AD ADA4420-6ARQZ1 Low cost 6-channel hd/sd video filter Datasheet

Low Cost 6-Channel HD/SD Video Filter
ADA4420-6
FEATURES
FUNCTIONAL BLOCK DIAGRAM
INSD1
SD
×2
×1
SD
×2
×1
SD
×2
×1
HD
×2
×1
HD
×2
×1
HD
×2
INSD2
INSD3
DIS
OUTSD3
CLAMP
INHD1
OUTHD1
CLAMP
INHD2
OUTHD2
CLAMP
INHD3
ADA4420-6
GENERAL DESCRIPTION
The ADA4420-6 operates from a single 5 V supply and has a
low quiescent current of 32 mA, making it ideal for applications
where power consumption is critical. A disable feature allows
for further power conservation by reducing the supply current
to less than 8 μA typical when the device is not in use.
OUTSD2
CLAMP
CLAMP
The ADA4420-6 is a low cost video reconstruction filter specifically
designed for consumer applications. It consists of six independent
sixth-order Butterworth filters/buffers, three for standard
definition (Y/C or CVBS) and three for high definition
component signals (YPbPr or RGB).
OUTSD1
CLAMP
APPLICATIONS
Set-top boxes
DVD players and recorders
HDTVs
Projectors
Personal video recorders
×1
OUTHD3
07532-001
Sixth-order filters
Transparent input sync tip clamp
−1 dB bandwidth of 26 MHz typical for HD
HD rejection @ 75 MHz: 48 dB typical
NTSC differential gain: 0.19%
NTSC differential phase: 0.76°
Rail-to-rail outputs
Low quiescent current: 32 mA typical
Disable feature
Output dc offset
Figure 1.
Each channel features a transparent sync tip clamp, allowing ac
coupling of the inputs without requiring dc restoration.
The output drivers on the ADA4420-6 have rail-to-rail output
capabilities with 6 dB gain. A built-in offset of 250 mV allows
the outputs to be dc-coupled, eliminating the need for large
coupling capacitors. Each output is capable of driving two 75 Ω
doubly terminated cables.
The ADA4420-6 is available in a 16-lead QSOP and operates in
the extended industrial temperature range of −40°C to +85°C.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2008 Analog Devices, Inc. All rights reserved.
ADA4420-6
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................6
Applications ....................................................................................... 1
Test Circuits ........................................................................................9
General Description ......................................................................... 1
Applications Information .............................................................. 10
Functional Block Diagram .............................................................. 1
Overview ..................................................................................... 10
Revision History ............................................................................... 2
Disable ......................................................................................... 10
Specifications..................................................................................... 3
Input and Output Coupling ...................................................... 10
Absolute Maximum Ratings............................................................ 4
Printed Circuit Board (PCB) Layout ....................................... 10
Thermal Resistance ...................................................................... 4
Video Encoder Reconstruction Filter ...................................... 10
Maximum Power Dissipation ..................................................... 4
Outline Dimensions ....................................................................... 12
ESD Caution .................................................................................. 4
Ordering Guide .......................................................................... 12
Pin Configuration and Function Descriptions ............................. 5
REVISION HISTORY
8/08—Revision 0: Initial Version
Rev. 0 | Page 2 of 12
ADA4420-6
SPECIFICATIONS
VS = 5 V, TA = 25°C, VO = 2.0 V p-p, RL = 150 Ω, dc-coupled inputs, ac-coupled outputs, unless otherwise noted. See Figure 17, Figure 18,
and Figure 19 for the test circuits.
Table 1.
