MHz
Test circuit:
HF
5µH
Vbb
150Ω
IN
PROFET
OUT
GND
6,8nF
5µH
R GND
RL
150Ω
6,8nF
For defined decoupling and high reproducibility the same choke and the same
150Ω -matching network as for the emission measurement is used.
Page 9
2004-01-27
BTS 4141N
Terms
Inductive and overvoltage output clamp
+ V bb
Ibb
V
Z
Vbb
V
I IN
IL
IN
ON
VON
OUT
PROFET
OUT
V
GND
GND
IN
V
bb
R
GND
I
GND
VOUT
VON clamped to 63 V min.
Input circuit (ESD protection)
Overvoltage protection of logic part
Vbb
R
IN
+ Vbb
I
V
IN
I
Z2
Logic
I
GND
GND
R GND
optional
The use of ESD zener diodes as voltage clamp
at DC conditions is not recommended
Signal GND
VZ2=V bb(AZ)=47V min.,
R I=3 kΩ typ., R GND=150Ω
Reverse battery protection
- Vbb
IN
RI
OUT
Power
Inverse
Diode
Logic
GND
RGND
optional
Signal GND
RL
Power GND
RGND=150Ω, RI=3kΩ typ.,
Temperature protection is not active during inverse
current
Page 10
2004-01-27
BTS 4141N
GND disconnect
Inductive Load switch-off energy
dissipation
E bb
Vbb
IN
E AS
IN
GND
V
bb
V
PROFET
OUT
L
=
V
GND
IN
ELoad
Vbb
OUT
PROFET
GND
ZL
{
R
GND disconnect with GND pull up
V
IN
Energy stored in load inductance: EL = ½ * L * IL2
with an approximate solution for RL > 0Ω:
PROFET
OUT
GND
V
bb
ER
L
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
E AS = E bb + EL - ER = VON(CL) * iL(t) dt,
Vbb
IN
EL
E AS =
IL * L
IL * R L
* ( V b b + | V O U T ( C L )| ) * ln (1 +
)
| V O U T ( C L )|
2 * RL
V
GND
Vbb disconnect with charged inductive
load
Vbb
high
IN
PROFET
OUT
GND
V
bb
Page 11
2004-01-27
BTS 4141N
Typ. transient thermal impedance
Typ. transient thermal impedance
ZthJA=f(tp) @ 6cm 2 heatsink area
Z thJA=f(tp) @ min. footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
10 2
K/W
10 1
Z thJA
ZthJA
K/W
D=0,5
D=0,2
D=0,1
D=0,05
D=0,02
D=0,01
D=0
10 0
10 1
D=0,5
D=0,2
D=0,1
D=0,05
D=0,02
D=0,01
D=0
10 0
10 -1 -5
-4
-3
-2
-1
0
1
2
10 10 10 10 10 10 10 10
s
10
10 -1 -5
-4
-3
-2
-1
0
10
10
10
10
10
10
4
10
1
tp
Typ. on-state resistance
RON = f(Tj) ; Vbb = 15 V ; Vin = high
RON = f(V bb); IL = 0.5A ; V in = high
300
300
mΩ
RON
mΩ
RON
10
tp
Typ. on-state resistance
200
125°C
200
150
150
100
100
50
50
0
-40
s
-20
0
20
40
60
80
100
°C
Tj
0
0
140
Page 12
25°C
-40°C
5
10
15
20
25
30
35
40
V
Vbb
50
2004-01-27
3
BTS 4141N
Typ. turn on time
Typ. turn off time
ton = f(Tj ); R L = 47Ω
toff = f(Tj); RL = 47Ω
100
120
µs
µs
15...30V
30V
60
toff
ton
15V
80
60
40
40
20
0
-40
20
-20
0
20
40
60
80
100
°C
Tj
0
-40
140
-20
0
20
40
60
Typ. slew rate on
Typ. slew rate off
dV/dton = f(Tj ) ; RL = 47 Ω
dV/dtoff = f(Tj); RL = 47 Ω
2
80
100
°C
Tj
140
4
V/µs
V/µs
-dV
dtoff
dV
dton
1.6
1.4
3
2.5
1.2
30V
1
2
0.8
1.5
15V
30V
0.6
1
0.4
15V
0.5
0.2
0
-40
-20
0
20
40
60
80
100
°C
Tj
0
-40
140
Page 13
-20
0
20
40
60
80
100
°C
Tj
140
2004-01-27
BTS 4141N
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Tj) ; Vbb = 20V; tm = 150µs
toff(SC) = f(Tj,start) ; Vbb = 20V
2
300
A
ms
t off(SC)
