MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 MIXED SIGNAL MICROCONTROLLER FEATURES 1 • 2 • • • • • Low Supply Voltage Range: 3.6 V Down to 1.8 V Ultra-Low Power Consumption – Active Mode (AM): All System Clocks Active 265 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical) 140 µA/MHz at 8 MHz, 3.0 V, RAM Program Execution (Typical) – Standby Mode (LPM3): Real-Time Clock With Crystal, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wake-Up: 1.7 µA at 2.2 V, 2.5 µA at 3.0 V (Typical) – Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast Wake-Up: 1.6 µA at 3.0 V (Typical) – Shutdown RTC Mode (LPM3.5): Shutdown Mode, Active Real-Time Clock (RTC) With Crystal: 1.24 µA at 3.0 V (Typical) – Shutdown Mode (LPM4.5): 0.78 µA at 3.0 V (Typical) Wake-Up From Standby Mode in 3 µs (Typical) 16-Bit RISC Architecture, Extended Memory, up to 25-MHz System Clock Flexible Power Management System – Fully Integrated LDO With Programmable Regulated Core Supply Voltage – Supply Voltage Supervision, Monitoring, and Brownout – System Operation From up to Two Auxiliary Power Supplies Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power Low-Frequency Internal Clock Source (VLO) – Low-Frequency Trimmed Internal Reference Source (REFO) – 32-kHz Crystals (XT1) • • • • • • • • • • • • • • One 16-Bit Timer With Three Capture/Compare Registers Three 16-Bit Timers With Two Capture/Compare Registers Each Enhanced Universal Serial Communication Interfaces – eUSCI_A0, eUSCI_A1, and eUSCI_A2 – Enhanced UART Supports AutoBaudrate Detection – IrDA Encoder and Decoder – Synchronous SPI – eUSCI_B0 – I2C With Multi-Slave Addressing – Synchronous SPI Password-Protected RTC With Crystal Offset Calibration and Temperature Compensation Separate Voltage Supply for Backup Subsystem – 32-kHz Low-Frequency Oscillator (XT1) – Real-Time Clock – Backup Memory (4 x 16 Bits) Three 24-Bit Sigma-Delta Analog-to-Digital (A/D) Converters With Differential PGA Inputs Integrated LCD Driver With Contrast Control for up to 320 Segments in 8-Mux Mode Hardware Multiplier Supports 32-Bit Operations 10-Bit 200-ksps A/D Converter – Internal Reference – Sample-and-Hold, Autoscan Feature – Up to Six External Channels, Two Internal Channels, Including Temperature Sensor Three-Channel Internal DMA Serial Onboard Programming, No External Programming Voltage Needed Family Members are Summarized in Table 1 Available in 100-Pin and 80-Pin LQFP Packages For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. I2C is a trademark of others. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com DESCRIPTION The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with extensive lowpower modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in 3 µs (typical). The MSP430F67xx series are microcontroller configurations with three high-performance 24-bit sigma-delta A/D converters, a 10-bit analog-to-digital (A/D) converter, four enhanced universal serial communication interfaces (three eUSCI_A and one eUSCI_B), four 16-bit timers, hardware multiplier, DMA, real-time clock module with alarm capabilities, LCD driver with integrated contrast control, auxiliary supply system, and up to 72 I/O pins in 100-pin devices and 52 I/O pins in 80-pin devices. Typical applications for these devices are 2-wire and 3-wire single-phase metering, including tamper-resistant meter implementations. Family members available are summarized in Table 1. Table 1. Family Members eUSCI Device Flash (KB) SRAM (KB) SD24_B Converters ADC10_A Channels Timer_A (1) Channel A: UART, IrDA, SPI Channel B: SPI, I2C I/O Package Type MSP430F6736IPZ 128 8 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6735IPZ 128 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6734IPZ 96 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6733IPZ 64 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6731IPZ 32 2 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6730IPZ 16 1 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6726IPZ 128 8 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6725IPZ 128 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6724IPZ 96 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6723IPZ 64 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6721IPZ 32 2 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6720IPZ 16 1 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6736IPN 128 8 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6735IPN 128 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6734IPN 96 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6733IPN 64 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6731IPN 32 2 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6730IPN 16 1 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6726IPN 128 8 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6725IPN 128 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6724IPN 96 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6723IPN 64 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6721IPN 32 2 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6720IPN 16 1 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN (1) 2 Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 2. Ordering Information (1) TA PACKAGED DEVICES (2) PLASTIC 100-PIN LQFP (PZ) PLASTIC 80-PIN LQFP (PN) MSP430F6736IPZ MSP430F6736IPN MSP430F6735IPZ MSP430F6735IPN MSP430F6734IPZ MSP430F6734IPN MSP430F6733IPZ MSP430F6733IPN MSP430F6731IPZ MSP430F6731IPN MSP430F6730IPZ MSP430F6730IPN MSP430F6726IPZ MSP430F6726IPN MSP430F6725IPZ MSP430F6725IPN MSP430F6724IPZ MSP430F6724IPN MSP430F6723IPZ MSP430F6723IPN MSP430F6721IPZ MSP430F6721IPN MSP430F6720IPZ MSP430F6720IPN –40°C to 85°C (1) (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 3 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Functional Block Diagram, MSP430F673xIPZ, MSP430F672xIPZ XIN DVCC DVSS XOUT AVCC AVSS AUX1 AUX2 AUX3 PA P1.x P2.x RST/NMI PB P3.x P4.x PC P5.x P6.x P7.x PD P8.x PE P9.x (32kHz) ACLK Unified Clock System SMCLK SYS 128kB 96KB 64KB 32KB 16KB 8kB 4KB 2KB 1KB Flash RAM MCLK Watchdog Port Mapping Controller MPY32 CRC16 I/O Ports P1/P2 2×8 I/Os Interrupt & Wakeup I/O Ports P3/P4 2×8 I/Os I/O Ports P5/P6 2×8 I/Os I/O Ports P7/P8 2×8 I/Os I/O Ports P9 1×4 I/O PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×16 I/Os PE 1×4 I/O CPUXV2 and Working Registers (25MHz) EEM (S: 3+1) PMM Auxiliary Supplies JTAG/ SBW Interface/ LDO SVM/SVS BOR Port PJ SD24_B 3 Channel 2 Channel LCD_C ADC10_A 10 Bit 200 KSPS REF 8MUX Up to 320 Segments RTC_C Reference 1.5V, 2.0V, 2.5V Timer_A 3 CC Registers PJ.x eUSCI_A0 eUSCI_A1 eUSCI_A2 TA1 TA2 TA3 TA0 Timer_A 2 CC Registers (UART, IrDA,SPI) eUSCI_B0 (SPI, I2C) DMA 3 Channel Functional Block Diagram, MSP430F673xIPN, MSP430F672xIPN XIN XOUT DVCC DVSS AVCC AVSS AUX1 AUX2 AUX3 PA P1.x P2.x RST/NMI PB P3.x P4.x PC P5.x P6.x (32kHz) ACLK Unified Clock System SMCLK MCLK 128KB 96KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB Flash RAM SYS DMA Watchdog 3 Channel Port Mapping Controller CRC16 MPY32 I/O Ports P1/P2 2×8 I/Os Interrupt & Wakeup I/O Ports P3/P4 2×8 I/Os I/O Ports P5/P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os TA0 TA1 TA2 TA3 eUSCI_A0 eUSCI_A1 eUSCI_A2 Timer_A 3 CC Registers Timer_A 2 CC Registers (UART, IrDA,SPI) CPUXV2 and Working Registers (25MHz) EEM (S: 3+1) JTAG/ SBW Interface/ Port PJ PMM Auxiliary Supplies LDO SVM/SVS BOR SD24_B 3 Channel 2 Channel ADC10_A 10 Bit 200 KSPS LCD_C 8MUX Up to 320 Segments REF Reference 1.5V, 2.0V, 2.5V RTC_C eUSCI_B0 (SPI, I2C) PJ.x 4 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 P6.1/S18 P6.2/S17 P6.3/S16 P6.4/S15 P6.5/S14 P6.6/S13 P6.7/S12 P7.0/S11 P7.1/S10 P7.2/S9 P7.3/S8 P7.4/S7 P7.5/S6 P7.6/S5 P7.7/S4 P8.0/S3 P8.1/S2 P8.2/S1 P8.3/S0 TEST/SBWTCK PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK RST/NMI/SBWTDIO Pin Designation, MSP430F673xIPZ SD0P0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 75 DVSS SD0N0 2 74 DVSYS SD1P0 3 73 P6.0/S19 SD1N0 4 72 P5.7/S20 SD2P0 5 71 P5.6/S21 SD2N0 6 70 P5.5/S22 VREF 7 69 P5.4/S23 AVSS 8 68 P5.3/S24 AVCC 9 67 P5.2/S25 VASYS 10 66 P5.1/S26 P9.1/A5 11 65 P5.0/S27 P9.2/A4 12 64 P4.7/S28 P9.3/A3 13 63 P4.6/S29 P1.0/PM_TA0.0/VeREF-/A2 14 62 P4.5/S30 P1.1/PM_TA0.1/VeREF+/A1 15 61 P4.4/S31 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 16 60 P4.3/S32 P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 17 59 P4.2/S33 AUXVCC2 18 58 P4.1/S34 AUXVCC1 19 57 P4.0/S35 VDSYS 20 56 P3.7/PM_SD2DIO/S36 DVCC 21 55 P3.6/PM_SD1DIO/S37 DVSS 22 54 P3.5/PM_SD0DIO/S38 VCORE 23 53 P3.4/PM_SDCLK/S39 XIN 24 52 P3.3/PM_TA0.2 P3.2/PM_TACLK/PM_RTCCLK P3.1/PM_TA2.1/BSL_RX P3.0/PM_TA2.0/BSL_TX P2.7/PM_TA1.1 P2.6/PM_TA1.0 P2.5/PM_UCA2CLK P2.4/PM_UCA1CLK P2.3/PM_UCA2TXD/PM_UCA2SIMO P2.2/PM_UCA2RXD/PM_UCA2SOMI P9.0/TACLK/RTCCLK P8.7/TA2.1 P8.6/TA2.0 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6 P1.7/PM_UCB0CLK/COM5 P1.6/PM_UCA0CLK/COM4 COM3 COM2 COM1 COM0 P8.5/TA1.1 P8.4/TA1.0 LCDCAP/R33 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 AUXVCC3 25 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 XOUT PZ PACKAGE NOTE: The secondary digital functions on Ports P1, P2, and P3 are fully mappable. The pin designation shows the default mapping. See Table 14 for details. NOTE: The pins VDSYS and DVSYS must be connected externally on board for proper device operation. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if not used. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 5 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 3. Pinout Differences Between MSP430F673xIPZ and MSP430F672xIPZ (1) PIN NUMBER (1) 6 PIN NAME MSP430F673xIPZ MSP430F672xIPZ 1 SD0P0 SD0P0 2 SD0N0 SD0N0 3 SD1P0 SD1P0 4 SD1N0 SD1N0 5 SD2P0 NC 6 SD2N0 NC 7 VREF VREF 53 P3.4/PM_SDCLK/S39 P3.4/PM_SDCLK/S39 54 P3.5/PM_SD0DIO/S38 P3.5/PM_SD0DIO/S38 55 P3.6/PM_SD1DIO/S37 P3.6/PM_SD1DIO/S37 56 P3.7/PM_SD2DIO/S36 P3.7/PM_NONE/S36 Signal names that differ between devices are indicated by italic typeface. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 P5.2/S13 P5.3/S12 P5.4/S11 P5.5/S10 P5.6/S9 P5.7/S8 P6.0/S7 P6.1/S6 P6.2/S5 P6.3/S4 P6.4/S3 P6.5/S2 P6.6/S1 P6.7/S0 TEST/SBWTCK PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK RST/NMI/SBWTDIO Pin Designation, MSP430F673xIPN 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 SD0P0 1 60 DVSS SD0N0 2 59 DVSYS SD1P0 3 58 P5.1/S14 SD1N0 4 57 P5.0/S15 SD2P0 5 56 P4.7/S16 SD2N0 6 55 P4.6/S17 VREF 7 54 P4.5/S18 AVSS 8 53 P4.4/S19 AVCC 9 52 P4.3/S20 VASYS 10 51 P4.2/S21 P1.0/PM_TA0.0/VeREF-/A2 11 50 P4.1/S22 P1.1/PM_TA0.1/VeREF+/A1 12 49 P4.0/S23 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 13 48 P3.7/PM_SD2DIO/S24 P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 14 47 P3.6/PM_SD1DIO/S25 AUXVCC2 15 46 P3.5/PM_SD0DIO/S26 AUXVCC1 16 45 P3.4/PM_SDCLK/S27 VDSYS 17 44 P3.3/PM_TA0.2/S28 DVCC 18 43 P3.2/PM_TACLK/PM_RTCCLK/S29 DVSS 19 42 P3.1/PM_TA2.1/S30/BSL_RX 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P3.0/PM_TA2.0/S31/BSL_TX P2.7/PM_TA1.1/S32 P2.6/PM_TA1.0/S33 P2.5/PM_UCA2CLK/S34 P2.4/PM_UCA1CLK/S35 P2.3/PM_UCA2TXD/PM_UCA2SIMO/S36 P2.2/PM_UCA2RXD/PM_UCA2SOMI/S37 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7/S38 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6/S39 P1.7/PM_UCB0CLK/COM5 P1.6/PM_UCA0CLK/COM4 COM3 COM2 COM1 COM0 LCDCAP/R33 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 AUXVCC3 XIN XOUT VCORE PN PACKAGE NOTE: The secondary digital functions on Ports P1, P2, and P3 are fully mappable. The pin designation shows the default mapping. See Table 14 for details. NOTE: The pins VDSYS and DVSYS must be connected externally on board for proper device operation. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if not used. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 4. Pinout Differences Between MSP430F673xIPN and MSP430F672xIPN (1) PIN NUMBER (1) 8 PIN NAME MSP430F673xIPN MSP430F672xIPN 1 SD0P0 SD0P0 2 SD0N0 SD0N0 3 SD1P0 SD1P0 4 SD1N0 SD1N0 5 SD2P0 NC 6 SD2N0 NC 7 VREF VREF 45 P3.4/PM_SDCLK/S27 P3.4/PM_SDCLK/S27 46 P3.5/PM_SD0DIO/S26 P3.5/PM_SD0DIO/S26 47 P3.6/PM_SD1DIO/S25 P3.6/PM_SD1DIO/S25 48 P3.7/PM_SD2DIO/S24 P3.7/PM_NONE/S24 Signal names that differ between devices are indicated by italic typeface. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 5. Terminal Functions, MSP430F67xxIPZ TERMINAL NAME NO. I/O (1) DESCRIPTION PZ SD0P0 1 I SD24_B positive analog input for converter 0 (2) SD0N0 2 I SD24_B negative analog input for converter 0 (2) SD1P0 3 I SD24_B positive analog input for converter 1 (2) SD1N0 4 I SD24_B negative analog input for converter 1 (2) SD2P0 5 I SD24_B positive analog input for converter 2 (2) (not available on F672x devices) SD2N0 6 I SD24_B negative analog input for converter 2 (2) (not available on F672x devices) VREF 7 I SD24_B external reference voltage AVSS 8 Analog ground supply AVCC 9 Analog power supply VASYS 10 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Auxiliary Supplies - Recommended Operating Conditions). P9.1/A5 11 I/O General-purpose digital I/O Analog input A5 - 10-bit ADC P9.2/A4 12 I/O General-purpose digital I/O Analog input A4 - 10-bit ADC P9.3/A3 13 I/O General-purpose digital I/O Analog input A3 - 10-bit ADC I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output Negative terminal for the ADC's reference voltage for an external applied reference voltage Analog input A2 - 10-bit ADC P1.0/PM_TA0.0/VeREF-/A2 14 P1.1/PM_TA0.1/VeREF+/A1 15 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output Positive terminal for the ADC's reference voltage for an external applied reference voltage Analog input A1 - 10-bit ADC P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 16 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 UART receive data; eUSCI_A0 SPI slave out/master in Analog input A0 - 10-bit ADC P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 17 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 UART transmit data; eUSCI_A0 SPI slave in/master out Input/output port of lowest analog LCD voltage (V5) AUXVCC2 18 Auxiliary power supply AUXVCC2 AUXVCC1 19 Auxiliary power supply AUXVCC1 VDSYS (3) 20 Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Auxiliary Supplies - Recommended Operating Conditions). DVCC 21 Digital power supply DVSS 22 Digital ground supply VCORE XIN (1) (2) (3) (4) (4) 23 24 Regulated core power supply (internal use only, no external current loading) I Input terminal for crystal oscillator I = input, O = output It is recommended to short unused analog input pairs and connect them to analog ground. The pins VDSYS and DVSYS must be connected externally on board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 5. Terminal Functions, MSP430F67xxIPZ (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ XOUT 25 AUXVCC3 26 Auxiliary power supply AUXVCC3 for back up subsystem P1.4/PM_UCA1RXD/ PM_UCA1SOMI/LCDREF/R13 27 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 UART receive data; eUSCI_A1 SPI slave out/master in External reference voltage input for regulated LCD voltage Input/output port of third most positive analog LCD voltage (V3 or V4) P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 28 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 UART transmit data; eUSCI_A1 SPI slave in/master out Input/output port of second most positive analog LCD voltage (V2) LCDCAP/R33 29 I/O LCD capacitor connection Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. P8.4/TA1.0 30 I/O General-purpose digital I/O Timer TA1 CCR0 capture: CCI0A input, compare: Out0 output P8.5/TA1.1 31 I/O General-purpose digital I/O Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output COM0 32 O LCD common output COM0 for LCD backplane COM1 33 O LCD common output COM1 for LCD backplane COM2 34 O LCD common output COM2 for LCD backplane COM3 35 O LCD common output COM3 for LCD backplane P1.6/PM_UCA0CLK/COM4 36 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 clock input/output LCD common output COM4 for LCD backplane P1.7/PM_UCB0CLK/COM5 37 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 clock input/output LCD common output COM5 for LCD backplane P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 38 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave out/master in; eUSCI_B0 I2C clock LCD common output COM6 for LCD backplane P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 39 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave in/master out; eUSCI_B0 I2C data LCD common output COM7 for LCD backplane P8.6/TA2.0 40 I/O General-purpose digital I/O Timer TA2 CCR0 capture: CCI0A input, compare: Out0 output P8.7/TA2.1 41 I/O General-purpose digital I/O Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output P9.0/TACLK/RTCCLK 42 I/O General-purpose digital I/O Timer clock input TACLK for TA0, TA1, TA2, TA3 RTCCLK clock output P2.2/PM_UCA2RXD/ PM_UCA2SOMI 43 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 UART receive data; eUSCI_A2 SPI slave out/master in P2.3/PM_UCA2TXD/ PM_UCA2SIMO 44 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 UART transmit data; eUSCI_A2 SPI slave in/master out 10 Submit Documentation Feedback O Output terminal for crystal oscillator Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 5. Terminal Functions, MSP430F67xxIPZ (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ P2.4/PM_UCA1CLK 45 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 clock input/output P2.5/PM_UCA2CLK 46 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 clock input/output P2.6/PM_TA1.0 47 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output P2.7/PM_TA1.1 48 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA1 capture CCR1: CCI1A input, compare: Out1 output P3.0/PM_TA2.0/BSL_TX 49 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output Bootstrap loader: Data transmit P3.1/PM_TA2.1/BSL_RX 50 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA2 capture CCR1: CCI1A input, compare: Out1 output Bootstrap loader: Data receive P3.2/PM_TACLK/PM_RTCCLK 51 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer clock input TACLK for TA0, TA1, TA2, TA3; RTCCLK clock output P3.3/PM_TA0.2 52 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output P3.4/PM_SDCLK/S39 53 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B bit stream clock input/output LCD segment output S39 P3.5/PM_SD0DIO/S38 54 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B converter-0 bit stream data input/output LCD segment output S38 P3.6/PM_SD1DIO/S37 55 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B converter-1 bit stream data input/output LCD segment output S37 P3.7/PM_SD2DIO/S36 56 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B converter-2 bit stream data input/output (not available on F672x devices) LCD segment output S36 P4.0/S35 57 I/O General-purpose digital I/O LCD segment output S35 P4.1/S34 58 I/O General-purpose digital I/O LCD segment output S34 P4.2/S33 59 I/O General-purpose digital I/O LCD segment output S33 P4.3/S32 60 I/O General-purpose digital I/O LCD segment output S32 P4.4/S31 61 I/O General-purpose digital I/O LCD segment output S31 P4.5/S30 62 I/O General-purpose digital I/O LCD segment output S30 Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 5. Terminal Functions, MSP430F67xxIPZ (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ P4.6/S29 63 I/O General-purpose digital I/O LCD segment output S29 P4.7/S28 64 I/O General-purpose digital I/O LCD segment output S28 P5.0/S27 65 I/O General-purpose digital I/O LCD segment output S27 P5.1/S26 66 I/O General-purpose digital I/O LCD segment output S26 P5.2/S25 67 I/O General-purpose digital I/O LCD segment output S25 P5.3/S24 68 I/O General-purpose digital I/O LCD segment output S24 P5.4/S23 69 I/O General-purpose digital I/O LCD segment output S23 P5.5/S22 70 I/O General-purpose digital I/O LCD segment output S22 P5.6/S21 71 I/O General-purpose digital I/O LCD segment output S21 P5.7/S20 72 I/O General-purpose digital I/O LCD segment output S20 P6.0/S19 73 I/O General-purpose digital I/O LCD segment output S19 DVSYS (5) 74 Digital power supply for I/Os DVSS 75 Digital ground supply P6.1/S18 76 I/O General-purpose digital I/O LCD segment output S18 P6.2/S17 77 I/O General-purpose digital I/O LCD segment output S17 P6.3/S16 78 I/O General-purpose digital I/O LCD segment output S16 P6.4/S15 79 I/O General-purpose digital I/O LCD segment output S15 P6.5/S14 80 I/O General-purpose digital I/O LCD segment output S14 P6.6/S13 81 I/O General-purpose digital I/O LCD segment output S13 P6.7/S12 82 I/O General-purpose digital I/O LCD segment output S12 P7.0/S11 83 I/O General-purpose digital I/O LCD segment output S11 P7.1/S10 84 I/O General-purpose digital I/O LCD segment output S10 (5) 12 The pins VDSYS and DVSYS must be connected externally on board for proper device operation. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 5. Terminal Functions, MSP430F67xxIPZ (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ P7.2/S9 85 I/O General-purpose digital I/O LCD segment output S9 P7.3/S8 86 I/O General-purpose digital I/O LCD segment output S8 P7.4/S7 87 I/O General-purpose digital I/O LCD segment output S7 P7.5/S6 88 I/O General-purpose digital I/O LCD segment output S6 P7.6/S5 89 I/O General-purpose digital I/O LCD segment output S5 P7.7/S4 90 I/O General-purpose digital I/O LCD segment output S4 P8.0/S3 91 I/O General-purpose digital I/O LCD segment output S3 P8.1/S2 92 I/O General-purpose digital I/O LCD segment output S2 P8.2/S1 93 I/O General-purpose digital I/O LCD segment output S1 P8.3/S0 94 I/O General-purpose digital I/O LCD segment output S0 TEST/SBWTCK 95 I PJ.0/SMCLK/TDO 96 I/O General-purpose digital I/O SMCLK clock output Test data output PJ.1/MCLK/TDI/TCLK 97 I/O General-purpose digital I/O MCLK clock output Test data input or Test clock input PJ.2/ADC10CLK/TMS 98 I/O General-purpose digital I/O ADC10_A clock output Test mode select PJ.3/ACLK/TCK 99 I/O General-purpose digital I/O ACLK clock output Test clock RST/NMI/SBWTDIO 100 I/O Reset input active low Non-maskable interrupt input Spy-Bi-Wire data input/output Copyright © 2011–2013, Texas Instruments Incorporated Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock Submit Documentation Feedback 13 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 6. Terminal Functions, MSP430F67xxIPN TERMINAL NAME NO. I/O (1) DESCRIPTION PN SD0P0 1 I SD24_B positive analog input for converter 0 (2) SD0N0 2 I SD24_B negative analog input for converter 0 (2) SD1P0 3 I SD24_B positive analog input for converter 1 (2) SD1N0 4 I SD24_B negative analog input for converter 1 (2) SD2P0 5 I SD24_B positive analog input for converter 2 (2) (not available on F672x devices) SD2N0 6 I SD24_B negative analog input for converter 2 (2) (not available on F672x devices) VREF 7 I SD24_B external reference voltage AVSS 8 Analog ground supply AVCC 9 Analog power supply VASYS 10 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Auxiliary Supplies - Recommended Operating Conditions). 11 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output Negative terminal for the ADC's reference voltage for an external applied reference voltage Analog input A2 - 10-bit ADC P1.0/PM_TA0.0/VeREF-/A2 P1.1/PM_TA0.1/VeREF+/A1 12 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output Positive terminal for the ADC reference voltage for an external applied reference voltage Analog input A1 - 10-bit ADC P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 13 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 UART receive data; eUSCI_A0 SPI slave out/master in Analog input A0 - 10-bit ADC P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 14 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 UART transmit data; eUSCI_A0 SPI slave in/master out Input/output port of lowest analog LCD voltage (V5) AUXVCC2 15 Auxiliary power supply AUXVCC2 AUXVCC1 16 Auxiliary power supply AUXVCC1 VDSYS (3) 17 Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Auxiliary Supplies - Recommended Operating Conditions). DVCC 18 Digital power supply DVSS 19 Digital ground supply VCORE (4) 20 Regulated core power supply (internal use only, no external current loading) XIN 21 I Input terminal for crystal oscillator XOUT 22 O Output terminal for crystal oscillator AUXVCC3 23 Auxiliary power supply AUXVCC3 for back up subsystem 24 General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 UART receive data; eUSCI_A1 SPI slave out/master in External reference voltage input for regulated LCD voltage Input/output port of third most positive analog LCD voltage (V3 or V4) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/LCDREF/R13 (1) (2) (3) (4) 14 I/O I = input, O = output It is recommended to short unused analog input pairs and connect them to analog ground. The pins VDSYS and DVSYS must be connected externally on board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 6. Terminal Functions, MSP430F67xxIPN (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PN P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 25 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 UART transmit data; eUSCI_A1 SPI slave in/master out Input/output port of second most positive analog LCD voltage (V2) LCDCAP/R33 26 I/O LCD capacitor connection Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. COM0 27 O LCD common output COM0 for LCD backplane COM1 28 O LCD common output COM1 for LCD backplane COM2 29 O LCD common output COM2 for LCD backplane COM3 30 O LCD common output COM3 for LCD backplane P1.6/PM_UCA0CLK/COM4 31 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 clock input/output LCD common output COM4 for LCD backplane P1.7/PM_UCB0CLK/COM5 32 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 clock input/output LCD common output COM5 for LCD backplane I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave out/master in; eUSCI_B0 I2C clock LCD common output COM6 for LCD backplane LCD segment output S39 P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/S39 33 P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/S38 34 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave in/master out; eUSCI_B0 I2C data LCD common output COM7 for LCD backplane LCD segment output S38 P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 35 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 UART receive data; eUSCI_A2 SPI slave out/master in LCD segment output S37 P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 36 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 UART transmit data; eUSCI_A2 SPI slave in/master out LCD segment output S36 P2.4/PM_UCA1CLK/S35 37 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 clock input/output LCD segment output S35 P2.5/PM_UCA2CLK/S34 38 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 clock input/output LCD segment output S34 P2.6/PM_TA1.0/S33 39 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output LCD segment output S33 P2.7/PM_TA1.1/S32 40 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA1 capture CCR1: CCI1A input, compare: Out1 output LCD segment output S32 Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 6. Terminal Functions, MSP430F67xxIPN (continued) TERMINAL NAME P3.0/PM_TA2.0/S31/BSL_TX P3.1/PM_TA2.1/S30/BSL_RX NO. I/O (1) DESCRIPTION PN 41 42 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output LCD segment output S31 Bootstrap loader: Data transmit I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA2 capture CCR1: CCI1A input, compare: Out1 output LCD segment output S30 Bootstrap loader: Data receive P3.2/PM_TACLK/PM_RTCCLK/ S29 43 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer clock input TACLK for TA0, TA1, TA2, TA3; RTCCLK clock output LCD segment output S29 P3.3/PM_TA0.2/S28 44 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output LCD segment output S28 P3.4/PM_SDCLK/S27 45 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B bit stream clock input/output LCD segment output S27 P3.5/PM_SD0DIO/S26 46 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B converter-0 bit stream data input/output LCD segment output S26 P3.6/PM_SD1DIO/S25 47 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B converter-1 bit stream data input/output LCD segment output S25 P3.7/PM_SD2DIO/S24 48 I/O General-purpose digital I/O with mappable secondary function Default mapping: SD24_B converter-2 bit stream data input/output (not available on F672x devices) LCD segment output S24 P4.0/S23 49 I/O General-purpose digital I/O LCD segment output S23 P4.1/S22 50 I/O General-purpose digital I/O LCD segment output S22 P4.2/S21 51 I/O General-purpose digital I/O LCD segment output S21 P4.3/S20 52 I/O General-purpose digital I/O LCD segment output S20 P4.4/S19 53 I/O General-purpose digital I/O LCD segment output S19 P4.5/S18 54 I/O General-purpose digital I/O LCD segment output S18 P4.6/S17 55 I/O General-purpose digital I/O LCD segment output S17 P4.7/S16 56 I/O General-purpose digital I/O LCD segment output S16 16 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 6. Terminal Functions, MSP430F67xxIPN (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PN P5.0/S15 57 I/O General-purpose digital I/O LCD segment output S15 P5.1/S14 58 I/O General-purpose digital I/O LCD segment output S14 DVSYS (5) 59 Digital power supply for I/Os DVSS 60 Digital ground supply P5.2/S13 61 I/O General-purpose digital I/O LCD segment output S13 P5.3/S12 62 I/O General-purpose digital I/O LCD segment output S12 P5.4/S11 63 I/O General-purpose digital I/O LCD segment output S11 P5.5/S10 64 I/O General-purpose digital I/O LCD segment output S10 P5.6/S9 65 I/O General-purpose digital I/O LCD segment output S9 P5.7/S8 66 I/O General-purpose digital I/O LCD segment output S8 P6.0/S7 67 I/O General-purpose digital I/O LCD segment output S7 P6.1/S6 68 I/O General-purpose digital I/O LCD segment output S6 P6.2/S5 69 I/O General-purpose digital I/O LCD segment output S5 P6.3/S4 70 I/O General-purpose digital I/O LCD segment output S4 P6.4/S3 71 I/O General-purpose digital I/O LCD segment output S3 P6.5/S2 72 I/O General-purpose digital I/O LCD segment output S2 P6.6/S1 73 I/O General-purpose digital I/O LCD segment output S1 P6.7/S0 74 I/O General-purpose digital I/O LCD segment output S0 TEST/SBWTCK 75 I PJ.0/SMCLK/TDO 76 I/O General-purpose digital I/O SMCLK clock output Test data output PJ.1/MCLK/TDI/TCLK 77 I/O General-purpose digital I/O MCLK clock output Test data input or Test clock input (5) Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock The pins VDSYS and DVSYS must be connected externally on board for proper device operation. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 17 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 6. Terminal Functions, MSP430F67xxIPN (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PN PJ.2/ADC10CLK/TMS 78 I/O General-purpose digital I/O ADC10_A clock output Test mode select PJ.3/ACLK/TCK 79 I/O General-purpose digital I/O ACLK clock output Test clock RST/NMI/SBWTDIO 80 I/O Reset input active low Non-maskable interrupt input Spy-Bi-Wire data input/output 18 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 SHORT-FORM DESCRIPTION CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 Status Register SR/CG1/R2 Constant Generator CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. General-Purpose Register R10 General-Purpose Register R11 Instruction Set General-Purpose Register R12 The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 7 shows examples of the three types of instruction formats; Table 8 shows the address modes. General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Table 7. Instruction Word Formats INSTRUCTION WORD FORMAT EXAMPLE Dual operands, source-destination ADD R4,R5 Single operands, destination only CALL Relative jump, un/conditional JNE R8 OPERATION R4 + R5 → R5 PC → (TOS), R8 → PC Jump-on-equal bit = 0 Table 8. Address Mode Descriptions (1) ADDRESS MODE S (1) D (1) Register + + MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) + + MOV EDE,TONI Absolute + + MOV & MEM, & TCDAT Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) SYNTAX EXAMPLE OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) S = source, D = destination Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 19 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Operating Modes The MSP430 has one active mode and seven software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following seven operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and FLL loop control and DCOCLK are disabled – DCO's dc-generator remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – Crystal oscillator is stopped – Complete data retention • Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – I/O pad state retention – RTC clocked by low-frequency oscillator – Wakeup from RST/NMI, RTC_C events, Ports P1 and P2 • Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – RTC is disabled – I/O pad state retention – Wakeup from RST/NMI, Ports P1 and P2 20 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 9. Interrupt Sources, Flags, and Vectors of MSP430F67xx Configurations INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power-Up External Reset Watchdog Timeout, Key Violation Flash Memory Key Violation WDTIFG, KEYV (SYSRSTIV) (1) (2) Reset 0FFFEh 63, highest System NMI PMM Vacant Memory Access JTAG Mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (3) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator Fault Flash Memory Access Violation Supply Switch NMIIFG, OFIFG, ACCVIFG, AUXSWNMIFG (SYSUNIV) (1) (3) (Non)maskable 0FFFAh 61 Watchdog Timer_A Interval Timer Mode WDTIFG Maskable 0FFF8h 60 eUSCI_A0 Receive or Transmit UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (4) Maskable 0FFF6h 59 eUSCI_B0 Receive or Transmit (1) (4) Maskable 0FFF4h 58 ADC10_A ADC10IFG0, ADC10INIFG, ADC10LOIFG, ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG (ADC10IV) (1) (4) UCB0RXIFG, UCB0TXIFG (UCB0IV) Maskable 0FFF2h 57 SD24_B SD24_B Interrupt Flags (SD24IV) (1) (4) Maskable 0FFF0h 56 Timer TA0 TA0CCR0 CCIFG0 (4) Maskable 0FFEEh 55 Timer TA0 TA0CCR1 CCIFG1, TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (4) Maskable 0FFECh 54 eUSCI_A1 Receive or Transmit UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (4) Maskable 0FFEAh 53 eUSCI_A2 Receive or Transmit UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) (4) Maskable 0FFE8h 52 (1) (4) Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (4) Maskable 0FFE4h 50 Timer TA1 TA1CCR0 CCIFG0 (4) Maskable 0FFE2h 49 Timer TA1 TA1CCR1 CCIFG1, TA1IFG (TA1IV) (1) (4) Maskable 0FFE0h 48 Maskable 0FFDEh 47 Maskable 0FFDCh 46 Maskable 0FFDAh 45 Auxiliary Supplies (1) (2) (3) (4) Auxiliary Supplies Interrupt Flags (AUXIV) I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV) Timer TA2 TA2CCR0 CCIFG0 (4) Timer TA2 TA2CCR1 CCIFG1, TA2IFG (TA2IV) (1) (4) (1) (4) (1) (4) I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV) Maskable 0FFD8h 44 Timer TA3 TA3CCR0 CCIFG0 (4) Maskable 0FFD6h 43 Timer TA3 TA3CCR1 CCIFG1, TA3IFG (TA3IV) (1) (4) Maskable 0FFD4h 42 LCD_C LCD_C Interrupt Flags (LCDCIV) (1) (4) Maskable 0FFD2h 41 RTC_C RTCOFIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) (1) (4) Maskable 0FFD0h 40 Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 21 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 9. Interrupt Sources, Flags, and Vectors of MSP430F67xx Configurations (continued) (5) INTERRUPT SOURCE INTERRUPT FLAG Reserved Reserved (5) SYSTEM INTERRUPT WORD ADDRESS PRIORITY 0FFCEh 39 ⋮ ⋮ 0FF80h 0, lowest Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations. Memory Organization Table 10. Memory Organization Main Memory (flash) MSP430F6730 MSP430F6720 MSP430F6731 MSP430F6721 MSP430F6733 MSP430F6723 16kB 32kB 64kB 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 not available not available not available Bank 2 not available not available not available Bank 1 not available 16kB 00FFFFh to 00C000h 32kB 013FFFh to 00C000h Bank 0 16kB 00FFFFh to 00C000h 16kB 00BFFFh to 008000h 32kB 00BFFFh to 004000h 1kB 2kB 4kB Sector 3 not available not available not available Sector 2 not available not available not available Sector 1 not available not available 2kB 002BFFh to 002400h Sector 0 1kB 001FFFh to 001C00h 2kB 0023FFh to 001C00h 2kB 0023FFh to 001C00h Info A 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h Info B 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h Info C 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h Info D 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h BSL 3 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h BSL 2 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h BSL 1 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h BSL 0 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h Total Size Main: Interrupt vector Main: code memory RAM Total Size Information memory (flash) Bootstrap loader (BSL) memory (flash) Peripherals 22 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com Main Memory (flash) SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 RAM Information memory (flash) Bootstrap loader (BSL) memory (flash) Peripherals MSP430F6735 MSP430F6725 MSP430F6736 MSP430F6726 96kB 128kB 128kB Total Size Main: Interrupt vector Main: code memory MSP430F6734 MSP430F6724 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 not available 32kB 023FFFh to 01C000h 32kB 023FFFh to 01C000h Bank 2 32kB 01BFFFh to 014000h 32kB 01BFFFh to 014000h 32kB 01BFFFh to 014000h Bank 1 32kB 013FFFh to 00C000h 32kB 013FFFh to 00C000h 32kB 013FFFh to 00C000h Bank 0 32kB 00BFFFh to 004000h 32kB 00BFFFh to 004000h 32kB 00BFFFh to 004000h 4kB 4kB 8kB Sector 3 not available not available 2kB 003BFFh to 003400h Sector 2 not available not available 2kB 0033FFh to 002C00h Sector 1 2kB 002BFFh to 002400h 2kB 002BFFh to 002400h 2kB 002BFFh to 002400h Sector 0 2kB 0023FFh to 001C00h 2kB 0023FFh to 001C00h 2kB 0023FFh to 001C00h Info A 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h Info B 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h Info C 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h Info D 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h BSL 3 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h BSL 2 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h BSL 1 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h BSL 0 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h Total Size Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 23 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Bootstrap Loader (BSL) The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory via the BSL is protected by an user-defined password. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see MSP430 Programming via the Bootstrap Loader (BSL) (SLAU319). Table 11. UART BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P3.0 Data transmit P3.1 Data receive VCC Power supply VSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 12. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278) and MSP430 Programming Via the JTAG Interface (SLAU320). Table 12. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/ACLK/TCK IN JTAG clock input PJ.2/ADC10CLK/TMS IN JTAG state control PJ.1/MCLK/TDI/TCLK IN JTAG data input/TCLK input PJ.0/SMCLK/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 13. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278) and MSP430 Programming Via the JTAG Interface (SLAU320). Table 13. Spy-Bi-Wire Pin Requirements and Functions DEVICE SIGNAL 24 DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output VCC Power supply VSS Ground supply Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Flash Memory The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A can be locked separately. RAM Memory The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage, however all data is lost. Features of the RAM memory include: • RAM memory has n sectors of 2k bytes each. • Each sector 0 to n can be complete disabled; however, data retention is lost. • Each sector 0 to n automatically enters low-power retention mode when possible. Backup RAM Memory The Backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5. This Backup RAM is part of Backup subsystem in MSP430F67xx that operates on dedicated power supply AUXVCC3.There are 8 bytes of Backup RAM available in this device. It can be wordwise accessed via the registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. The Backup RAM registers can not be accessed by CPU when the high side SVS is disabled by user. Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Oscillator and System Clock The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), and an integrated internal digitally-controlled oscillator (DCO). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turn-on clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, the internal low-frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO). • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Power Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. Auxiliary Supply System The auxiliary supply system provides the possibility to operate the device from auxiliary supplies when the primary supply fails.There are two auxililary supplies AUXVCC1 and AUXVCC2 supported in MSP430F67xx. This module supports automatic and manual switching from primary supply to auxiliary suppllies while maintaining full functionality. It allows threshold based monitoring of primary and auxiliary supplies. The device can be started from primary supply or AUXVCC1, whichever is higher. Auxiliary supply system enables internal monitoring of voltage levels on primary and auxiliary supplies using ADC10_A. Also this module implements simple charger for backup supplies. Backup Subsystem The Backup subsystem operates on a dedicated power supply AUXVCC3. This subsystem includes lowfrequency oscillator (XT1), Real-Time Clock module, and Backup RAM. The functionality of Backup subsystem is retained during LPM3.5. The Backup susb-system module registers can not be accessed by CPU when the high side SVS is disabled by user. It is necessary to keep the high side SVS enabled with SVSHMD = 1 and SVSMHACE = 0 to turn off the low-frequency oscillator (XT1) in LPM4. Digital I/O There are up to nine 8-bit I/O ports implemented. For 100 pin options, Ports P1 to P8 are complete. P9 is reduced to 4-bit I/O. For 80 pin options, Ports P1 to P6 are complete. P7, P8 and P9 are completely removed. Port PJ contains four individual I/O pins, common to all devices. All I/O bits are individually programmable. • Any combination of input, output and interrupt conditions is possible. • Pullup or pulldown on all ports is programmable. • Programmable drive strength on all ports. • Edge-selectable interrupt and LPM3.5, LPM4.5 wakeup input capability available for all bits of ports P1 and P2. • Read-write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PE). 26 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port Mapping Controller The port mapping controller allows flexible and reconfigurable mapping of digital functions to P1, P2, and P3. Table 14. Port Mapping Mnemonics and Functions VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 0 PM_NONE None DVSS 1 2 3 4 5 6 7 8 9 10 PM_UCA0RXD eUSCI_A0 UART RXD (direction controlled by eUSCI – Input) PM_UCA0SOMI eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) PM_UCA0TXD eUSCI_A0 UART TXD (direction controlled by eUSCI – Output) PM_UCA0SIMO eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) PM_UCA0STE eUSCI_A0 SPI slave transmit enable (direction controlled by eUSCI) PM_UCA1RXD eUSCI_A1 UART RXD (direction controlled by eUSCI – Input) PM_UCA1SOMI eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) PM_UCA1TXD eUSCI_A1 UART TXD (direction controlled by eUSCI – Output) PM_UCA1SIMO eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) PM_UCA1STE eUSCI_A1 SPI slave transmit enable (direction controlled by eUSCI) PM_UCA2RXD eUSCI_A2 UART RXD (direction controlled by eUSCI – Input) PM_UCA2SOMI eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) PM_UCA2TXD eUSCI_A2 UART TXD (direction controlled by eUSCI – Output) PM_ UCA2SIMO eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) 11 PM_UCA2CLK eUSCI_A2 clock input/output (direction controlled by eUSCI) 12 PM_UCA2STE eUSCI_A2 SPI slave transmit enable (direction controlled by eUSCI) 13 14 PM_UCB0SIMO eUSCI_B0 SPI slave in master out (direction controlled by eUSCI) PM_UCB0SDA eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) PM_UCB0SOMI eUSCI_B0 SPI slave out master in (direction controlled by eUSCI) PM_UCB0SCL eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) 15 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) 16 PM_UCB0STE eUSCI_B0 SPI slave transmit enable (direction controlled by eUSCI) 17 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 18 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 19 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 20 PM_TA1.0 TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 21 PM_TA1.1 TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 22 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 23 PM_TA2.1 TA2 CCR1 capture input CCI1A TA2 CCR1 compare output Out1 24 PM_TA3.0 TA3 CCR0 capture input CCI0A TA3 CCR0 compare output Out0 25 PM_TA3.1 TA3 CCR1 capture input CCI1A TA3 CCR1 compare output Out1 PM_TACLK Timer_A clock input to TA0, TA1, TA2, TA3 None None RTC_C clock output 26 PM_RTCCLK 27 PM_SDCLK SD24_B bit stream clock input/output (direction controlled by SD24_B) 28 PM_SD0DIO SD24_B converter-0 bit stream data input/output (direction controlled by SD24_B) 29 PM_SD1DIO SD24_B converter-1 bit stream data input/output (direction controlled by SD24_B) 30 PM_SD2DIO 31(0FFh) (1) (1) PM_ANALOG SD24_B converter-2 bit stream data input/output (direction controlled by SD24_B) Disables the output driver as well as the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals. The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored resulting in a read out value of 31. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 27 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 15. Default Mapping PIN NAME PZ PN PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION P1.0/PM_TA0.0/ VeREF-/A2 P1.0/PM_TA0.0/ VeREF-/A2 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 P1.1/PM_TA0.1/ VeREF+/A1 P1.1/PM_TA0.1/ VeREF+/A1 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 PM_UCA0RXD, PM_UCA0SOMI eUSCI_A0 UART RXD (direction controlled by eUSCI – input), eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 PM_UCA0TXD, PM_UCA0SIMO eUSCI_A0 UART TXD (direction controlled by eUSCI – output), eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 PM_UCA1RXD, PM_UCA1SOMI eUSCI_A1 UART RXD (direction controlled by eUSCI – input), eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 PM_UCA1TXD, PM_UCA1SIMO eUSCI_A1 UART TXD (direction controlled by eUSCI – output), eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) P1.6/PM_UCA0CLK/ COM4 P1.6/PM_UCA0CLK/ COM4 PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) P1.7/PM_UCB0CLK/ COM5 P1.7/PM_UCB0CLK/ COM5 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/S39 PM_UCB0SOMI, PM_UCB0SCL eUSCI_B0 SPI slave out master in (direction controlled by eUSCI), eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/S38 PM_UCB0SIMO, PM_UCB0SDA eUSCI_B0 SPI slave in master out (direction controlled by eUSCI), eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) P2.2/PM_UCA2RXD/ PM_UCA2SOMI P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 PM_UCA2RXD, PM_UCA2SOMI eUSCI_A2 UART RXD (direction controlled by eUSCI – input), eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) P2.3/PM_UCA2TXD/ PM_UCA2SIMO P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 PM_UCA2TXD, PM_UCA2SIMO eUSCI_A2 UART TXD (direction controlled by eUSCI – output), eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) P2.4/PM_UCA1CLK P2.4/PM_UCA1CLK/S35 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) P2.5/PM_UCA2CLK P2.5/PM_UCA2CLK/S34 PM_UCA2CLK P2.6/PM_TA1.0 P2.6/PM_TA1.0/S33 PM_TA1.0 TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 P2.7/PM_TA1.1 P2.7/PM_TA1.1/S32 PM_TA1.1 TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 P3.0/PM_TA2.0 P3.0/PM_TA2.0/S31 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 P3.1/PM_TA2.1 P3.1/PM_TA2.1/S30 PM_TA2.1 TA2 CCR1 capture input CCI1A TA2 CCR1 compare output Out1 P3.2/PM_TACLK/ PM_RTCCLK P3.2/PM_TACLK/ PM_RTCCLK/S29 PM_TACLK, PM_RTCCLK Timer_A clock input to TA0, TA1, TA2, TA3 RTC_C clock output P3.3/PM_TA0.2 P3.3/PM_TA0.2/S28 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 eUSCI_A2 clock input/output (direction controlled by eUSCI) P3.4/PM_SDCLK/S39 P3.4/PM_SDCLK/S27 PM_SDCLK SD24_B bit stream clock input/output (direction controlled by SD24_B) P3.5/PM_SD0DIO/S38 P3.5/PM_SD0DIO/S26 PM_SD0DIO SD24_B converter-0 bit stream data input/output (direction controlled by SD24_B) P3.6/PM_SD1DIO/S37 P3.6/PM_SD1DIO/S25 PM_SD1DIO SD24_B converter-1 bit stream data input/output (direction controlled by SD24_B) P3.7/PM_SD2DIO/S36 P3.7/PM_SD2DIO/S24 PM_SD2DIO SD24_B converter-2 bit stream data input/output (direction controlled by SD24_B) 28 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 System Module (SYS) The SYS module handles many of the system functions within the device. These include power on reset (POR) and power up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, boot strap loader entry mechanisms, as well as, configuration management (device descriptors). It also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application. Table 16. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset INTERRUPT EVENT WORD ADDRESS No interrupt pending 00h Brownout (BOR) 02h RST/NMI (POR) 04h DoBOR (BOR) 06h Wakeup from LPMx.5 (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SVMH_OVP (POR) 019Eh SYSUNIV, User NMI WDT timeout (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h Highest 0Ah JMBINIFG 0Ch 0Eh VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIFG 02h OFIFG Lowest 08h 019Ch JMBOUTIFG ACCVIFG Highest 12h 14h VMAIFG PRIORITY 10h DoPOR (POR) DLYHIFG SYSSNIV, System NMI OFFSET 019Ah Lowest Highest 04h 06h AUXSWNMIFG 08h Reserved 0Ah to 1Eh Lowest Watchdog Timer (WDT_A) The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the timer can be configured as an interval timer and can generate interrupts at selected time intervals. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 17. DMA Trigger Assignments (1) TRIGGER DMAREQ 1 TA0CCR0 CCIFG 2 TA0CCR2 CCIFG 3 TA1CCR0 CCIFG 4 Reserved 5 TA2CCR0 CCIFG 6 Reserved 7 TA3CCR0 CCIFG 8 Reserved 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 SD24IFG 14 Reserved 15 Reserved 16 UCA0RXIFG 17 UCA0TXIFG 18 UCA1RXIFG 19 UCA1TXIFG 20 UCA2RXIFG 21 UCA2TXIFG 22 UCB0RXIFG0 23 UCB0TXIFG0 24 ADC10IFG0 25 Reserved 26 Reserved 27 Reserved 28 Reserved 29 MPY ready 31 30 1 0 30 (1) CHANNEL 0 DMA2IFG DMA0IFG 2 DMA1IFG Reserved Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. Enhanced Universal Serial Communication Interface (eUSCI) The eUSCI module is used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. The eUSCI_An module supports for SPI (3 or 4 pin), UART, enhanced UART, or IrDA. The eUSCI_Bn module supports for SPI (3 or 4 pin) or I2C. Three eUSCI_A and one eUSCI_B module are implemented in MSP430F67xx devices. ADC10_A The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion results buffer. A window comparator with a lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags. SD24_B The SD24_B module integrates up to three independent 24-bit sigma-delta A/D converters. Each converter is designed with a fully differential analog input pair and programmable gain amplifier input stage. The converters are based on second-order over-sampling sigma-delta modulators and digital decimation filters. The decimation filters are comb type filters with selectable oversampling ratios of up to 1024. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com TA0 TA0 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 18. TA0 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA0.0 CCI0A DVSS CCI0B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA PM_TA0.0 CCR0 TA0 DVCC VCC PM_TA0.1 CCI1A PM_TA0.1 ACLK (internal) CCI1B ADC10_A (internal) ADC10SHSx = {1} DVSS GND CCR1 DVCC VCC PM_TA0.2 CCI2A DVSS CCI2B DVSS GND DVCC VCC TA1 SD24_B (internal) SD24SCSx = {1} PM_TA0.2 CCR2 TA2 TA1 TA1 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA1 can support multiple capture/compares, PWM outputs, and interval timing. TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 19. TA1 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA1.