Parameter
OVERALL PERFORMANCE
DC Voltage Gain
Input Voltage Range, All Inputs
Output Voltage Range, All Outputs
Linear Output Current per Channel
Filter Input Bias Current
SD CHANNEL DYNAMIC PERFORMANCE
−1 dB Bandwidth
−3 dB Bandwidth
Out-of-Band Rejection
Crosstalk
Total Harmonic Distortion
Signal-to-Noise Ratio
Propagation Delay
Group Delay Variation
Differential Gain
Differential Phase
HD CHANNEL DYNAMIC PERFORMANCE
−1 dB Bandwidth
−3 dB Bandwidth
Out-of-Band Rejection
Crosstalk
Total Harmonic Distortion
Signal-to-Noise Ratio
Propagation Delay
Group Delay Variation
DC CHARACTERISTICS
Operating Voltage
Quiescent Supply Current
PSRR
Output DC Offset
DISABLE Assert Voltage
DISABLE Assert Time
DISABLE De-Assert Time
DISABLE Input Bias Current
Input-to-Output Isolation
Test Conditions/Comments
Min
Typ
Max
Unit
All channels
5.8
6.0
0 to 2.1
0.25 to 4.6
30
1
6.2
dB
V
V
mA
μA
8.6
10
45
−68
0.02
70
57
16
0.19
MHz
MHz
dB
dB
%
dB
ns
ns
%
0.76
Degrees
f = 100 kHz to 30 MHz
26
31
48
−68
0.57
66
15
11
MHz
MHz
dB
dB
%
dB
ns
ns
Active, DIS = 1
Disabled, DIS = 0
HD channel, referred to output
SD channel, referred to output
All channels
4.75 to 5.25
32
7
41
45
250
f = 27 MHz
f = 1 MHz
f = 1 MHz, VO = 1.4 V p-p, dc-coupled outputs
f = 100 kHz to 6 MHz, unweighted
8.5
42
f = 100 kHz to 5 MHz
NTSC; ac-coupled inputs, dc-coupled outputs;
see Figure 18
NTSC; ac-coupled inputs, dc-coupled outputs;
see Figure 18
f = 75 MHz
f = 1 MHz
f = 10 MHz, VO = 1.4 V p-p, dc-coupled outputs
f = 100 kHz to 30 MHz, unweighted
Disabled, DIS = 0
Disabled, DIS = 0, f = 5 MHz
Rev. 0 | Page 3 of 12
27
43
35
40
135
20
450
−6.8
−96
36
13
375
1.9
V
mA
μA
dB
dB
mV
V
ns
ns
μA
dB
ADA4420-6
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage
Power Dissipation
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)
Junction Temperature
Rating
5.5 V
See Figure 2
−65°C to +125°C
−40°C to +85°C
300°C
150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
The power dissipated in the package (PD) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive for all outputs. The quiescent
power is the voltage between the supply pins (VS) times the
quiescent current (IS). The power dissipated due to load drive
depends on the particular application. For each output, the
power due to load drive is calculated by multiplying the load
current by the associated voltage drop across the device. The
power dissipated due to the loads is equal to the sum of the
power dissipations due to each individual load. RMS voltages
and currents must be used in these calculations.
Airflow increases heat dissipation, effectively reducing θJA.
Figure 2 shows the maximum power dissipation in the package
vs. the ambient temperature for the 16-lead QSOP (105°C/W)
on a JEDEC standard 4-layer board. θJA values are approximate.
2.0
1.8
MAXIMUM POWER DISSIPATION (W)
THERMAL RESISTANCE
θJA is specified for the device soldered to a high thermal
conductivity 4-layer (2s2p) circuit board, as described in
EIA/JESD 51-7.
Table 3.
θJA
105
θJC
23
Unit
°C/W
1.4
1.2
1.0
0.8
0.6
0.4
0.2
MAXIMUM POWER DISSIPATION
The maximum safe power dissipation in the ADA4420-6
package is limited by the associated rise in junction temperature
(TJ) on the die. At approximately 150°C, which is the glass
transition temperature, the plastic changes its properties. Even
temporarily exceeding this temperature limit can change the
stresses that the package exerts on the die, permanently shifting
the parametric performance of the ADA4420-6. Exceeding a
junction temperature of 150°C for an extended time can result
in changes in the silicon devices, potentially causing failure.
0
0
10
20
30
40
50
60
70
80
AMBIENT TEMPERATURE (°C)
Figure 2. Maximum Power Dissipation vs.
