PD - 96098A IRF2903ZSPbF IRF2903ZLPbF Features l l l l l l HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 30V RDS(on) = 2.4mΩ G ID = 75A S Description This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. D G VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG D S G D2Pak Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C D G D S Gate Drain Source Parameter Max. 235 166 75 1020 231 1.54 ± 20 231 820 See Fig.12a, 12b, 15, 16 c c h g Units www.irf.com j Parameter Junction-to-Case Junction-to-Ambient Junction-to-Ambient (PCB Mount, steady state) j ij A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) Thermal Resistance RθJC RθJA RθJA S TO-262 Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds d D Typ. Max. ––– ––– ––– 0.65 62 40 Units 1 07/22/10 IRF2903ZS/ZLPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current IGSS Min. Typ. Max. Units Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 30 ––– ––– 2.0 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.021 1.9 ––– ––– ––– ––– ––– ––– 160 51 58 24 100 48 37 4.5 ––– ––– 2.4 4.0 ––– 20 250 200 -200 240 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 6320 1980 1100 5930 2010 3050 ––– ––– ––– ––– ––– ––– V V/°C mΩ V S µA nA nC ns nH pF Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 75A VDS = VGS, ID = 150µA VDS = 10V, ID = 75A VDS = 30V, VGS = 0V VDS = 30V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 75A VDS = 24V VGS = 10V VDD = 15V ID = 75A RG = 3.2 Ω VGS = 10V e e e Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 24V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 24V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton 2 Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time c Min. Typ. Max. Units ––– ––– 75 ––– ––– 1020 ––– ––– ––– ––– 34 29 1.3 51 44 A V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C, IF = 75A, VDD = 15V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF2903ZS/ZLPbF 1000 1000 ID, Drain-to-Source Current (A) TOP 100 BOTTOM 10 4.5V TOP ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 100 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C ≤ 60µs PULSE WIDTH Tj = 175°C 1 10 0.1 1 10 100 1000 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 240 100.0 Gfs, Forward Transconductance (S) 1000.0 ID, Drain-to-Source Current(Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TJ = 175°C 10.0 TJ = 25°C 1.0 VDS = 25V ≤ 60µs PULSE WIDTH 3.0 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 200 TJ = 175°C 160 120 80 40 VDS = 10V 380µs PULSE WIDTH 0.1 2.0 TJ = 25°C 10.0 0 0 20 40 60 80 100 120 140 160 180 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF2903ZS/ZLPbF 12000 20 10000 C, Capacitance (pF) Coss = Cds + Cgd 8000 Ciss 6000 4000 Coss 2000 ID= 75A VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Crss 16 12 8 4 0 0 1 10 0 100 1000.0 10000 TJ = 175°C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 80 120 160 200 240 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100.0 40 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 10.0 TJ = 25°C 1.0 0.1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 1msec 100 LIMITED BY PACKAGE 10 1 VGS = 0V 100µsec 10msec DC Tc = 25°C Tj = 175°C Single Pulse 0.1 0.0 0.4 0.8 1.2 1.6 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 24V VDS= 15V 2.4 0.1 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF2903ZS/ZLPbF 2.0 Limited By Package 200 ID, Drain Current (A) RDS(on) , Drain-to-Source On Resistance (Normalized) 240 160 120 80 40 ID = 75A VGS = 10V 1.5 1.0 0.5 0 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) T C , Case Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF2903ZS/ZLPbF 600 DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 15V ID 26A 42A BOTTOM 75A TOP 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.5 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V ID = 1.0A ID = 1.0mA ID = 250µA ID = 150µA 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF2903ZS/ZLPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 0.05 0.10 10 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 160 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 120 80 40 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) 175 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF2903ZS/ZLPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF2903ZS/ZLPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information T HIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN THE AS S EMBLY LINE "L" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNAT ES LEAD - FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY S ITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF2903ZS/ZLPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMB LED ON WW 19, 1997 IN T HE AS SEMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DAT E CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS SEMBLY S IT E CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRF2903ZS/ZLPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 Notes: Repetitive rating; pulse width limited by Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.10mH This value determined from sample failure population. 100% RG = 25Ω, IAS = 75A, VGS =10V. Part not tested to this value in production. recommended for use above this value. This is applied to D2Pak, when mounted on 1" square PCB (FR Pulse width ≤ 1.0ms; duty cycle ≤ 2%. 4 or G-10 Material). For recommended footprint and soldering Coss eff. is a fixed capacitance that gives the techniques refer to application note #AN-994. same charging time as Coss while VDS is rising Rθ is measured at TJ approximately 90°C from 0 to 80% VDSS . Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 www.irf.com 11