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC 32 PM_TA1.1 CCI1A ACLK (internal) CCI1B DVSS GND DVCC VCC Submit Documentation Feedback MODULE BLOCK Timer MODULE OUTPUT SIGNAL NA DEVICE OUTPUT SIGNAL PZ NA PM_TA1.0 CCR0 TA0 PM_TA1.1 CCR1 TA1 Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 TA2 TA2 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA2 can support multiple capture/compares, PWM outputs, and interval timing. TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 20. TA2 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA2.0 CCI0A DVSS CCI0B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA PM_TA2.0 CCR0 TA0 DVCC VCC PM_TA2.1 CCI1A PM_TA2.1 ACLK (internal) CCI1B SD24_B (internal) SD24SCSx = {2} DVSS GND DVCC VCC CCR1 TA1 TA3 TA3 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA3 can support multiple capture/compares, PWM outputs, and interval timing. TA3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 21. TA3 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA DEVICE OUTPUT SIGNAL ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA3.0 CCI0A PM_TA3.0 DVSS CCI0B TA0 ADC10_A (internal) ADC10SHSx = {2} DVSS GND TA1 CCR0 DVCC VCC PM_TA3.1 CCI1A PM_TA3.1 ACLK (internal) CCI1B SD24_B (internal) SD24SCSx = {3} DVSS GND DVCC VCC Copyright © 2011–2013, Texas Instruments Incorporated CCR1 Submit Documentation Feedback 33 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com SD24_B Triggers Table 22 shows the input trigger connections to SD24_B converters from Timer_A modules and output trigger pulse connection from SD24_B to ADC10_A. Table 22. SD24_B Input/Output Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) SD24_B SD24SCSx = {1} TA2.1 (internal) SD24_B SD24SCSx = {2} TA3.1 (internal) SD24_B SD24SCSx = {3} MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Trigger Pulse ADC10_A (internal) ADC10SHSx = {3} SD24_B ADC10_A Triggers Table 23 shows input trigger connections to ADC10_A from Timer_A modules and SD24_B. Table 23. ADC10_A Input Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) ADC10_A ADC10SHSx = {1} TA3.0 (internal) ADC10_A ADC10SHSx = {2} SD24_B trigger pulse (internal) ADC10_A ADC10SHSx = {3} MODULE BLOCK ADC10_A Real-Time Clock (RTC_C) The RTC_C module can be configured for real-time clock (RTC) or calendar mode providing seconds, hours, day of week, day of month, month, and year. The RTC_C control and configuration registers are password protected to ensure clock integrity against runaway code. Calendar mode integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_C also supports flexible alarm functions, offset calibration, and temperature compensation. The RTC_C on this device operates on dedicated AUXVCC3 supply and supports operation in LPM3.5. REF Voltage Reference The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device. These include the ADC10_A, LCD_C, and SD24_B modules. LCD_C The LCD_C driver generates the segment and common signals required to drive a liquid crystal display (LCD). The LCD_C controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, 4-mux, up to 8-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage and thus contrast by software. The module also provides an automatic blinking capability for individual segments in static, 2-mux, 3-mux, and 4-mux modes. Embedded Emulation Module (EEM) (S Version) The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM implemented on all devices has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level 34 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Peripheral File Map Table 24. Peripherals MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 25) 0100h 000h-01Fh PMM (see Table 26) 0120h 000h-01Fh Flash Control (see Table 27) 0140h 000h-00Fh CRC16 (see Table 28) 0150h 000h-007h RAM Control (see Table 29) 0158h 000h-001h Watchdog (see Table 30) 015Ch 000h-001h UCS (see Table 31) 0160h 000h-01Fh SYS (see Table 32) 0180h 000h-01Fh Shared Reference (see Table 33) 01B0h 000h-001h Port Mapping Control (see Table 34) 01C0h 000h-007h Port Mapping Port P1 (see Table 35) 01C8h 000h-007h Port Mapping Port P2 (see Table 36) 01D0h 000h-007h Port Mapping Port P3 (see Table 37) 01D8h 000h-007h Port P1/P2 (see Table 38) 0200h 000h-01Fh Port P3/P4 (see Table 39) 0220h 000h-00Bh Port P5/P6 (see Table 40) 0240h 000h-00Bh Port P7/P8 (see Table 41) (Port P7/P8 not available in MSP430F67xxIPN) 0260h 000h-00Bh Port P9 (Port P9 not available in MSP430F67xxIPN) (see Table 42) 0280h 000h-00Bh Port PJ (refer toTable 43) 0320h 000h-01Fh Timer TA0 (see Table 44) 0340h 000h-03Fh Timer TA1 (see Table 45) 0380h 000h-03Fh Timer TA2 (see Table 46) 0400h 000h-03Fh Timer TA3 (see Table 47) 0440h 000h-03Fh Backup Memory (see Table 48) 0480h 000h-00Fh RTC_C (see Table 49) 04A0h 000h-01Fh 32-bit Hardware Multiplier (see Table 50) 04C0h 000h-02Fh DMA General Control (see Table 51) 0500h 000h-00Fh DMA Channel 0 (see Table 52) 0500h 010h-01Fh DMA Channel 1 (see Table 53) 0500h 020h-02Fh DMA Channel 2 (see Table 54) 0500h 030h-03Fh eUSCI_A0 (see Table 55) 05C0h 000h-01Fh eUSCI_A1 (see Table 56) 05E0h 000h-01Fh eUSCI_A2 (see Table 57) 0600h 000h-01Fh eUSCI_B0 (see Table 58) 0640h 000h-02Fh ADC10_A (see Table 59) 0740h 000h-01Fh SD24_B(see Table 60) 0800h 000h-06Fh Auxiliary Supply (see Table 54) 09E0h 000h-01Fh LCD_C (see Table 62) 0A00h 000h-05Fh Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 35 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 25. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 26. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM Control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high side control SVSMHCTL 04h SVS low side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh PMM Power Mode 5 control register 0 PM5CTL0 10h Table 27. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 28. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC data input reverse byte CRC16DIRB 02h CRC result CRCINIRES 04h CRC result reverse byte CRCRESR 06h Table 29. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 30. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 31. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h 36 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 32. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootstrap loader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus Error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 33. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 34. Port Mapping Controller (Base Address: 01C0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password register PMAPPWD 00h Port mapping control register PMAPCTL 02h Table 35. Port Mapping for Port P1 (Base Address: 01C8h) REGISTER DESCRIPTION REGISTER OFFSET Port P1.0 mapping register P1MAP0 00h Port P1.1 mapping register P1MAP1 01h Port P1.2 mapping register P1MAP2 02h Port P1.3 mapping register P1MAP3 03h Port P1.4 mapping register P1MAP4 04h Port P1.5 mapping register P1MAP5 05h Port P1.6 mapping register P1MAP6 06h Port P1.7 mapping register P1MAP7 07h Table 36. Port Mapping for Port P2 (Base Address: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port P2.0 mapping register P2MAP0 00h Port P2.1 mapping register P2MAP2 01h Port P2.2 mapping register P2MAP2 02h Port P2.3 mapping register P2MAP3 03h Port P2.4 mapping register P2MAP4 04h Port P2.5 mapping register P2MAP5 05h Port P2.6 mapping register P2MAP6 06h Port P2.7 mapping register P2MAP7 07h Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 37 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 37. Port Mapping for Port P3 (Base Address: 01D8h) REGISTER DESCRIPTION REGISTER OFFSET Port P3.0 mapping register P3MAP0 00h Port P3.1 mapping register P3MAP3 01h Port P3.2 mapping register P3MAP2 02h Port P3.3 mapping register P3MAP3 03h Port P3.4 mapping register P3MAP4 04h Port P3.5 mapping register P3MAP5 05h Port P3.6 mapping register P3MAP6 06h Port P3.7 mapping register P3MAP7 07h Table 38. Port P1/P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Table 39. Port P3/P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 pullup/pulldown enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection P4SEL 0Bh 38 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 40. Port P5/P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET Port P5 input P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 pullup/pulldown enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah Port P6 input P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 pullup/pulldown enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Table 41. Port P7/P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION REGISTER OFFSET Port P7 input P7IN 00h Port P7 output P7OUT 02h Port P7 direction P7DIR 04h Port P7 pullup/pulldown enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah Port P8 input P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 pullup/pulldown enable P8REN 07h Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh Table 42. Port P9 Registers (Base Address: 0280h) REGISTER DESCRIPTION REGISTER OFFSET Port P9 input P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 pullup/pulldown enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Table 43. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ selection PJSEL 0Ah Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 39 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 44. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter register TA0R 10h Capture/compare register 0 TA0CCR0 12h Capture/compare register 1 TA0CCR1 14h Capture/compare register 2 TA0CCR2 16h TA0 expansion register 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Table 45. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h TA1 counter register TA1R 10h Capture/compare register 0 TA1CCR0 12h Capture/compare register 1 TA1CCR1 14h TA1 expansion register 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 46. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TA2 control TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h TA2 counter register TA2R 10h Capture/compare register 0 TA2CCR0 12h Capture/compare register 1 TA2CCR1 14h TA2 expansion register 0 TA2EX0 20h TA2 interrupt vector TA2IV 2Eh Table 47. TA3 Registers (Base Address: 0440h) REGISTER DESCRIPTION REGISTER OFFSET TA3 control TA3CTL 00h Capture/compare control 0 TA3CCTL0 02h Capture/compare control 1 TA3CCTL1 04h TA3 counter register TA3R 10h Capture/compare register 0 TA3CCR0 12h Capture/compare register 1 TA3CCR1 14h TA3 expansion register 0 TA3EX0 20h TA3 interrupt vector TA3IV 2Eh 40 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 48. Backup Memory Registers (Base Address: 0480h) REGISTER DESCRIPTION REGISTER OFFSET Backup Memory 0 BAKMEM0 00h Backup Memory 1 BAKMEM1 02h Backup Memory 2 BAKMEM2 04h Backup Memory 3 BAKMEM3 06h Table 49. RTC_C Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC password RTCPWD 01h RTC control 1 RTCCTL1 02h RTC control 3 RTCCTL3 03h RTC offset calibration RTCOCAL 04h RTC temperature compensation RTCTCMP 06h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds RTCSEC 10h RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year RTCYEAR 16h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion register BIN2BCD 1Ch BCD-to-Binary conversion register BCD2BIN 1Eh Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 41 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 50. 32-bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension register SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control register 0 MPY32CTL0 2Ch Table 51. DMA General Control Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Eh Table 52. DMA Channel 0 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 10h DMA channel 0 source address low DMA0SAL 12h DMA channel 0 source address high DMA0SAH 14h DMA channel 0 destination address low DMA0DAL 16h DMA channel 0 destination address high DMA0DAH 18h DMA channel 0 transfer size DMA0SZ 1Ah 42 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 53. DMA Channel 1 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 1 control DMA1CTL 20h DMA channel 1 source address low DMA1SAL 22h DMA channel 1 source address high DMA1SAH 24h DMA channel 1 destination address low DMA1DAL 26h DMA channel 1 destination address high DMA1DAH 28h DMA channel 1 transfer size DMA1SZ 2Ah Table 54. DMA Channel 2 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 2 control DMA2CTL 30h DMA channel 2 source address low DMA2SAL 32h DMA channel 2 source address high DMA2SAH 34h DMA channel 2 destination address low DMA2DAL 36h DMA channel 2 destination address high DMA2DAH 38h DMA channel 2 transfer size DMA2SZ 3Ah Table 55. eUSCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA0CTLW0 00h eUSCI _A control word 1 UCA0CTLW1 02h eUSCI_A baud rate 0 UCA0BR0 06h eUSCI_A baud rate 1 UCA0BR1 07h eUSCI_A modulation control UCA0MCTLW 08h eUSCI_A status UCA0STAT 0Ah eUSCI_A receive buffer UCA0RXBUF 0Ch eUSCI_A transmit buffer UCA0TXBUF 0Eh eUSCI_A LIN control UCA0ABCTL 10h eUSCI_A IrDA transmit control UCA0IRTCTL 12h eUSCI_A IrDA receive control UCA0IRRCTL 13h eUSCI_A interrupt enable UCA0IE 1Ah eUSCI_A interrupt flags UCA0IFG 1Ch eUSCI_A interrupt vector word UCA0IV 1Eh Table 56. eUSCI_A1 Registers (Base Address:05E0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA1CTLW0 00h eUSCI _A control word 1 UCA1CTLW1 02h eUSCI_A baud rate 0 UCA1BR0 06h eUSCI_A baud rate 1 UCA1BR1 07h eUSCI_A modulation control UCA1MCTLW 08h eUSCI_A status UCA1STAT 0Ah eUSCI_A receive buffer UCA1RXBUF 0Ch eUSCI_A transmit buffer UCA1TXBUF 0Eh eUSCI_A LIN control UCA1ABCTL 10h eUSCI_A IrDA transmit control UCA1IRTCTL 12h eUSCI_A IrDA receive control UCA1IRRCTL 13h eUSCI_A interrupt enable UCA1IE 1Ah Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 43 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 56. eUSCI_A1 Registers (Base Address:05E0h) (continued) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A interrupt flags UCA1IFG 1Ch eUSCI_A interrupt vector word UCA1IV 1Eh Table 57. eUSCI_A2 Registers (Base Address:0600h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA2CTLW0 00h eUSCI _A control word 1 UCA2CTLW1 02h eUSCI_A baud rate 0 UCA2BR0 06h eUSCI_A baud rate 1 UCA2BR1 07h eUSCI_A modulation control UCA2MCTLW 08h eUSCI_A status UCA2STAT 0Ah eUSCI_A receive buffer UCA2RXBUF 0Ch eUSCI_A transmit buffer UCA2TXBUF 0Eh eUSCI_A LIN control UCA2ABCTL 10h eUSCI_A IrDA transmit control UCA2IRTCTL 12h eUSCI_A IrDA receive control UCA2IRRCTL 13h eUSCI_A interrupt enable UCA2IE 1Ah eUSCI_A interrupt flags UCA2IFG 1Ch eUSCI_A interrupt vector word UCA2IV 1Eh Table 58. eUSCI_B0 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_B control word 0 UCB0CTLW0 00h eUSCI_B control word 1 UCB0CTLW1 02h eUSCI_B bit rate 0 UCB0BR0 06h eUSCI_B bit rate 1 UCB0BR1 07h eUSCI_B status word UCB0STATW 08h eUSCI_B byte counter threshold UCB0TBCNT 0Ah eUSCI_B receive buffer UCB0RXBUF 0Ch eUSCI_B transmit buffer UCB0TXBUF 0Eh eUSCI_B I2C own address 0 UCB0I2COA0 14h eUSCI_B I2C own address 1 UCB0I2COA1 16h eUSCI_B I2C own address 2 UCB0I2COA2 18h eUSCI_B I2C own address 3 UCB0I2COA3 1Ah eUSCI_B received address UCB0ADDRX 1Ch eUSCI_B address mask UCB0ADDMASK 1Eh eUSCI I2C slave address UCB0I2CSA 20h eUSCI interrupt enable UCB0IE 2Ah eUSCI interrupt flags UCB0IFG 2Ch eUSCI interrupt vector word UCB0IV 2Eh 44 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 59. ADC10_A Registers (Base Address: 0740h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_A Control register 0 ADC10CTL0 00h ADC10_A Control register 1 ADC10CTL1 02h ADC10_A Control register 2 ADC10CTL2 04h ADC10_A Window Comparator Low Threshold ADC10LO 06h ADC10_A Window Comparator High Threshold ADC10HI 08h ADC10_A Memory Control Register 0 ADC10MCTL0 0Ah ADC10_A Conversion Memory Register ADC10MCTL0 12h ADC10_A Interrupt Enable ADC10IE 1Ah ADC10_A Interrupt Flags ADC10IGH 1Ch ADC10_A Interrupt Vector Word ADC10IV 1Eh Table 60. SD24_B Registers (Base Address: 0800h) REGISTER DESCRIPTION REGISTER OFFSET SD24_B Control 0 register SD24BCTL0 00h SD24_B Control 1 register SD24BCTL1 02h SD24_B Trigger Control register SD24BTRGCTL 04h SD24_B Trigger OSR Control register SD24BTRGOSR 06h SD24_B Trigger Preload register SD24BTRGPRE 08h SD24_B interrupt flag register SD24BIFG 0Ah SD24_B interrupt enable register SD24BIE 0Ch SD24_B Interrupt Vector register SD24BIV 0Eh SD24_B converter 0 Control register SD24BCCTL0 10h SD24_B converter 0 Input Control register SD24BINCTL0 12h SD24_B converter 0 OSR Control register SD24BOSR0 14h SD24_B converter 0 Preload register SD24BPRE0 16h SD24_B converter 1 Control register SD24BCCTL1 18h SD24_B Converter 1 Input Control register SD24BINCTL1 1Ah SD24_B Converter 1 OSR Control register SD24BOSR1 1Ch SD24_B Converter 1 Preload register SD24BPRE1 1Eh SD24_B Converter 2 Control register SD24BCCTL2 20h SD24_B Converter 2 Input Control register SD24BINCTL2 22h SD24_B Converter 2 OSR Control register SD24BOSR2 24h SD24_B Converter 2 Preload register SD24BPRE2 26h SD24_B Converter 0 Conversion Memory Low Word register SD24BMEML0 50h SD24_B Converter 0 Conversion Memory High Word regiser SD24BMEMH0 52h SD24_B Converter 1 Conversion Memory Low Word register SD24BMEML1 54h SD24_B Converter 1 Conversion Memory High Word regiser SD24BMEMH1 56h SD24_B Converter 2 Conversion Memory Low Word register SD24BMEML2 58h SD24_B Converter 2 Conversion Memory High Word regiser SD24BMEMH2 5Ah Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 45 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 61. Auxiliary Supplies Registers (Base Address: 09E0h) REGISTER DESCRIPTION REGISTER OFFSET Auxiliary Supply Control 0 register AUXCTL0 00h Auxiliary Supply Control 1 register AUXCTL1 02h Auxiliary Supply Control 2 register AUXCTL2 04h AUX2 Charger Control AUX2CHCTL 12h AUX3 Charger Control AUX3CHCTL 14h AUX ADC Control AUXADCCTL 16h AUX Interrupt Flag AUXIFG 1Ah AUX Interrupt Enable AUXIE 1Ch AUX Interrupt Vector Word AUXIV 1Eh Table 62. LCD_C Registers (Base Address: 0A00h) REGISTER DESCRIPTION REGISTER OFFSET LCD_C control register 0 LCDCCTL0 000h LCD_C control register 1 LCDCCTL1 002h LCD_C blinking control register LCDCBLKCTL 004h LCD_C memory control register LCDCMEMCTL 006h LCD_C voltage control register LCDCVCTL 008h LCD_C port control 0 LCDCPCTL0 00Ah LCD_C port control 1 LCDCPCTL1 00Ch LCD_C port control 2 LCDCPCTL2 00Eh LCD_C charge pump control register LCDCCPCTL 012h LCD_C interrupt vector LCDCIV 01Eh LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h Static and 2 to 4 mux modes ⋮ ⋮ ⋮ LCD_C memory 20 LCDM20 033h LCD_C blinking memory 1 LCDBM1 040h LCD_C blinking memory 2 LCDBM2 041h ⋮ ⋮ LCD_C blinking memory 20 ⋮ LCDBM20 053h LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h 5 to 8 mux modes ⋮ ⋮ LCD_C memory 40 46 Submit Documentation Feedback ⋮ LCDM40 047h Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) Voltage applied at DVCC to DVSS Voltage applied to any pin (excluding VCORE) -0.3 V to 4.1 V (2) -0.3 V to VCC + 0.3 V Diode current at any device pin Storage temperature range, Tstg ±2 mA (3) –55°C to 150°C Maximum junction temperature, TJ (1) (2) (3) 95°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device usage only. No external DC loading or voltage should be applied. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. Recommended Operating Conditions Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN V PMMCOREVx = 0, 1 2.0 3.6 V PMMCOREVx = 0, 1, 2 2.2 3.6 V PMMCOREVx = 0, 1, 2, 3 2.4 3.6 V 85 °C VSS Supply voltage V(AVSS) = V(DVSS) = VSS TA Operating free-air temperature I version –40 TJ Operating junction temperature I version –40 CVCORE Recommended capacitor at VCORE CDVCC/ CVCORE Capacitor ratio of DVCC to VCORE ILOAD, DVCCD ILOAD, AUX1D ILOAD, AUX2D ILOAD, AVCCA ILOAD, AUX1A ILOAD, AUX2A (1) (2) (3) (4) UNIT 3.6 Supply voltage during program execution and flash programming. V(AVCC) = V(DVCC) = VCC (1) (2) Processor frequency (maximum MCLK frequency) (3) (4) (see Figure 1) MAX 1.8 VCC fSYSTEM NOM PMMCOREVx = 0 0 V 85 470 °C nF 10 PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 8.0 PMMCOREVx = 1, 2.0 V ≤ VCC ≤ 3.6 V 0 12.0 PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 20.0 PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 25.0 MHz Maximum load current that can be drawn from DVCC for core and IO (ILOAD = ICORE + IIO) 20 mA Maximum load current that can be drawn from AUXVCC1 for core and IO (ILOAD = ICORE + IIO) 20 mA Maximum load current that can be drawn from AUXVCC2 for core and IO (ILOAD = ICORE + IIO) 20 mA Maximum load current that can be drawn from AVCC for analog modules (ILOAD = IModules) 10 mA Maximum load current that can be drawn from AUXVCC1 for analog modules (ILOAD = IModules) 5 mA Maximum load current that can be drawn from AUXVCC2 for analog modules (ILOAD = IModules) 5 mA It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between V(AVCC) and V(DVCC) can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold parameters for the exact values and further details. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Modules may have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 47 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com 25 System Frequency - MHz 3 20 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 1. Maximum System Frequency Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) FREQUENCY (fDCO = fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC PMMCOREVx 1 MHz TYP IAM, IAM, (1) (2) (3) (4) (5) 48 Flash RAM (4) (5) Flash RAM 3.0 V 3.0 V 8 MHz MAX 0.36 TYP 2.10 12 MHz MAX TYP 20 MHz MAX TYP 0 0.32 1 0.36 2.39 3.54 2 0.39 2.65 3.94 6.54 3 0.42 4.20 6.96 0 0.20 1 0.22 1.30 1.90 2 0.24 1.45 2.15 3.55 3 0.26 1.55 2.30 3.80 1.10 TYP UNIT MAX 2.30 2.82 0.22 25 MHz MAX 3.90 mA 7.23 8.65 9.54 1.22 2.10 mA 4.0 4.70 5.30 All inputs are tied to 0 or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. Active mode supply current when program executes in flash at a nominal supply voltage of 3.0V. Active mode supply current when program executes in RAM at a nominal supply voltage of 3 V. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREVx -40°C TYP ILPM0,1MHz Low-power mode 0 (3) (4) ILPM2 Low-power mode 2 (5) (4) ILPM3,XT1LF Low-power mode 3, crystal mode (6) (4) ILPM3,XT1LF ILPM3,VLO ILPM4 Low-power mode 3, crystal mode (6) (4) Low-power mode 3, VLO mode (7) (4) ILPM4.5 MAX MAX TYP TYP UNIT MAX 0 75 78 87 81 84 96 3 85 89 99 93 98 110 2.2 V 0 5.9 6.2 9 6.9 9.4 17 3.0 V 3 6.9 7.4 10 8.4 11 19 0 1.4 1.7 2.5 4.9 1 1.5 1.9 2.7 5.2 2 1.7 2.0 2.9 5.5 0 2.2 2.5 3.3 5.5 1 2.3 2.7 3.5 5.8 2 2.5 2.9 3.7 6.1 3 2.5 2.9 3.5 3.7 6.1 14.0 0 1.4 1.7 2.2 2.4 4.5 11.5 1 1.5 1.8 2.5 4.7 2 1.6 1.9 2.7 4.9 3 1.6 1.9 2.4 2.7 5.0 12.7 0 1.3 1.6 2.0 2.3 4.4 11.1 1 1.4 1.6 2.4 4.5 2 1.4 1.7 2.5 4.8 2.2 V 3.0 V Low-power mode 4 (8) (4) 3.0 V 1.4 1.7 Low-power mode 3.5, RTC active on AUXVCC3 (9) 2.2V 0.65 0.80 3.0V 1.16 1.24 3.0V 0.70 0.78 Low-power mode 4.5 85°C MAX 3.0 V 3.0 V (10) 60°C TYP 2.2 V 3 ILPM3.5 25°C 3.1 2.2 µA µA µA 12.7 µA µA µA 2.5 4.8 0.90 1.30 12.2 2.05 1.43 1.87 2.71 1.05 0.90 1.20 1.85 µA µA (1) (2) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. (3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz (4) Current for brownout, high side supervisor (SVSH) normal mode included. Low side supervisor and monitors disabled (SVSL, SVML). High side monitor disabled (SVMH). RAM retention enabled. (5) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled. (6) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz (7) Current for watchdog timer clocked by ACLK included. RTC is disabled (RTCHOLD=1). ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz (9) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC active on AUXVCC3 supply (10) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, PMMREGOFF = 1 Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) Temperature (TA) PARAMETER VCC PMMCOREVx -40°C TYP ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled (3) (4) ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled (3) (4) 2.2 V 3.0 V 2.2 V ILPM3 LCD,CP (1) (2) (3) (4) (5) Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump enabled (3) (5) 3.0 V MAX 25°C TYP 0 2.4 2.9 1 2.5 3.1 2 2.6 3.3 0 2.8 3.2 1 2.9 2 3.1 3 3.1 3.6 60°C MAX TYP TYP UNIT MAX 3.8 5.8 4.0 6.0 3.9 4.2 6.3 13.4 3.9 4.1 6.4 13.3 3.4 4.3 6.7 3.6 4.5 7.0 4.5 7.0 0 3.8 1 3.9 2 4.0 0 4.0 1 4.1 2 4.2 3 4.2 3.6 85°C MAX 4.5 12.2 µA µA 14.7 µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side monitor disabled (SVMH). RAM retention enabled. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ... = 0 and odd segments S1, S3, ... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD = 3V,typ.), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ... = 0 and odd segments S1, S3, ... = 1. No LCD panel load. Schmitt-Trigger Inputs – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup/pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC 50 Submit Documentation Feedback VCC MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.85 3V 0.4 1.0 20 TYP 35 5 MAX 50 UNIT V V V kΩ pF Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Inputs – Ports P1 and P2 (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) t(int) (1) (2) PARAMETER TEST CONDITIONS VCC External interrupt timing (2) Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag 2.2 V/3 V MIN MAX 20 UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set by trigger signals shorter than t(int). Leakage Current – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) TEST CONDITIONS High-impedance leakage current See VCC (1) (2) MIN 1.8 V/3 V MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Outputs – General Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA (1) VOH High-level output voltage I(OHmax) = –10 mA (1) I(OHmax) = –5 mA I(OLmax) = 3 mA (2) Low-level output voltage I(OLmax) = 10 mA (3) I(OLmax) = 5 mA (2) I(OLmax) = 15 mA (3) (1) (2) (3) 1.8 V (1) I(OHmax) = –15 mA (1) VOL VCC 3V 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 V VSS VSS + 0.60 The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Recommended Operating Conditions for more details. The maximum total current, I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 51 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Typical Characteristics – General Purpose I/O (Full Drive Strength) HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 0 VCC = 3 V Full Drive Strength -10 -5 IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA VCC = 1.8 V Full Drive Strength -10 -15 TA = 85°C -20 -20 -30 -40 TA = 85°C -50 TA = 25°C TA = 25°C -25 -60 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 1.8 0.5 1.5 Figure 3. LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 2.5 3 60 50 IOL – Low-Level Output Current – mA 20 TA = 25°C TA = 85°C 15 10 5 TA = 25°C TA = 85°C 40 30 20 10 VCC = 1.8 V Full Drive Strength VCC = 3 V Full Drive Strength 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 VOL – Low-Level Output Voltage – V Figure 4. 52 2 Figure 2. 25 IOL – Low-Level Output Current – mA 1 VOH – High-Level Output Voltage – V VOH – High-Level Output Voltage – V Submit Documentation Feedback 1.6 1.8 0 0.5 1 1.5 2 2.5 3 VOL – Low-Level Output Voltage – V Figure 5. Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Outputs – General Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA VOH High-level output voltage I(OHmax) = –3 mA (2) I(OHmax) = –2 mA (2) I(OHmax) = –6 mA (2) I(OLmax) = 1 mA VOL Low-level output voltage (3) (4) 1.8 V 3.0 V (3) I(OLmax) = 3 mA (4) I(OLmax) = 2 mA (3) I(OLmax) = 6 mA (4) (1) (2) VCC (2) 1.8 V 3.0 V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 V VSS VSS + 0.60 Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Recommended Operating Conditions for more details. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 53 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Typical Characteristics – General Purpose I/O (Reduced Drive Strength) HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 0 VCC = 1.8 V Reduced Drive Strength VCC = 3 V Reduced Drive Strength IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA -1 -2 -3 -4 -5 TA = 85°C -6 -5 -10 -15 TA = 85°C -20 TA = 25°C -7 TA = 25°C -8 -25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VOH – High-Level Output Voltage – V 2 Figure 7. LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 2.5 3 20 18 7 TA = 25°C TA = 25°C IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA 1.5 Figure 6. 8 6 TA = 85°C 5 4 3 2 1 16 TA = 85°C 14 12 10 8 6 4 VCC = 3 V Reduced Drive Strength 2 VCC = 1.8 V Reduced Drive Strength 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 VOL – Low-Level Output Voltage – V Figure 8. 54 1 VOH – High-Level Output Voltage – V Submit Documentation Feedback 1.6 1.8 0 0.5 1 1.5 2 2.5 3 VOL – Low-Level Output Voltage – V Figure 9. Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Output Frequency – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y fPort_CLK (1) (2) TEST CONDITIONS Port output frequency (with load) See Clock output frequency ACLK SMCLK MCLK CL = 20 pF (2) (1) (2) MIN MAX VCC = 1.8 V PMMCOREVx = 0 16 VCC = 3 V PMMCOREVx = 3 25 VCC = 1.8 V PMMCOREVx = 0 16 VCC = 3 V PMMCOREVx = 3 25 UNIT MHz MHz A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Crystal Oscillator, XT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ΔIDVCC.LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode TEST CONDITIONS fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C OALF (5) (6) (3) 10 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 XTS = 0, XCAPx = 0 (6) (3) (4) 0.170 32768 Oscillation allowance for LF crystals (4) (2) 3.0 V XTS = 0, XT1BYPASS = 0 XT1 oscillator logic-level square-wave input frequency, XTS = 0, XT1BYPASS = 1 (2) LF mode MAX UNIT 0.075 0.290 fXT1,LF,SW (1) TYP fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C XT1 oscillator crystal frequency, LF mode Integrated effective load capacitance, LF mode (5) MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C fXT1,LF0 CL,eff VCC µA Hz 50 kHz kΩ 2 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 pF To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: (a) For XT1DRIVEx = 0, CL,eff ≤ 6 pF. (b) For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF. (c) For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF. (d) For XT1DRIVEx = 3, CL,eff ≥ 6 pF. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Crystal Oscillator, XT1, Low-Frequency Mode(1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT Duty cycle LF mode XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz 30 70 % fFault,LF Oscillator fault frequency, LF mode (7) XTS = 0 (8) 10 10000 Hz tSTART,LF (7) (8) Startup time, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF 1000 3.0 V ms 500 Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) TEST CONDITIONS Measured at ACLK VCC 1.8 V to 3.6 V MIN TYP MAX 6 9.4 15 (1) 1.8 V to 3.6 V 0.5 Measured at ACLK (2) 1.8 V to 3.6 V 4 Measured at ACLK 1.8 V to 3.6 V Measured at ACLK 30 UNIT kHz %/°C %/V 70 % Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(85°C – (–40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V) Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC MIN TYP MAX UNIT REFO oscillator current consumption TA = 25°C 1.8 V to 3.6 V 3 µA REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Hz Full temperature range 1.8 V to 3.6 V ±3.5 3V ±1.5 REFO absolute tolerance calibrated TA = 25°C % % dfREFO/dT REFO frequency temperature drift Measured at ACLK (1) 1.8 V to 3.6 V 0.01 %/°C dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK (2) 1.8 V to 3.6 V 1.0 %/V Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO startup time 40%/60% duty cycle 1.8 V to 3.6 V tSTART (1) (2) 56 40 50 25 60 % µs Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(85°C – (–40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V) Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS (1) MIN TYP MAX UNIT fDCO(0,0) DCO frequency (0, 0) DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz fDCO(0,31) DCO frequency (0, 31) (1) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) (1) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31) (1) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz (1) fDCO(2,0) DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, 31) (1) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) (1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz (1) fDCO(3,31) DCO frequency (3, 31) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz fDCO(4,0) DCO frequency (4, 0) (1) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) (1) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz (1) fDCO(5,0) DCO frequency (5, 0) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz fDCO(5,31) DCO frequency (5, 31) (1) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) (1) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) (1) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz (1) fDCO(7,0) DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz fDCO(7,31) DCO frequency (7, 31) (1) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz 0.1 %/°C dfDCO/dVCORE DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V (1) 40 50 60 % When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. Typical DCO Frequency, VCC = 3.0 V, TA = 25°C 100 fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 10. Typical DCO Frequency Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com PMM, Brown-Out Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis tRESET (1) (1) MIN TYP 0.80 1.30 60 Pulse length required at RST/NMI pin to accept a reset MAX UNIT 1.45 V 1.50 V 250 mV 2 µs Pulse much shorter than 2 µs might trigger reset. PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.93 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.83 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V 1.62 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.42 V VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.96 V VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.94 V VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V 1.74 V VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.54 V PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption V(SVSH_IT–) V(SVSH_IT+) SVSH on voltage level (1) SVSH off voltage level (1) tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on/off delay time dVDVCC/dt DVCC rise time (1) 58 TYP MAX 0 UNIT nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 200 nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 1.5 µA SVSHE = 1, SVSHRVL = 0 1.60 1.65 1.70 SVSHE = 1, SVSHRVL = 1 1.77 1.84 1.90 SVSHE = 1, SVSHRVL = 2 1.97 2.04 2.10 SVSHE = 1, SVSHRVL = 3 2.09 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.68 1.74 1.80 SVSHE = 1, SVSMHRRL = 1 1.89 1.95 2.01 SVSHE = 1, SVSMHRRL = 2 2.08 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.21 2.27 2.34 SVSHE = 1, SVSMHRRL = 4 2.35 2.41 2.49 SVSHE = 1, SVSMHRRL = 5 2.65 2.72 2.80 SVSHE = 1, SVSMHRRL = 6 2.96 3.04 3.13 SVSHE = 1, SVSMHRRL = 7 2.96 3.04 3.13 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0 → 1, SVSHFP = 1 12.5 SVSHE = 0 → 1, SVSHFP = 0 100 0 V V µs µs 1000 V/s The SVSH settings available depend on the VCORE (PMMCOREVx) setting. Please refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx Family User's Guide (SLAU208) on recommended settings and usage. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) V(SVMH) SVMH current consumption SVMH on/off voltage level (1) t(SVMH) (1) SVMH propagation delay SVMH on/off delay time MAX UNIT 0 nA SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 200 nA SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 1.5 µA SVMHE = 1, SVSMHRRL = 0 1.68 1.74 1.80 SVMHE = 1, SVSMHRRL = 1 1.89 1.95 2.01 SVMHE = 1, SVSMHRRL = 2 2.08 2.14 2.21 SVMHE = 1, SVSMHRRL = 3 2.21 2.27 2.34 SVMHE = 1, SVSMHRRL = 4 2.35 2.41 2.49 SVMHE = 1, SVSMHRRL = 5 2.65 2.72 2.80 SVMHE = 1, SVSMHRRL = 6 2.96 3.04 3.13 SVMHE = 1, SVSMHRRL = 7 2.96 3.04 3.13 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) TYP V 3.79 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 µs SVMHE = 0 → 1, SVMHFP = 1 12.5 SVMHE = 0 → 1, SVMHFP = 0 100 µs The SVMH settings available depend on the VCORE (PMMCOREVx) setting. Refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx Family User's Guide (SLAU208) on recommended settings and usage. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) t(SVSL) SVSL propagation delay SVSL on/off delay time MAX UNIT 0 nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 1.5 µA SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 µs SVSLE = 0 → 1, SVSLFP = 1 12.5 SVSLE = 0 → 1, SVSLFP = 0 100 µs PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) SVML propagation delay t(SVML) SVML on/off delay time MAX UNIT 0 nA SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 nA SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 1.5 µA SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0 → 1, SVMLFP = 1 12.5 SVMLE = 0 → 1, SVMLFP = 0 100 µs µs Wake-Up from Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tWAKE-UPFAST tWAKE-UPSLOW tWAKE-UPLPM4.5 tWAKE-UPRESET (1) (2) (3) 60 TEST CONDITIONS MIN TYP MAX UNIT fMCLK ≥ 4 MHz 3 5 1 MHz < fMCLK < 4 MHz 4 6 150 160 µs Wake-up time from LPM4.5 to active mode (3) 2 3 ms Wake-up time from RST or BOR event to active mode (3) 2 3 ms Wake-up time from LPM2, LPM3, or LPM4 to active mode (1) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1 Wake-up time from PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), LPM2, LPM3 or LPM4 to SVSLFP = 0 active mode (2) µs This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVML in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx Family User's Guide (SLAU208). This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx Family User's Guide (SLAU208). This value represents the time from the wakeup event to the reset vector execution. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Auxiliary Supplies - Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN VCC NOM MAX Supply voltage range for all supplies at pins DVCC, AVCC, AUX1, AUX2, AUX3 1.8 3.6 PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 1 2.0 3.6 PMMCOREVx = 2 2.2 3.6 2.4 3.6 UNIT V VDSYS Digital system supply voltage range, VDSYS = VCC - RON×ILOAD VASYS Analog system supply voltage range, VASYS = VCC - RON × ILOAD CVCC,CAUX1/2 Recommended capacitor at pins DVCC, AVCC, AUX1, AUX2 CVSYS Recommended capacitor at pins VDSYS and VASYS CVCORE Recommended capacitance at pin VCORE CAUX3 Recommended capacitor at pin AUX3 0.47 µF PMMCOREVx = 3 Refer to modules V V 4.7 µF 4.7 µF 0.47 µF Auxiliary Supplies - AUX3 (Backup-Sub-System) Currents over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC IAUX3,RTCon AUX3 current with RTC enabled RTC and 32-kHz oscillator in backup-subsystem enabled 3V IAUX3,RTCoff AUX3 current with RTC disabled RTC and 32-kHz oscillator in backup-subsystem disabled 3V TA MIN TYP MAX 25°C 0.83 85°C 0.95 25°C 110 85°C 165 UNIT µA nA Auxiliary Supplies - Auxiliary Supply Monitor over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ICC,Monitor Average supply current for monitoring circuitry drawn from VDSYS LOCKAUX = 0, AUXMRx = 0, AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, Current measured at VDSYS pin IMeas,Monitor Average current drawn from monitored supply during measurement cycle LOCKAUX = 0, AUXMRx = 0, AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, AUXVCC1 = 3 V, Current measured at AUXVCC1 pin VMonitor Auxiliary supply threshold level Copyright © 2011–2013, Texas Instruments Incorporated VCC MIN TYP 3V MAX UNIT 0.70 µA 0.11 µA AUXLVLx = 0 1.67 1.74 1.80 AUXLVLx = 1 1.87 1.95 2.01 AUXLVLx = 2 2.06 2.14 2.21 AUXLVLx = 3 2.19 2.27 2.33 AUXLVLx = 4 2.33 2.41 2.48 AUXLVLx = 5 2.63 2.72 2.79 AUXLVLx = 6 2.91 3.02 3.10 AUXLVLx = 7 2.91 3.02 3.10 Submit Documentation Feedback V 61 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com 0.7 0.6 ICC, monitor – µA 0.5 0.4 0.3 0.2 0.1 0 1.8 2 2.2 2.4 2.6 2.8 VDSYS Voltage – V 3 3.2 3.4 3.6 3.2 3.4 3.6 Figure 11. VDSYS Voltage vs ICC,Monitor 120 Imeas, monitor – nA 100 80 60 40 20 0 1.8 2.0 2.2 2.4 2.6 2.8 AUXVCC1 Voltage – V 3.0 Figure 12. AUXVCC1 Voltage vs IMeas,Monitor Auxiliary Supplies - Switch On-Resistance over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT RON,DVCC On-resistance of switch between DVCC and VDSYS ILOAD = ICORE + IIO = 10mA + 10mA = 20mA 5 Ω RON,DAUX1 On-resistance of switch between AUX1 and VDSYS ILOAD = ICORE + IIO = 10mA + 10mA = 20mA 5 Ω RON,DAUX2 On-resistance of switch between AUX2 and VDSYS ILOAD = ICORE + IIO = 10mA + 10mA = 20mA 5 Ω RON,AVCC On-resistance of switch between AVCC and VASYS ILOAD = IModules = 10mA 5 Ω RON,AAUX1 On-resistance of switch between AUX1 and VASYS ILOAD = IModules = 5mA 20 Ω RON,AAUX2 On-resistance of switch between AUX2 and VASYS ILOAD = IModules = 5mA 20 Ω 62 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Auxiliary Supplies - Switching Time over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS tSwitch Time from occurence of trigger (SVM or software) to "new" supply connected to system supplies tRecover "Recovery time" after a switch over took place. During that time no further switching takes place. VCC MIN TYP 200 MAX UNIT 100 ns 450 µs Auxiliary Supplies - Switch Leakage over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ISW,Lkg Current into DVCC, AVCC, AUX1 or AUX2 Per supply (but not the highest if not selected supply) IVmax Current drawn from highest supply VCC MIN TYP MAX UNIT 50 100 nA 450 730 nA UNIT Auxiliary Supplies - Auxiliary Supplies to ADC10_A over operating free-air temperature range (unless otherwise noted) PARAMETER V3 RV3 tSample,V3 TEST CONDITIONS Supply voltage divider V3 = VSupply/3 Load resistance Sampling time required if V3 selected. AUXADC = 1, ADC10ON = 1, INCH = 0Ch, Error of conversion result ≤ 1 LSB VCC MIN TYP MAX 1.8 V 0.58 0.60 0.62 3.0 V 0.98 1.00 1.02 3.6 V 1.18 1.20 1.22 V AUXADCRx = 0 18 kΩ AUXADCRx = 1 1.5 kΩ AUXADCRx = 2 0.6 kΩ AUXADCRx = 0 1000 ns AUXADCRx = 1 1000 ns AUXADCRx = 2 1000 ns Auxiliary Supplies - Charge Limiting Resistor over operating free-air temperature range (unless otherwise noted) PARAMETER RCHARGE Charge limiting resistor Copyright © 2011–2013, Texas Instruments Incorporated TEST CONDITIONS VCC MIN TYP MAX CHCx = 1 3V 5 CHCx = 2 3V 10 CHCx = 3 3V 20 Submit Documentation Feedback UNIT kΩ 63 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10% 1.8 V/ 3.0 V tTA,cap Timer_A capture timing All capture inputs. Minimum pulse width required for capture. 1.8 V/ 3.0 V MIN TYP MAX UNIT 25 MHz 20 ns eUSCI (UART Mode) - Recommended Operating Conditions PARAMETER feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 5 MHz UNIT eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC UCGLITx = 0 UART receive deglitch time (1) tt UCGLITx = 1 2.0 V/3.0 V UCGLITx = 2 UCGLITx = 3 (1) MIN TYP MAX 10 15 25 30 50 85 50 80 150 70 120 200 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. eUSCI (SPI Master Mode) - Recommended Operating Conditions PARAMETER feUSCI eUSCI input clock frequency CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz MAX UNIT eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER VCC MIN tSTE,LEAD STE lead time, STE active to clock UCSTEM = 0, UCMODEx = 01 or 10 TEST CONDITIONS 2.0 V/3.0 V 150 UCSTEM = 1, UCMODEx = 01 or 10 2.0 V/3.0 V 150 tSTE,LAG STE lag time, Last clock to STE inactive UCSTEM = 0, UCMODEx = 01 or 10 2.0 V/3.0 V 200 UCSTEM = 1, UCMODEx = 01 or 10 2.0 V/3.0 V 200 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,ACC STE access time, STE active to SIMO data out UCSTEM = 1, UCMODEx = 01 or 10 tSTE,DIS tSU,MI (1) 64 STE disable time, STE inactive to SIMO high impedance SOMI input data setup time UCSTEM = 0, UCMODEx = 01 or 10 UCSTEM = 1, UCMODEx = 01 or 10 TYP ns ns 2.0 V 50 3.0 V 30 2.0 V 50 3.0 V 30 2.0 V 40 3.0 V 25 2.0 V 40 3.0 V 25 2.0 V 50 3.0 V 30 ns ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) refer to the SPI parameters of the attached slave. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 eUSCI (SPI Master Mode) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER TEST CONDITIONS VCC tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (2) (3) MIN 2.0 V 0 3.0 V 0 TYP MAX ns 2.0 V 9 3.0 V 5 2.0 V 0 3.0 V 0 UNIT ns ns Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 15 and Figure 16. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 15 and Figure 16. UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tSTE,ACC tVALID,MO tSTE,DIS SIMO Figure 13. SPI Master Mode, CKPH = 0 Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 65 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SOMI tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 14. SPI Master Mode, CKPH = 1 66 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time (3) CL = 20 pF (1) (2) (3) VCC MIN 2.0 V 4 3.0 V 3 2.0 V 0 3.0 V 0 TYP MAX ns ns 2.0 V 46 3.0 V 24 2.0 V 38 3.0 V 25 2.0 V 2 3.0 V 1 2.0 V 2 3.0 V 2 55 32 24 16 ns ns 3.0 V 3.0 V ns ns 2.0 V 2.0 V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 15 and Figure 16. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams inFigure 15 and Figure 16. UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tACC tVALID,SOMI tDIS SOMI Figure 15. SPI Slave Mode, CKPH = 0 Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 67 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tDIS tVALID,SO SOMI Figure 16. SPI Slave Mode, CKPH = 1 68 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 17) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency fSCL SCL clock frequency MIN Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time tSU,DAT Data setup time tSU,STO Setup time for STOP TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% 2 V/3 V tHD,STA fSCL = 100 kHz 0 fSCL = 100 kHz fSCL = 100 kHz 2 V/3 V 5.0 fSCL > 100 kHz 2 V/3 V 1.3 kHz µs µs µs µs µs 1.7 UCGLITx = 0 75 220 ns UCGLITx = 1 35 120 ns 30 60 ns 20 35 2 V/3 V UCGLITx = 2 UCCLTOx = 1 Clock low timeout 400 5.2 2 V/3 V UCGLITx = 3 tTIMEOUT MHz 1.4 0.4 fSCL > 100 kHz fSYSTEM 5.1 2 V/3 V fSCL = 100 kHz UNIT 1.5 2 V/3 V fSCL > 100 kHz MAX 5.1 2 V/3 V fSCL > 100 kHz Pulse duration of spikes suppressed by input filter tSP VCC UCCLTOx = 2 2 V/3 V UCCLTOx = 3 tSU,STA tHD,STA tHD,STA ns 30 ms 33 ms 37 ms tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 17. I2C Mode Timing LCD_C - Recommended Operating Conditions PARAMETER CONDITIONS MIN NOM MAX UNIT VCC,LCD_C,CP en,3.6 Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, VLCD ≤ 3.6 V) 2.2 3.6 V VCC,LCD_C,CP en,3.3 Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, VLCD ≤ 3.3 V) 2.0 3.6 V VCC,LCD_C,int. bias Supply voltage range, internal biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,ext. Supply voltage range, external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,VLCDEXT Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.0 3.6 V VLCDCAP/R33 External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.4 3.6 V bias Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com LCD_C - Recommended Operating Conditions (continued) PARAMETER CONDITIONS MIN CLCDCAP Capacitor on LCDCAP when charge pump enabled LCDCPEN = 1, VLCDx > 0000 (charge pump enabled) fFrame LCD frame frequency range fLCD = 2 × mux × fFRAME with mux = 1 (static), 2, 3, 4 up to 8 fACLK,in ACLK input frequency range CPanel Panel capacitance 100-Hz frame frequency VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13 VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 Analog input voltage at R03 R0EXT = 1 VLCD-VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF/R13 External LCD reference voltage applied at LCDREF/R13 VLCDREFx = 01 0.8 NOM MAX 4.7 10 µF 100 Hz 0 30 32 UNIT 40 kHz 10000 pF VCC+0 .2 V VR03 + 2/3×(VR33VR03) VR33 V VR03 VR03 + 1/3×(VR33VR03) VR23 V VR03 VR03 + 1/2×(VR33VR03) VR33 V 2.4 VSS V VCC+0 .2 V 1.2 1.5 V TYP MAX LCD_C Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VLCD LCD voltage TEST CONDITIONS VCC MIN VLCDx = 0000, VLCDEXT = 0 2.4 V to 3.6 V VCC LCDCPEN = 1, VLCDx = 0001 2 V to 3.6 V 2.58 LCDCPEN = 1, VLCDx = 0010 2 V to 3.6 V 2.64 LCDCPEN = 1, VLCDx = 0011 2 V to 3.6 V 2.71 LCDCPEN = 1, VLCDx = 0100 2 V to 3.6 V 2.78 LCDCPEN = 1, VLCDx = 0101 2 V to 3.6 V 2.83 LCDCPEN = 1, VLCDx = 0110 2 V to 3.6 V 2.90 LCDCPEN = 1, VLCDx = 0111 2 V to 3.6 V 2.96 LCDCPEN = 1, VLCDx = 1000 2 V to 3.6 V 3.02 LCDCPEN = 1, VLCDx = 1001 2 V to 3.6 V 3.07 LCDCPEN = 1, VLCDx = 1010 2 V to 3.6 V 3.14 LCDCPEN = 1, VLCDx = 1011 2 V to 3.6 V 3.21 LCDCPEN = 1, VLCDx = 1100 2 V to 3.6 V 3.27 LCDCPEN = 1, VLCDx = 1101 2.2 V to 3.6 V 3.32 LCDCPEN = 1, VLCDx = 1110 2.2 V to 3.6 V 3.38 LCDCPEN = 1, VLCDx = 1111 2.2 V to 3.6 V 3.44 UNIT V 3.6 ICC,Peak,CP Peak supply currents due to charge pump activities LCDCPEN = 1, VLCDx = 1111 2.2 V 400 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7µF, LCDCPEN = 0→1, VLCDx = 1111 2.2 V 150 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111 2.2 V RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10µA 2.2 V 10 kΩ RLCD,COM LCD driver output impedance, common lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10µA 2.2 V 10 kΩ 70 Submit Documentation Feedback µA 500 50 ms µA Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 SD24_B, Power Supply and Recommended Operating Conditions MIN AVCC Analog supply voltage fSD AVCC = DVCC, AVSS = DVSS = 0 V TYP MAX UNIT 2.4 3.6 V Modulator clock frequency (1) 0.03 2.3 MHz VI Absolute input voltage range AVSS - 1V AVCC V VIC Common-mode input voltage range AVSS - 1V AVCC V VID,FS Differential full scale input voltage -VREF/GAIN +VREF/GAIN Differential input voltage for specified performance (2) VID VID = VI,A+ - VI,A- SD24REFS = 1 SD24GAINx = 1 ±910 ±920 SD24GAINx = 2 ±455 ±460 SD24GAINx = 4 ±227 ±230 SD24GAINx = 8 ±113 ±115 SD24GAINx = 16 ±57 ±58 SD24GAINx = 32 ±28 ±29 SD24GAINx = 64 ±14 ±14.5 ±7 ±7.2 SD24GAINx = 128 CREF (1) (2) (3) VREF load capacitance (3) SD24REFS = 1 100 (1) PARAMETER Input capacitance TEST CONDITIONS VCC MIN ZID (1) Input impedance (Pin A+ or A- to AVSS) Differential input impedance (Pin A+ to pin A-) TYP SD24GAINx = 1 5 SD24GAINx = 2 5 SD24GAINx = 4 5 SD24GAINx = 8 5 SD24GAINx = 16 5 SD24GAINx = 32, 64, 128 ZI nF Modulator clock frequency: MIN = 32.768 kHz - 10% ≈ 30 kHz. MAX = 32.768 kHz × 64 + 10% ≈ 2.3 MHz The full-scale range (FSR) is defined by VFS+ = +VREF/GAIN and VFS-= -VREF/GAIN: FSR = VFS+ - VFS-= 2*VREF/GAIN. If VREF is sourced externally, the analog input range should not exceed 80% of VFS+ or VFS-; i.e., VID = 0.8 VFS- to 0.8 VFS+. If VREF is sourced internally, the given VID ranges apply. There is no capacitance required on VREF. However, a capacitance of 100nF is recommended to reduce any reference voltage noise. SD24_B, Analog Input CI mV fSD24 = 1MHz fSD24 = 1MHz MAX UNIT pF 5 SD24GAINx = 1 3V 200 SD24GAINx = 8 3V 200 SD24GAINx = 32 3V 200 SD24GAINx = 1 3V SD24GAINx = 8 3V SD24GAINx = 32 3V 300 400 400 300 kΩ kΩ 400 All parameters pertain to each SD24_B converter. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com 1600 Input Leakage Current – nA 1400 1200 1000 800 600 400 200 0 -200 -1 -0.5 0 0.5 1 Input Voltage – V 1.5 2 2.5 3 Figure 18. Input Leakage Current vs Input Voltage (Modulator OFF) SD24_B, Supply Currents PARAMETER ISD,256 ISD,512 TEST CONDITIONS Analog plus digital supply current per converter (reference not included) Analog plus digital supply current per converter (reference not included) fSD24 = 1 MHz, SD24OSR = 256 fSD24 = 2 MHz, SD24OSR = 512 TYP MAX SD24GAIN: 1 VCC 3V MIN 600 675 SD24GAIN: 2 3V 600 675 SD24GAIN: 4 3V 600 675 SD24GAIN: 8 3V 700 750 SD24GAIN: 16 3V 700 750 SD24GAIN: 32 3V 775 850 SD24GAIN: 64 3V 775 850 SD24GAIN: 128 3V 775 850 SD24GAIN: 1 3V 750 800 SD24GAIN: 8 3V 825 900 SD24GAIN: 32 3V 900 1000 UNIT µA µA SD24_B, Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER INL Gnom 72 TEST CONDITIONS SD24GAIN: 1 Integral nonlinearity, endSD24GAIN: 8 point fit SD24GAIN: 32 Nominal gain Submit Documentation Feedback VCC MIN TYP 3V -0.01 0.01 3V -0.01 0.01 3V -0.01 0.01 SD24GAIN: 1 3V 1 SD24GAIN: 2 3V 2 SD24GAIN: 4 3V 4 SD24GAIN: 8 3V 8 SD24GAIN: 16 3V 16 SD24GAIN: 32 3V 31.7 SD24GAIN: 64 3V 63.4 SD24GAIN: 128 3V 126.8 MAX UNIT % of FSR Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 SD24_B, Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER Gain error (1) EG ΔEG/ΔT ΔEG/ΔVCC EOS[V] EOS[FS] ΔEOS/ΔT ΔEOS/ΔVCC CMRR,DC (1) (2) (3) (4) (5) (6) (7) TEST CONDITIONS Gain error temperature coefficient (2), internal reference Gain error vs VCC (3) Offset error (4) Offset error (4) Offset error temperature coefficient (5) Offset error vs VCC (6) Common mode rejection at DC (7) VCC MIN TYP MAX SD24GAIN: 1, with external reference (1.2 V) 3V -1 +1 SD24GAIN: 8, with external reference (1.2 V) 3V -2 +2 SD24GAIN: 32, with external reference (1.2 V) 3V -2 +2 SD24GAIN: 1/8/32 (with internal reference) 3V UNIT % 50 ppm/°C SD24GAIN: 1 0.15 SD24GAIN: 8 0.15 SD24GAIN: 32 0.4 %/V SD24GAIN: 1 (with Vdiff = 0V) 3V 2.3 SD24GAIN: 8 3V 0.73 SD24GAIN: 32 3V SD24GAIN: 1 (with Vdiff = 0V) 3V -0.2 0.2 SD24GAIN: 8 3V -0.5 0.5 SD24GAIN: 32 3V -0.5 SD24GAIN: 1 3V 1 SD24GAIN: 8 3V 0.15 SD24GAIN: 32 3V mV 0.18 % FS 0.5 uV/°C 0.1 SD24GAIN: 1 600 SD24GAIN: 8 100 SD24GAIN: 32 50 SD24GAIN: 1 3V -110 SD24GAIN: 8 3V -110 SD24GAIN: 32 3V -110 uV/V dB The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact - Gnom)/Gnom. It covers process, temperature and supply voltage variations. The gain error temperature coefficient ΔEG/ ΔT specifies the variation of the gain error EG over temperature (EG(T) = (Gact(T) Gnom)/Gnom) using the box method (i.e. min. and max. values): ΔEG/ ΔT = (MAX(EG(T)) - MIN(EG(T) ) / (MAX(T) - MIN(T)) = (MAX(Gact(T)) - MIN(Gact(T)) / Gnom / (MAX(T) - MIN(T)) with T ranging from -40°C to +85°C. The gain error vs VCC coefficient ΔEG/ ΔVCC specifies the variation of the gain error EG over supply voltage (EG(VCC) = (Gact(VCC) Gnom)/Gnom) using the box method (i.e. min. and max. values): ΔEG/ ΔVCC = (MAX(EG(VCC)) - MIN(EG(VCC) ) / (MAX(VCC) - MIN(VCC)) = (MAX(Gact(VCC)) - MIN(Gact(VCC)) / Gnom / (MAX(VCC) MIN(VCC)) with VCC ranging from 2.4V to 3.6V. The offset error EOS is measured with shorted inputs in 2's complement mode with +100% FS = VREF/G and -100% FS = -VREF/G. Conversion between EOS [FS] and EOS [V] is as follows: EOS [FS] = EOS [V]×G/VREF; EOS [V] = EOS [FS]×VREF/G. The offset error temperature coefficient ΔEOS/ ΔT specifies the variation of the offset error EOS over temperature using the box method (i.e. min. and max. values): ΔEOS/ ΔT = (MAX(EOS(T)) - MIN(EOS(T) ) / (MAX(T) - MIN(T)) with T ranging from -40°C to +85°C. The offset error vs VCC ΔEOS/ ΔVCC specifies the variation of the offset error EOS over supply voltage using the box method (i.e. min. and max. values): ΔEOS/ ΔVCC = (MAX(EOS(VCC)) - MIN(EOS(VCC) ) / (MAX(VCC) - MIN(VCC)) with VCC ranging from 2.4V to 3.6V. The DC CMRR specifies the change in the measured differential input voltage value when the common mode voltage varies: DC CMRR = -20log(ΔMAX/FSR) with ΔMAX being the difference between the minium value and the maximum value measured when sweeping the common mode voltage (for example, calculating with 16-bits FSR = 65536 a maximum change by 1 LSB results in 20log(1/65536) ≈ -96 dB) . The DC CMRR is measured with both inputs connected to the common mode voltage (i.e. no differential input signal is applied), and the common mode voltage is swept from -1V to VCC. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 73 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com SD24_B, Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER CMRR,50Hz AC PSRR,ext AC PSRR,int XT Common mode rejection at 50 Hz (8) AC power supply rejection ratio, external reference (9) AC power supply rejection ratio, internal reference (9) Crosstalk between converters (10) TEST CONDITIONS VCC MIN TYP SD24GAIN: 1, fCM = 50 Hz, VCM = 930 mV 3V -110 SD24GAIN: 8, fCM = 50 Hz, VCM = 120 mV 3V -110 SD24GAIN: 32, fCM = 50 Hz, VCM = 30 mV 3V -110 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz -61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz -77 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz -79 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz -61 SD24GAIN: 8, VVCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz -77 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz -79 Crosstalk source: SD24GAIN: 1, Sine-wave with max. possible Vpp. fIN = 50 Hz, 100 Hz, Converter under test: SD24GAIN: 1 3V -120 Crosstalk source: SD24GAIN: 1, Sine-wave with max. possible Vpp. fIN = 50 Hz, 100 Hz, Converter under test: SD24GAIN: 8 3V -115 Crosstalk source: SD24GAIN: 1, Sine-wave with max. possible Vpp. fIN = 50 Hz, 100 Hz, Converter under test: SD24GAIN: 32 3V -100 MAX UNIT dB dB dB dB (8) The AC CMRR is the difference between a hypothetical signal with the amplitude and frequency of the applied common mode ripple applied to the inputs of the ADC and the actual common mode signal spur visible in the FFT spectrum: AC CMRR = Error Spur [dBFS] - 20log(VCM/1.2V/G) [dBFS] with a common mode signal of VCM × sin(2π × fCM × t) applied to the analog inputs. The AC CMRR is measured with the both inputs connected to the common mode signal i.e. no differential input signal is applied. With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). (9) The AC PSRR is the difference between a hypothetical signal with the amplitude and frequency of the applied supply voltage ripple applied to the inputs of the ADC and the actual supply ripple spur visible in the FFT spectrum: AC PSRR = Error Spur [dBFS] - 20log(50 mV / 1.2 V / G) [dBFS] with a signal of 50 mV × sin(2π × fVcc × t) added to VCC. The AC PSRR is measured with the inputs grounded; that is, no analog input signal is applied. With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). SD24GAIN: 1 → Hypothetical signal: 20log(50 mV / 1.2 V / 1) = -27.6 dBFS SD24GAIN: 8 → Hypothetical signal: 20log(50 mV / 1.2 V / 8) = -9.5 dBFS SD24GAIN: 32 → Hypothetical signal: 20log(50 mV / 1.2 V / 32) = 2.5 dBFS (10) The crosstalk XT is specified as the tone level of the signal applied to the crosstalk source seen in the spectrum of the converter under test. It is measured with the inputs of the converter under test being grounded. 74 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 SD24_B, AC Performance fSD24 = 1MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER SINAD THD Signal-to-noise + distortion ratio Total Harmonic distiortion TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 85 87 SD24GAIN: 2 3V SD24GAIN: 4 3V SD24GAIN: 8 3V fIN = 50Hz (1) SD24GAIN: 16 3V 84 dB 80 3V 3V SD24GAIN: 128 3V 62 SD24GAIN: 1 3V 100 3V 90 3V 80 SD24GAIN: 32 (1) 85 82 SD24GAIN: 64 fIN = 50Hz (1) UNIT 86 SD24GAIN: 32 SD24GAIN: 8 MAX 73 74 68 dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) VI,A-(t) = 0 V - VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) - VI,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). SD24_B, AC Performance fSD24 = 2MHz, SD24OSRx = 512, SD24REFS = 1 PARAMETER SINAD (1) Signal-to-noise + distortion ratio TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 87 SD24GAIN: 2 3V 86 SD24GAIN: 4 3V 85 SD24GAIN: 8 3V 84 3V 81 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 71 SD24GAIN: 128 3V 65 SD24GAIN: 16 fIN = 50Hz (1) MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) VI,A-(t) = 0 V - VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) - VI,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com SD24_B, AC Performance fSD24 = 32 kHz, SD24OSRx = 512, SD24REFS = 1 PARAMETER Signal-to-noise + distortion ratio SINAD (1) TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 89 SD24GAIN: 2 3V 85 SD24GAIN: 4 3V 84 SD24GAIN: 8 3V 86 3V 80 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 67 SD24GAIN: 128 3V 61 fIN = 12Hz (1) SD24GAIN: 16 MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) VI,A-(t) = 0 V - VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) - VI,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). 95 90 SINAD – dB 85 80 75 70 65 60 55 32 64 128 256 512 1024 SD24OSRx Figure 19. SINAD vs OSR (fSD24 = 1 MHz, SD24REFS = 1, SD24GAIN = 1) 76 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 90 85 SINAD – dB 80 75 70 65 60 0.1 0.2 0.3 0.4 0.5 0.6 Vpp/Vref/Gain 0.7 0.8 0.9 1 Figure 20. SINAD vs VPP SD24_B, External Reference Input ensure correct input voltage range according to VREF VCC MIN TYP MAX VREF(I) Input voltage PARAMETER SD24REFS = 0 TEST CONDITIONS 3V 1.0 1.20 1.5 V IREF(I) SD24REFS = 0 3V 50 nA Input current UNIT 10-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (1) All ADC10_A pins Operating supply current into AVCC terminal, REF module and reference buffer off fADC10CLK = 5 MHz, ADC10ON =1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00 Operating supply current into AVCC terminal, REF module on, reference buffer on VCC MIN TYP MAX UNIT 1.8 3.6 V 0 AVCC V 2.2 V 70 105 3V 80 115 fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01 3V 130 185 µA Operating supply current into AVCC terminal, REF module off, reference buffer on fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 10, VEREF = 2.5 V 3V 108 160 µA Operating supply current into AVCC terminal, REF module off, reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V 3V 74 105 µA CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad. 2.2 V 3.5 RI Input MUX ON resistance IADC10_A (1) µA pF AVCC > 2 V, 0 V ≤ VAx ≤ AVCC 36 1.8 V < AVCC < 2 V, 0 V ≤ VAx ≤ AVCC 96 kΩ The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 77 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com 10-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT For specified performance of ADC10_A linearity parameters 2.2 V, 3 V 0.45 5 5.5 MHz Internal ADC10_A oscillator (1) ADC10DIV = 0, fADC10CLK = fADC10OSC 2.2 V, 3 V 4.4 5.0 5.6 MHz 2.2 V, 3 V 2.4 Conversion time REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode fADC10OSC = 4 MHz to 5 MHz fADC10CLK fADC10OSC tCONVERT TEST CONDITIONS µs External fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSEL ≠ 0 tADC10ON Turn on settling time of the ADC tSample Sampling time (1) (2) (3) (4) 78 See 3.0 (2) (3) 100 ns RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (4) 1.8 V 3 µs RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (4) 3V 1 µs The ADC10OSC is sourced directly from MODOSC inside the UCS. 12 × ADC10DIV × 1/fADC10CLK The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately eight Tau (t) are needed to get an error of less than ±0.5 LSB Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 10-Bit ADC, Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI Integral linearity error 1.4 V ≤ (VeREF+ – VeREF–)min ≤ 1.6 V ED Differential linearity error (VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF 2.2 V, 3 V ±1.0 LSB EO Offset error (VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–), Internal impedance of source RS < 100 Ω, CVREF+ = 20 pF 2.2 V, 3 V ±1.0 LSB EG Gain error (VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF 2.2 V, 3 V ±1.0 LSB ET Total unadjusted error (VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF 2.2 V, 3 V ±2.0 LSB MAX UNIT 1.6 V < (VeREF+ – VeREF–)min ≤ VAVCC ±1.0 2.2 V, 3 V ±1.0 ±1.0 LSB 10-Bit ADC, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN TYP VeREF+ Positive external reference VeREF+ > VeREF– voltage input (2) 1.4 AVCC V VeREF– Negative external reference voltage input VeREF+ > VeREF– (3) 0 1.2 V (VeREF+ – VeREF–) Differential external reference voltage input VeREF+ > VeREF– (4) 1.4 AVCC V ±26 µA ±1 µA IVeREF+ IVeREF– CVeREF+/(1) (2) (3) (4) (5) Static input current Capacitance at VeREF+ or VeREF- terminal 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 0x0001, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTX = 0x1000, Conversion rate 20 ksps 2.2 V, 3 V See (5) ±8.5 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VeREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 79 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Positive built-in reference voltage VREF+ AVCC(min) AVCC minimum voltage, Positive built-in reference active Operating supply current into AVCC terminal (1) IREF+ TEST CONDITIONS VCC MIN TYP MAX REFVSEL = {2} for 2.5 V, REFON = 1 3V 2.47 2.51 2.55 REFVSEL = {1} for 2.0 V, REFON = 1 3V 1.95 1.99 2.03 REFVSEL = {0} for 1.5 V, REFON = 1 2.2 V, 3 V 1.46 1.50 1.54 REFVSEL = {0} for 1.5 V 1.8 REFVSEL = {1} for 2.0 V 2.2 REFVSEL = {2} for 2.5 V 2.7 UNIT V V fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V 3V 23 30 µA fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {1} for 2.0 V 3V 21 27 µA fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {0} for 1.5 V 3V 19 25 µA 10 50 ppm/ °C TCREF+ Temperature coefficient of built-in reference (2) REFVSEL = {0, 1, 2}, REFON = 1 ISENSOR Operating supply current into AVCC terminal REFON = 1, ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 145 220 3V 170 245 VSENSOR See REFON = 1, ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 780 3V 780 VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID is ~0.5 × VAVCC 2.2 V 1.08 1.1 1.12 3V 1.48 1.5 1.52 tSENSOR(sample) Sample time required if channel 10 is selected (4) REFON = 1, ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB tVMID(sample) Sample time required if channel 11 is selected (5) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB PSRR_DC Power supply rejection ratio (dc) AVCC = AVCC (min) - AVCC(max) TA = 25 °C REFVSEL = {0, 1, 2}, REFON = 1 120 PSRR_AC Power supply rejection ratio (ac) AVCC = AVCC (min) - AVCC(max) TA = 25 °C f = 1 kHz, ΔVpp = 100 mV REFVSEL = {0, 1, 2}, REFON = 1 1 mV/V tSETTLE Settling time of reference voltage (6) AVCC = AVCC (min) - AVCC(max) REFVSEL = {0, 1, 2}, REFON = 0 → 1 75 µs VSD24REF SD24_B internal reference voltage SD24REFS = 1 3V tON SD24_B internal reference turn-on time (7) SD24REFS = 0->1, CREF = 100 nF 3V (1) (2) (3) (4) (5) (6) (7) 80 (3) µA mV V 30 µs 1 µs 1.137 1.151 200 300 1.165 µV/V V µs The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (–40°C)). The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. The condition is that the error in a conversion started after tREFON is ≤ 1 LSB. The condition is that SD24_B conversion started after tON should guarantee specified SINAD values for the selected Gain, OSR and fSD24. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS DVCC(PGM/ERASE) Program and erase supply voltage MIN TYP 1.8 MAX 3.6 UNIT V IPGM Average supply current from DVCC during program 3 5 mA IERASE Average supply current from DVCC during erase 6 11 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 11 mA 16 ms tCPT Cumulative program time See (1) 4 Program and erase endurance 10 5 10 cycles tRetention Data retention duration TJ = 25°C tWord Word or byte program time See (2) 64 85 µs tBlock, 0 Block program time for first byte or word See (2) 49 65 µs tBlock, 1–(N–1) Block program time for each additional byte or word, except for last byte or word See (2) 37 49 µs Block program time for last byte or word See (2) 55 73 µs tErase Erase time for segment erase, mass erase, and bank erase when available See (2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1) 0 1 MHz tBlock, (1) (2) N 100 years The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word- or byte-write and block-write modes. These values are hardwired into the flash controller's state machine. JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs tSBW, Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2.2 V, 3 V 1 µs µs En tSBW,Rst Spy-Bi-Wire return to normal operation time fTCK TCK input frequency for 4-wire JTAG (2) Rinternal Internal pulldown resistance on TEST (1) (2) 15 100 2.2 V 0 5 3V 0 10 2.2 V, 3 V 45 60 80 MHz kΩ Tools accessing the Spy-Bi-Wire interface need to wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 81 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com INPUT/OUTPUT SCHEMATICS Port P1, P1.0 and P1.1, Input/Output With Schmitt Trigger (MSP430F67xxIPZ and MSP430F67xxIPN) Pad Logic to/from Reference To ADC10_A INCHx = y P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 from Port Mapping 1 P1OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.0/PM_TA0.0/VeREF-/A2 P1.1/PM_TA0.1/VeREF+/A1 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x Bus Keeper EN to Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Table 63. Port P1 (P1.0 and P1.1) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) PIN NAME (P1.x) P1.0/PM_TA0.0/ VeREF-/A2 P1.1/PM_TA0.1/ VeREF+/A1 (1) (2) 82 x 0 FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 X 0 1 default TA0.TA0 1 1 default VeREF-/A2 (2) X 1 = 31 I: 0; O: 1 0 X 0 1 default TA0.TA1 1 1 default VeREF+/A1 (2) X 1 = 31 P1.0 (I/O) TA0.CCI0A 1 CONTROL BITS/SIGNALS (1) P1.1 (I/O) TA0.CCI1A P1MAPx X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver as well as the input Schmitt trigger. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P1, P1.2, Input/Output With Schmitt Trigger (MSP430F67xxIPZ and MSP430F67xxIPN) Pad Logic To ADC10_A INCHx = y P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 from Port Mapping 1 P1OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x Bus Keeper EN to Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Table 64. Port P1 (P1.2) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) PIN NAME (P1.x) x P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 2 (1) (2) FUNCTION CONTROL BITS/SIGNALS (1) P1DIR.x P1SEL.x P1MAPx I: 0; O: 1 0 X UCA0RXD/UCA0SOMI X 1 default A0 (2) X 1 = 31 P1.2 (I/O) X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver as well as the input Schmitt trigger. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 83 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger (MSP430F67xxIPZ and MSP430F67xxIPN) to LCD_C Pad Logic P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 from Port Mapping 1 P1OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1DS.x 0: Low drive 1: High drive P1SEL.x P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 P1IN.x Bus Keeper EN to Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Table 65. Port P1 (P1.3 to P1.5) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) PIN NAME (P1.x) x P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 3 FUNCTION P1.3 (I/O) UCA0TXD/UCA0SIMO R03 (2) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 4 P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 5 (1) (2) 84 P1.4 (I/O) UCA1RXD/UCA1SOMI LCDREF/R13 (2) CONTROL BITS/SIGNALS (1) P1DIR.x P1SEL.x I: 0; O: 1 0 P1MAPx X X 1 default = 31 X 1 I: 0; O: 1 0 X X 1 default = 31 X 1 I: 0; O: 1 0 X UCA1TXD/UCA1SIMO X 1 default R23 (2) X 1 = 31 P1.5 (I/O) X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver as well as the input Schmitt trigger. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P1, P1.6 and P1.7 (MSP430F67xxIPZ and MSP430F67xxIPN), Port P2, P2.0 and P2.1 (MSP430F67xxIPZ Only) Input/Output With Schmitt Trigger COM4 to COM7 from LCD_C Pad Logic PyREN.x PyMAP.x = PMAP_ANALOG PyDIR.x 0 from Port Mapping 1 PyOUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output PyDS.x 0: Low drive 1: High drive PySEL.x P1.6/PM_UCA0CLK/COM4 P1.7/PM_UCB0CLK/COM5 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7 PyIN.x Bus Keeper EN to Port Mapping D PyIE.x EN PyIRQ.x Q PyIFG.x PySEL.x PyIES.x Set Interrupt Edge Select Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 85 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 66. Port P1 (P1.6 and P1.7) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) CONTROL BITS/SIGNALS (1) PIN NAME (P1.x) P1.6/PM_UCA0CLK/COM4 x 6 FUNCTION (1) 7 COM4,5 Enable Signal 0 X 0 1 default 0 X 1 = 31 0 P1SEL.x P1.6 (I/O) I: 0; O: 1 UCA0CLK X Output driver and input Schmitt trigger disabled COM4 P1.7/PM_UCB0CLK/COM5 P1MAPx P1DIR.x X X X 1 P1.7 (I/O) I: 0; O: 1 0 X 0 UCB0CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM5 X X X 1 X = Don't care Table 67. Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS/SIGNALS (1) PIN NAME (P2.x) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 x 0 FUNCTION P2.0 (I/O) (1) 86 1 P2SEL.x P2MAPx COM6,7 Enable Signal I: 0; O: 1 0 X 0 UCB0SOMI/UCB0SCL X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM6 P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 P2DIR.x X X X 1 I: 0; O: 1 0 X 0 UCB0SIMO/UCB0SDA X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM7 X X X 1 P2.1 (I/O) X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P2, P2.2 to P2.7, Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x P2.2/PM_UCA2RXD/PM_UCA2SOMI P2.3/PM_UCA2TXD/PM_UCA2SIMO P2.4/PM_UCA1CLK P2.5/PM_UCA2CLK P2.6/PM_TA1.0 P2.7/PM_TA1.1 Bus Keeper EN to Port Mapping 1 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 87 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 68. Port P2 (P2.2 to P2.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P2.x) x P2.2/PM_UCA2RXD/ PM_UCA2SOMI 2 P2.3/PM_UCA2TXD/ PM_UCA2SIMO 3 FUNCTION P2.2 (I/O) UCA2RXD/UCA2SOMI Output driver and input Schmitt trigger disabled P2.4/PM_UCA1CLK P2.5/PM_UCA2CLK P2.6/PM_TA1.0 4 5 6 (1) 88 7 P2DIR.x P2SEL.x P2MAPx I: 0; O: 1 0 X X 1 default X 1 = 31 I: 0; O: 1 0 X UCA2TXD/UCA2SIMO X 1 default Output driver and input Schmitt trigger disabled X 1 = 31 P2.4 (I/O) I: 0; O: 1 0 X UCA1CLK X 1 default Output driver and input Schmitt trigger disabled X 1 = 31 P2.5 (I/O) I: 0; O: 1 0 X UCA2CLK X 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X 0 1 default TA1.TA0 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TA1.CCI1A 0 1 default TA1.TA1 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 P2.3 (I/O) P2.6 (I/O) TA1.CC10A P2.7/PM_TA1.1 CONTROL BITS/SIGNALS (1) P2.7 (I/O) X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.0/PM_TA2.0 P3.1/PM_TA2.1 P3.2/PM_TACLK/PM_RTCCLK P3.3/PM_TA0.2 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Keeper EN to Port Mapping D Table 69. Port P3 (P3.0 to P3.3) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P3.x) P3.0/PM_TA2.0 x 0 FUNCTION P3DIR.x P3SEL.x I: 0; O: 1 0 X 0 1 default TA2.TA0 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TA2.CCI1A 0 1 default TA2.TA1 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TACLK 0 1 default RTCCLK 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 P3.0 (I/O) TA2.CC10A P3.1/PM_TA2.1 P3.2/PM_TACLK/ PM_RTCCLK P3.3/PM_TA0.2 (1) 1 2 3 CONTROL BITS/SIGNALS (1) P3.1 (I/O) P3.2 (I/O) P3.3 (I/O) P3MAPx I: 0; O: 1 0 X TA0.CCI2A 0 1 default TA0.TA2 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 89 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P3, P3.4 to P3.7 , Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) S39 to S37 LCDS39 to LCDS37 Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.4/PM_SDCLK/S39 P3.5/PM_SD0DIO/S38 P3.6/PM_SD1DIO/S37 P3.7/PM_SD2DIO/S36 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Keeper EN to Port Mapping D Table 70. Port P3 (P3.4 to P3.