Ambient Temperature for a 4-Layer Board
ESD CAUTION
Rev. 0 | Page 4 of 12
90
100
07532-016
Package Type
16-Lead QSOP
1.6
ADA4420-6
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
16
OUTSD1
INSD2
2
15
OUTSD2
INSD3
3
14
OUTSD3
VCC
4
ADA4420-6
13
GND
DIS
5
TOP VIEW
(Not to Scale)
12
GND
INHD1
6
11
OUTHD1
INHD2
7
10
OUTHD2
INHD3
8
9
OUTHD3
07532-002
INSD1
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Mnemonic
INSD1
INSD2
INSD3
VCC
DIS
INHD1
INHD2
INHD3
OUTHD3
OUTHD2
OUTHD1
GND
GND
OUTSD3
OUTSD2
OUTSD1
Description
Standard Definition Input 1
Standard Definition Input 2
Standard Definition Input 3
Power Supply
Disable/Power-Down Input
High Definition Input 1
High Definition Input 2
High Definition Input 3
High Definition Output 3
High Definition Output 2
High Definition Output 1
Ground
Ground
Standard Definition Output 3
Standard Definition Output 2
Standard Definition Output 1
Rev. 0 | Page 5 of 12
ADA4420-6
TYPICAL PERFORMANCE CHARACTERISTICS
VS = 5.0 V, TA = 25°C, VO = 2.0 V p-p, RL = 150 Ω, dc-coupled inputs, ac-coupled outputs, unless otherwise noted. See Figure 17, Figure 18,
and Figure 19 for the test circuits.
10
NORMALIZED GAIN (dB)
SD CHANNELS,
RL = 75Ω
–20
–30
SD CHANNELS,
RL = 150Ω
–40
–50
–60
0
–1.0
–1.5
–2.0
–3.0
1
0
0.5
NORMALIZED GAIN (dB)
–10
–30
–40
–50
HD –40°C
HD +25°C
HD +85°C
SD –40°C
SD +25°C
SD +85°C
0
–0.5
–1.0
–1.5
HD –40°C
HD +25°C
HD +85°C
SD –40°C
SD +25°C
SD +85°C
–2.0
–2.5
100
FREQUENCY (MHz)
–3.0
07532-005
10
1
Figure 5. Frequency Response vs. Temperature
Figure 8. Flatness vs. Temperature
10
0
0
–10
–10
–20
–20
GAIN (dB)
10
–30
–40
HD DC-COUPLED
HD AC-COUPLED
–30
–40
–50
–50
–60
–60
SD VO = 100mV p-p
SD VO = 2.0V p-p
HD VO = 100mV p-p
HD VO = 2.0V p-p
–70
1
SD AC-COUPLED
–70
10
100
FREQUENCY (MHz)
–80
07532-006
GAIN (dB)
10
FREQUENCY (MHz)
SD DC-COUPLED
1
10
100
FREQUENCY (MHz)
Figure 9. Frequency Response vs. Output Coupling
Figure 6. Frequency Response vs. Amplitude
Rev. 0 | Page 6 of 12
07532-017
GAIN (dB)
–20
1
100
Figure 7. Flatness vs. Load (RL)
1.0
–70
100
FREQUENCY (MHz)
10
–60
10
07532-007
100
Figure 4. Frequency Response vs. Load (RL)
–80
HD CHANNELS,
RL = 150Ω
SD CHANNELS,
RL = 150Ω
–0.5
07532-008
10
07532-004
1
FREQUENCY (MHz)
–80
HD CHANNELS,
RL = 75Ω
–2.5
–70
–80
SD CHANNELS,
RL = 75Ω
0.5
HD CHANNELS,
RL = 150Ω
–10
GAIN (dB)
1.0
HD CHANNELS,
RL = 75Ω
0
ADA4420-6
6
100
90
5
SD CHANNELS
DISABLE VOLTAGE (V)
70
60
50
SD CHANNELS
40
30
HD CHANNELS
20
4
3
2
HD CHANNELS
1
1
10
100
FREQUENCY (MHz)
–1
–600
07532-009
0
0.1
–400
0
200
400
600
800
1000
1200
80
100
TIME (ns)
Figure 12. Enable Turn-On Time
Figure 10. Group Delay vs. Frequency
10k
–200
07532-012
0
10
07532-013
GROUP DELAY (ns)
80
36
DIS = 0
SUPPLY CURRENT (mA)
1k
100
34
33
32
31
30
29
10
0.1
1
10
FREQUENCY (MHz)
100
07532-011
OUTPUT IMPEDANCE (Ω)
35
28
–60
–40
–20
0
20
40
60
TEMPERATURE (°C)
Figure 13. Supply Current vs. Temperature
Figure 11. Output Impedance vs. Frequency
Rev. 0 | Page 7 of 12
ADA4420-6
4.70
–10
4.68
OUTPUT SATURATION VOLTAGE (V)
0
–30
–40
–50
–60
SD CHANNELS
–70
HD CHANNELS
–90
0.1
1
10
100
1000
FREQUENCY (MHz)
6
SD CHANNELS
3
HD CHANNELS
1
0
–1
–200 –160 –120
–80