I L(SCp)
1.6
1.4
1.2
1
200
150
0.8
100
0.6
0.4
50
0.2
0
-40
-20
0
20
40
60
80
100
0
-40
140
°C
Tj
-20
0
20
40
60
80
100
°C
Tj
140
Typ. initial peak short circuit current limit
Typ. input current
IL(SCp) = f(Vbb); tm = 150µs
IIN(on/off) = f(Tj); V bb = 15 V; VIN = low/high
VINlow ≤ 1,8V; VINhigh = 5V
60
A
-40°C
1.5
25°C
µA
I IN
I L(SCp)
2
1.25
40
on
30
off
125°C
1
0.75
20
0.5
10
0.25
0
0
5
10
15
20
25
30
35
40
V
Vbb
0
-40
50
Page 14
-20
0
20
40
60
80
100
°C
Tj
140
2004-01-27
BTS 4141N
Typ. input current
Typ. input threshold voltage
IIN = f(VIN); Vbb =15 V
VIN(th) = f(T j) ; V bb = 15 V
-40°C
60
3
on
25°C
40
V
VIN(th)
IIN
µA
125°C
2
30
1.5
20
1
10
0.5
0
0
2.5
5
7.5
10
12.5
15
V
VIN
0
-40
20
off
-20
0
20
40
60
80
100
°C
Tj
Typ. input threshold voltage
Typ. standby current
VIN(th) = f(Vbb) ; Tj = 25°C
I bb(off) = f(T j) ; V bb = 32V ; VIN ≤ 1,2 V
3
140
22
µA
V
18
2
Ibb(off)
V IN(th)
on
off
16
14
12
1.5
10
8
1
6
4
0.5
2
0
0
10
20
30
0
-40
50
V
Vbb
Page 15
-20
0
20
40
60
80
100
°C
Tj
140
2004-01-27
BTS 4141N
Maximum allowable inductive switch-off
Typ. leakage current
energy, single pulse
IL(off) = f(Tj) ; Vbb = 32V ; VIN ≤ 1,2 V
EAS = f(IL ); Tjstart = 125°C
2.5
4
µA
J
IL(off)
EAS
3
1.5
2.5
2
1
1.5
1
0.5
0.5
0
0.2
0.4
0.6
0.8
1
0
-40
1.4
A
IL
-20
0
20
40
60
80
100
°C
Tj
140
Typ. input delay time at switch on Vbb
td(Vbbon) = f(Vbb)
400
td(Vbbon)
µs
300
250
200
150
100
50
0
0
5
10
15
20
25
30
35
40
V
Vbb
50
Page 16
2004-01-27
BTS 4141N
Timing diagrams
Figure 1a: Vbb turn on:
Figure 2b: Switching a lamp
IN
IN
Vbb
V
OUT
IL
IL
t
t d(Vbbon)
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
IN
IN
V OUT
90%
VOUT
t on
dV/dton
10%
dV/ dtoff
t off
IL
IL
t
t
Page 17
2004-01-27
BTS 4141N
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Figure 3b: Short circuit in on-state
shut down by overtemperature, restart by cooling
IN
IN
V OUT
V OUT
normal
operation
Output short to GND
I
L
I
L(SCp)
I
I
Output short to GND
L
I
L(SCr)
L(SCr)
t
t
Heating up of the chip may require several milliseconds, depending
on external conditions.
Figure 5: Undervoltage shutdown and restart
Figure 4: Overtemperature:
Reset if Tj < Tjt
IN
IN
Vbb
VOUT
10,5V
Vout
TJ
t
t
t d(Vbbon)
Page 18
t d(Vbbon)
2004-01-27
BTS 4141N
Package and ordering code
all dimensions in mm
Sales code
BTS 4141N
Ordering code, standard (1000 pcs.)
Q67060-S6120
Ordering code, optional (4000 pcs.)
Q67060-S6127
1.6 ±0.1
6.5 ±0.2
+0.2
acc. to
DIN 6784
1
2
3
3.5±0.2
4
7 ±0.3
B
15˚ max
0.1 max
3 ±0.1
0.5 min
A
0.28 ±0.04
2.3
0.7 ±0.1
4.6
0.25
M
A
0.25
M
B
GPS05560
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81669 München
© Infineon Technologies AG 2001
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee
of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your
nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide
(see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 19
2004-01-27
Similar pages