–40
0
40
80
TIME (ns)
120
160
200
07532-015
DISABLE VOLTAGE (V)
5
2
4.62
4.60
4.58
4.56
4.54
4.50
–60
–40
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 16. Output Saturation Voltage vs. Temperature
Figure 14. Crosstalk vs. Frequency
4
4.64
4.52
07532-014
–80
4.66
Figure 15. Disable Turn-Off Time
Rev. 0 | Page 8 of 12
100
07532-010
CROSSTALK (dB)
–20
ADA4420-6
TEST CIRCUITS
AGILENT E3631A POWER SUPPLY
±25V
COM
+6V
+
–
+
–
ADA4420-6
TEST CIRCUIT
(SEE FIGURE 17)
VCC
0.1µF
VCC
GND DISABLE
VIN
10µF
VOUT
50Ω
PORT 1
220µF
ADA4420-6
49.9Ω
VOUT
118Ω
07532-018
86.6Ω
DISABLE
GND
AGILENT 8753D VECTOR NETWORK ANALYZER
Figure 17. DC-Coupled Input, AC-Coupled Output
Figure 19. Test Circuit for Frequency Response and Group Delay
VCC
0.1µF
49.9Ω
0.1µF
10µF
ADA4420-6
VOUT
118Ω
86.6Ω
DISABLE
GND
07532-019
VIN
PORT 2
BIAS
CONNECT
PORT 1
07532-020
VIN
Figure 18. AC-Coupled Input, DC-Coupled Output
Rev. 0 | Page 9 of 12
ADA4420-6
APPLICATIONS INFORMATION
OVERVIEW
ADA4420-6
220µF
75Ω
CABLE
75Ω
220µF
75Ω
CABLE
75Ω
75Ω
07532-022
With its high impedance inputs and high output drive, the
ADA4420-6 is ideally suited to video reconstruction and antialias filtering applications. The high impedance inputs give
designers flexibility with regard to how the input signals are
terminated. Devices with DAC current source outputs that feed
the ADA4420-6 can be loaded in whatever resistance provides
the best performance, and devices with voltage outputs can be
optimally terminated as well. The ADA4420-6 outputs can each
drive up to two source-terminated, 75 Ω loads and, therefore, can
directly drive the outputs from set-top boxes and DVDs without
the need for a separate output buffer.
75Ω
Figure 20. Driving Two AC-Coupled Loads with Two Coupling Capacitors
ADA4420-6
75Ω
75Ω
CABLE
470µF
75Ω
75Ω
75Ω
CABLE
The ADA4420-6 includes a disable feature that can be used to
save power when a particular device is not in use. When disabled,
the ADA4420-6 typically draws only 7 μA from the supply. The
disable feature is asserted by pulling the DIS pin low.
Table 5 summarizes the operation of the disable feature.
Table 5. Disable Function
DIS Pin Connection
Status
VCC or floating
GND
Enabled
Disabled
INPUT AND OUTPUT COUPLING
Inputs to the ADA4420-6 can be ac- or dc-coupled. For dc-coupled
inputs, the signal must be completely contained within the input
range of 0 V to 2.1 V. When using ac-coupled inputs, the lowest
point of the signal is clamped to approximately 0 V. The ADA4420-6
outputs can be either ac- or dc-coupled.
When driving single ac-coupled loads in standard 75 Ω video
distribution systems, a minimum capacitance of 220 μF is
recommended to avoid line and field droop. There are two ac
coupling options when driving two loads from one output. One
option simply uses the same value capacitor on the second load,
while the other option uses a common coupling capacitor that
is at least twice the value used for the single load (see Figure 20
and Figure 21).
When driving two parallel 150 Ω loads (75 Ω effective load), the
3 dB bandwidth of the filters typically varies from that of the filters
with a single 150 Ω load (see Figure 4).
75Ω
07532-023
DISABLE
Figure 21. Driving Two AC-Coupled Loads with One Common Coupling Capacitor
PRINTED CIRCUIT BOARD (PCB) LAYOUT
As with all high speed applications, attention to the PCB layout
is of paramount importance. When designing with the ADA4420-6,
adhere to standard high speed layout practices. A solid ground
plane is recommended, and surface-mount, ceramic power supply
decoupling capacitors should be placed as close as possible to the
supply pins. Connect all of the ADA4420-6 GND pins to the
ground plane with traces that are as short as possible. Controlled
impedance traces of the shortest length possible should be used
to connect to the signal I/O pins and should not pass over any
voids in the ground plane. A 75 Ω impedance level is typically
used in video applications. When driving transmission lines,
include series termination resistors on the signal outputs of the
ADA4420-6.
When the ADA4420-6 receives its inputs from a device with
current outputs, the required load resistor value for the output
current is often different from the characteristic impedance of
the signal traces. In this case, if the interconnections are short
(<< 0.1 wavelength), the trace does not have to be terminated in
its characteristic impedance. Traces of 75 Ω can be used in this
instance, provided their lengths are an inch or two at most. This
is easily achieved because the ADA4420-6 and the device feeding it
are usually adjacent to each other, and connections can be made
that are less than one inch in length.
VIDEO ENCODER RECONSTRUCTION FILTER
The ADA4420-6 is easily applied as a reconstruction filter at the
DAC outputs of a video encoder. Figure 22 illustrates how to use
the ADA4420-6 in this type of application following an ADV734x
series video encoder, with a single-supply and ac-coupled outputs.
Rev. 0 | Page 10 of 12
ADA4420-6
×2
×1
HD
×2
×1
HD
×2
220μF 75Ω
OUTHD1
+
HD
OUTHD2
+
×1
220μF 75Ω
OUTHD3
+
INHD1
DAC 1
220μF 75Ω
OUTSD1
+
MULTIFORMAT
VIDEO ENCODER
220μF 75Ω
OUTSD2
+
ADV734x
220μF 75Ω
OUTSD3
220μF 75Ω
Y
300Ω
INHD2
DAC 2
Pb
300Ω
INHD3
DAC 3
Pr
300Ω
ADA4420-6
DIS
INSD1
DAC 4
×1
SD
×2
×1
SD
×2
CVBS
300Ω
INSD2
DAC 5
300Ω
DAC 6
RSET2
4.12kΩ
×1
SD
×2
300Ω
4.12kΩ
07532-021
RSET1
+
S-VIDEO
INSD3
Figure 22. The ADA4420-6 Applied as a Reconstruction Filter Following an ADV734x Series Video Encoder
Rev. 0 | Page 11 of 12
ADA4420-6
OUTLINE DIMENSIONS
0.197 (5.00)
0.193 (4.90)
0.189 (4.80)
16
9
1
8
0.244 (6.20)
0.236 (5.99)
0.228 (5.79)
0.010 (0.25)
0.006 (0.15)
0.069 (1.75)
0.053 (1.35)
0.065 (1.65)
0.049 (1.25)
0.010 (0.25)
0.004 (0.10)
COPLANARITY
0.004 (0.10)
0.158 (4.01)
0.154 (3.91)
0.150 (3.81)
SEATING
PLANE
0.025 (0.64)
BSC
0.012 (0.30)
0.008 (0.20)
8°
0°
0.020 (0.51)
0.010 (0.25)
0.050 (1.27)
0.016 (0.41)
0.041 (1.04)
REF
012808-A
COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 23. 16-Lead Shrink Small Outline Package [QSOP]
(RQ-16)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE
Model
ADA4420-6ARQZ 1
ADA4420-6ARQZ-R71
ADA4420-6ARQZ-RL1
1
Temperature Range
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
Package Description
16-Lead Shrink Small Outline Package (QSOP)
16-Lead Shrink Small Outline Package (QSOP)
16-Lead Shrink Small Outline Package (QSOP)
Z = RoHS Compliant Part.
©2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07532-0-8/08(0)
Rev. 0 | Page 12 of 12
Package Option
RQ-16
RQ-16
RQ-16
Ordering Quantity
1
1,000
1,500
Similar pages