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P3.x) P3.4/PM_SDCLK/S39 P3.5/PM_SD0DIO/S38 x 4 5 FUNCTION P3DIR.x P3SEL.x P3MAPx LCDS39...36 I: 0; O: 1 0 X 0 SDCLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S39 X X X 1 P3.4 (I/O) P3.5 (I/O) I: 0; O: 1 0 X 0 SD0DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S38 P3.6/PM_SD1DIO/S37 6 X X X 1 I: 0; O: 1 0 X 0 SD1DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.6 (I/O) S37 P3.7/PM_SD2DIO/S36 (1) 90 7 CONTROL BITS/SIGNALS (1) X X X 1 I: 0; O: 1 0 X 0 SD2DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S36 X X X 1 P3.7 (I/O) X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P4, Port P5, Port P6, Port P7, Port P8, P8.0 to P8.3 Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Sz LCDSz Pad Logic PyREN.x PyDIR.x 0 0 DVSS 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS PyDS.x 0: Low drive 1: High drive PySEL.x Py.x/Sz PyIN.x EN Not Used Bus Keeper D Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 91 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 71. Port P4 (P4.0 to P4.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P4.x) P4.0/S35 P4.1/S34 x 0 1 FUNCTION P4.0 (I/O) 2 3 P4.5/S30 P4.6/S29 4 5 6 0 0 1 0 DVSS 1 1 0 S35 X X 1 P4.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P4.2 (I/O) 7 92 X 1 0 0 0 1 0 1 1 0 S33 X X 1 I: 0; O: 1 0 0 0 1 0 P4.3 (I/O) DVSS 1 1 0 S32 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S31 X X 1 P4.4 (I/O) P4.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S30 X X 1 P4.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P4.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S29 P4.7/S28 LCDS35...28 0 N/A P4.4/S31 P4SEL.x I: 0; O: 1 N/A P4.3/S32 P4DIR.x N/A S34 P4.2/S33 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S28 X X 1 X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 72. Port P5 (P5.0 to P5.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P5.x) P5.0/S27 P5.1/S26 x 0 1 FUNCTION P5.0 (I/O) 2 3 P5.5/S22 P5.6/S21 4 5 6 0 0 1 0 DVSS 1 1 0 S27 X X 1 P5.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P5.2 (I/O) 7 X 1 0 0 0 1 0 1 1 0 S25 X X 1 I: 0; O: 1 0 0 0 1 0 P5.3 (I/O) DVSS 1 1 0 S24 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S23 X X 1 P5.4 (I/O) P5.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S22 X X 1 P5.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P5.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S21 P5.7/S20 LCDS27...20 0 N/A P5.4/S23 P5SEL.x I: 0; O: 1 N/A P5.3/S24 P5DIR.x N/A S26 P5.2/S25 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S20 X X 1 X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 93 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 73. Port P6 (P6.0 to P6.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P6.x) P6.0/S19 P6.1/S18 x 0 1 FUNCTION P6.0 (I/O) 2 3 P6.5/S14 P6.6/S13 4 5 6 0 0 1 0 DVSS 1 1 0 S19 X X 1 P6.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P6.2 (I/O) 7 94 X 1 0 0 0 1 0 1 1 0 S17 X X 1 I: 0; O: 1 0 0 0 1 0 P6.3 (I/O) DVSS 1 1 0 S16 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S15 X X 1 P6.4 (I/O) P6.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S14 X X 1 P6.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P6.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S13 P6.7/S12 LCDS19...12 0 N/A P6.4/S15 P6SEL.x I: 0; O: 1 N/A P6.3/S16 P6DIR.x N/A S18 P6.2/S17 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S12 X X 1 X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 74. Port P7 (P7.0 to P7.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P7.x) P7.0/S11 P7.1/S10 x 0 1 FUNCTION P7.0 (I/O) 2 3 P7.5/S6 P7.6/S5 4 5 6 0 0 1 0 DVSS 1 1 0 S11 X X 1 P7.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P7.2 (I/O) 7 X 1 0 0 0 1 0 1 1 0 S9 X X 1 I: 0; O: 1 0 0 0 1 0 P7.3 (I/O) DVSS 1 1 0 S8 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S7 X X 1 P7.4 (I/O) P7.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S6 X X 1 P7.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P7.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S5 P7.7/S4 LCDS11...4 0 N/A P7.4/S7 P7SEL.x I: 0; O: 1 N/A P7.3/S8 P7DIR.x N/A S10 P7.2/S9 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S4 X X 1 X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 95 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 75. Port P8 (P8.0 to P8.3) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P8.x) P8.0/S3 P8.1/S2 x 0 1 FUNCTION P8.0 (I/O) 2 3 96 LCDS3...0 0 0 0 1 0 DVSS 1 1 0 S3 X X 1 P8.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P8.2 (I/O) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S1 X X 1 I: 0; O: 1 0 0 0 1 0 P8.3 (I/O) N/A (1) P8SEL.x I: 0; O: 1 N/A P8.3/S0 P8DIR.x N/A S2 P8.2/S1 CONTROL BITS/SIGNALS (1) DVSS 1 1 0 S0 X X 1 X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P8, P8.4 to P8.7, Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Pad Logic P8REN.x P8DIR.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.x DVSS 0 1 Module X OUT P8.4/TA1.0 P8.5/TA1.1 P8.6/TA2.0 P8.7/TA2.1 P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x EN Module X IN D Table 76. Port P8 (P8.4 to P8.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P8.x) P8.4/TA1.0 P8.5/TA1.1 P8.6/TA2.0 P8.7/TA2.1 x 4 5 6 7 FUNCTION P8.4 (I/O) CONTROL BITS/SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 TA1.CCI0A 0 1 TA1.TA0 1 1 P8.5 (I/O) I: 0; O: 1 0 TA1.CCI1A 0 1 TA1.TA1 1 1 P8.6 (I/O) I: 0; O: 1 0 TA2.CCI0A 0 1 TA2.TA0 1 1 P8.7 (I/O) I: 0; O: 1 0 TA2.CCI1A 0 1 TA2.TA1 1 1 Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 97 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P9, P9.0, Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Pad Logic P9REN.x P9DIR.x 0 Module X OUT 0 DVCC 1 1 Direction 0: Input 1: Output 1 P9OUT.x DVSS 0 1 P9.0/TACLK/RTCCLK P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x EN Module X IN D Table 77. Port P9 (P9.0) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P9.x) P9.0/TACLK/RTCCLK 98 x 0 FUNCTION CONTROL BITS/SIGNALS P9DIR.x P9SEL.x I: 0; O: 1 0 TACLK 0 1 RTCCLK 1 1 P9.0 (I/O) Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Port P9, P9.1 to P9.3, Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Pad Logic To ADC10 INCHx = y P9REN.x DVSS 0 DVCC 1 1 P9DIR.x P9OUT.x P9.1/A5 P9.2/A4 P9.3/A3 P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x Bus Keeper Table 78. Port P9 (P9.1 to P9.3) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P9.x) P9.1/A5 x 1 FUNCTION P9.1 (I/O) A5 P9.2/A4 2 (2) P9.2 (I/O) A4 (2) P9.3/A3 3 P9.3 (I/O) A3 (1) (2) (2) CONTROL BITS/SIGNALS (1) P9DIR.x P9SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care Setting P9SEL.x bit disables the output driver as well as the input Schmitt trigger. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 99 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P2, P2.0 and P2.1, Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) S39, S38 LCDS39, LCDS38 COM6, COM7 from LCD_C Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6/S39 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7/S38 P2IN.x Bus Keeper EN to Port Mapping D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x 100 Submit Documentation Feedback Set Interrupt Edge Select Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 79. Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS/SIGNALS (1) PIN NAME (P2.x) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/ S39 P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/ S38 (1) x 0 1 FUNCTION P2.0 (I/O) P2DIR.x P2SEL.x P2MAPx LCDS39, LCDS38 COM6,7 Enable Signal I: 0; O: 1 0 X 0 0 UCB0SOMI/UCB0SCL X 1 default 0 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 0 COM6 X X X X 1 S39 X X X 1 0 P2.1 (I/O) I: 0; O: 1 0 X 0 0 UCB0SIMO/UCB0SDA X 1 default 0 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 0 COM7 X X X X 1 S38 X X X 1 0 X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 101 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P2, P2.2 to P2.7 , Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) S37...S32 LCDS37...LCDS32 Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x P2.2/PM_UCA2RXD/PM_UCA2SOMI/S37 P2.3/PM_UCA2TXD/PM_UCA2SIMO/S36 P2.4/PM_UCA1CLK/S35 P2.5/PM_UCA2CLK/S34 P2.6/PM_TA1.0/S33 P2.7/PM_TA1.1/S32 Bus Keeper EN to Port Mapping 1 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x 102 Submit Documentation Feedback Set Interrupt Edge Select Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 80. Port P2 (P2.2 to P2.7) Pin Functions (MSP430F67xxIPN Only) PIN NAME (P2.x) P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 x 2 FUNCTION P2.2 (I/O) 3 4 5 6 X 0 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I: 0; O: 1 0 X 0 UCA2TXD/UCA2SIMO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.3 (I/O) X X X 1 P2.4 (I/O) I: 0; O: 1 0 X 0 UCA1CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 P2.5 (I/O) I: 0; O: 1 0 X 0 UCA2CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I: 0; O: 1 0 X 0 TA1.CCI0A 0 1 default 0 TA1.TA0 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.6 (I/O) S33 P2.7/PM_TA1.1/S32 (1) 7 LCDS37...32 0 S34 P2.6/PM_TA1.0/S33 P2MAPx X S35 P2.5/PM_UCA2CLK/S34 P2SEL.x I: 0; O: 1 S36 P2.4/PM_UCA1CLK/S35 P2DIR.x UCA2RXD/UCA2SOMI S37 P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 CONTROL BITS/SIGNALS (1) X X X 1 I: 0; O: 1 0 X 0 TA1.CCI1A 0 1 default 0 TA1.TA1 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S32 X X X 1 P2.7 (I/O) X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 103 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P3, P3.0 to P3.7 , Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) S31 to S24 LCDS31 to LCDS24 Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x EN to Port Mapping 104 1 Bus Keeper P3.0/PM_TA2.0/S31 P3.1/PM_TA2.1/S30 P3.2/PM_TACLK/PM_RTCCLK/S29 P3.3/PM_TA0.2/S28 P3.4/PM_SDCLK/S27 P3.5/PM_SD0DIO/S26 P3.6/PM_SD1DIO/S25 P3.7/PM_SD2DIO/S24 D Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 81. Port P3 (P3.0 to P3.7) Pin Functions (MSP430F67xxIPN Only) PIN NAME (P3.x) P3.0/PM_TA2.0/S31 x 0 FUNCTION P3.0 (I/O) 1 P3.3/PM_TA0.2/S28 P3.4/PM_SDCLK/S27 2 3 4 5 6 X 0 1 default 0 TA2.TA0 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I: 0; O: 1 0 X 0 TA2.CCI1A 0 1 default 0 TA2.TA1 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.1 (I/O) X X X 1 I: 0; O: 1 0 X 0 TACLK 0 1 default 0 RTCCLK 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S29 X X X 1 P3.2 (I/O) P3.3 (I/O) I: 0; O: 1 0 X 0 TA0.CCI2A 0 1 default 0 TA0.TA2 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S28 X X X 1 P3.4 (I/O) I: 0; O: 1 0 X 0 SDCLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I: 0; O: 1 0 X 0 SD0DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.5 (I/O) X X X 1 I: 0; O: 1 0 X 0 SD1DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.6 (I/O) S25 P3.7/PM_SD2DIO/S24 (1) 7 LCDS31...24 0 S26 P3.6/PM_SD1DIO/S25 P3MAPx 0 S27 P3.5/PM_SD0DIO/S26 P3SEL.x I: 0; O: 1 S30 P3.2/PM_TACLK/ PM_RTCCLK/S29 P3DIR.x TA2.CCI0A S31 P3.1/PM_TA2.1/S30 CONTROL BITS/SIGNALS (1) X X X 1 I: 0; O: 1 0 X 0 SD2DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S24 X X X 1 P3.7 (I/O) X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 105 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port P4, Port P5, Port P6, Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) Sz LCDSz Pad Logic PyREN.x PyDIR.x 0 0 DVSS 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS PyDS.x 0: Low drive 1: High drive PySEL.x Py.x/Sz PyIN.x EN Not Used 106 Bus Keeper D Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 82. Port P4 (P4.0 to P4.7) Pin Functions (MSP430F67xxIPN Only) PIN NAME (P4.x) P4.0/S23 P4.1/S22 x 0 1 FUNCTION P4.0 (I/O) 2 3 P4.5/S18 P4.6/S17 4 5 6 0 0 1 0 DVSS 1 1 0 S23 X X 1 P4.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P4.2 (I/O) 7 X 1 0 0 0 1 0 1 1 0 S21 X X 1 I: 0; O: 1 0 0 0 1 0 P4.3 (I/O) DVSS 1 1 0 S20 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S19 X X 1 P4.4 (I/O) P4.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S18 X X 1 P4.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P4.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S17 P4.7/S16 LCDS23...16 0 N/A P4.4/S19 P4SEL.x I: 0; O: 1 N/A P4.3/S20 P4DIR.x N/A S22 P4.2/S21 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S16 X X 1 X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 107 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Table 83. Port P5 (P5.0 to P5.7) Pin Functions (MSP430F67xxIPN Only) PIN NAME (P5.x) P5.0/S15 P5.1/S14 x 0 1 FUNCTION P5.0 (I/O) 2 3 P5.5/S10 P5.6/S9 4 5 6 0 0 1 0 DVSS 1 1 0 S15 X X 1 P5.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P5.2 (I/O) 7 108 X 1 0 0 0 1 0 1 1 0 S13 X X 1 I: 0; O: 1 0 0 0 1 0 P5.3 (I/O) DVSS 1 1 0 S12 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S11 X X 1 P5.4 (I/O) P5.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S10 X X 1 P5.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P5.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S9 P5.7/S8 LCDS15...8 0 N/A P5.4/S11 P5SEL.x I: 0; O: 1 N/A P5.3/S12 P5DIR.x N/A S14 P5.2/S13 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S8 X X 1 X = Don't care Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 84. Port P6 (P6.0 to P6.7) Pin Functions (MSP430F67xxIPN Only) PIN NAME (P6.x) P6.0/S7 P6.1/S6 x 0 1 FUNCTION P6.0 (I/O) 2 3 P6.5/S2 P6.6/S1 4 5 6 0 0 1 0 DVSS 1 1 0 S7 X X 1 P6.1 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P6.2 (I/O) 7 X 1 0 0 0 1 0 1 1 0 S5 X X 1 I: 0; O: 1 0 0 0 1 0 P6.3 (I/O) DVSS 1 1 0 S4 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S3 X X 1 P6.4 (I/O) P6.5 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S2 X X 1 P6.6 (I/O) I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P6.7 (I/O) N/A (1) X I: 0; O: 1 DVSS S1 P6.7/S0 LCDS7...0 0 N/A P6.4/S3 P6SEL.x I: 0; O: 1 N/A P6.3/S4 P6DIR.x N/A S6 P6.2/S5 CONTROL BITS/SIGNALS (1) X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S0 X X 1 X = Don't care Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 109 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com Port J, J.0, JTAG pin TDO, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.x PJDIR.x 0 DVCC 1 PJOUT.x 00 From JTAG 01 SMCLK 10 DVSS 0 DVCC 1 1 PJ.0/SMCLK/TDO PJDS.0 0: Low drive 1: High drive 11 PJSEL.x From JTAG PJIN.x Bus Holder EN D Port J, J.1 to J.3, JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.x PJDIR.x DVSS PJOUT.x DVSS 0 DVCC 1 1 0 1 00 From JTAG 01 MCLK/ADC10CLK/ACLK 10 PJDS.x 0: Low drive 1: High drive 11 PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK PJSEL.x From JTAG PJIN.x EN To JTAG 110 Bus Holder D Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 85. Port PJ (PJ.0 to PJ.3) Pin Functions CONTROL BITS/ SIGNALS (1) PIN NAME (PJ.x) PJ.0/SMCLK/TDO PJDIR.x PJSEL.x JTAG Mode Signal I: 0; O: 1 0 0 1 1 0 (3) X X 1 PJ.1 (I/O) (2) I: 0; O: 1 0 0 1 1 0 x 0 FUNCTION PJ.0 (I/O) (2) SMCLK TDO PJ.1/MCLK/TDI/TCLK 1 MCLK TDI/TCLK PJ.2/ADC10CLK/TMS 2 X X 1 PJ.2 (I/O) (2) I: 0; O: 1 0 0 ADC10CLK 1 1 0 X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 TMS PJ.3/ACLK/TCK 3 (3) (4) (3) (4) PJ.3 (I/O) (2) ACLK TCK (1) (2) (3) (4) (3) (4) X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 111 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com DEVICE DESCRIPTORS (TLV) Table 86 and Table 87 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 86. MSP430F673x Device Descriptor Table Info Block Die Record ADC10 Calibration 112 F6736PZ F6736PN F6735PZ F6735PN F6734PZ F6734PN F6733PZ F6733PN F6731PZ F6731PN F6730PZ F6730PN Value Value Value Value Value Value 06h 06h 06h 06h 06h 06h 1 06h 06h 06h 06h 06h 06h 01A02h 2 per unit per unit per unit per unit per unit per unit Device ID 01A04h 1 6Ch 6Bh 6Ah 65h 63h 62h Description Address Size bytes Info length 01A00h 1 CRC length 01A01h CRC value Device ID 01A05h 1 81h 81h 81h 80h 80h 80h Hardware revision 01A06h 1 per unit per unit per unit per unit per unit per unit Firmware revision 01A07h 1 per unit per unit per unit per unit per unit per unit Die Record Tag 01A08h 1 08h 08h 08h 08h 08h 08h Die Record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah Lot/Wafer ID 01A0Ah 4 per unit per unit per unit per unit per unit per unit Die X position 01A0Eh 2 per unit per unit per unit per unit per unit per unit Die Y position 01A10h 2 per unit per unit per unit per unit per unit per unit Test results 01A12h 2 per unit per unit per unit per unit per unit per unit ADC10 Calibration Tag 01A14h 1 13h 13h 13h 13h 13h 13h ADC10 Calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC Gain Factor 01A16h 2 per unit per unit per unit per unit per unit per unit ADC Offset 01A18h 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 30°C 01A1Ah 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 85°C 01A1Ch 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 30°C 01A1Eh 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 85°C 01A20h 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 01A24h 2 per unit per unit per unit per unit per unit per unit Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated MSP430F673x MSP430F672x www.ti.com SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 Table 87. MSP430F672x Device Descriptor Table Description Info Block Die Record ADC10 Calibration Address Size bytes F6726PZ F6726PN F6725PZ F6725PN F6724PZ F6724PN F6723PZ F6723PN F6721PZ F6721PN F6720PZ F6720PN Value Value Value Value Value Value 06h Info length 01A00h 1 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 per unit per unit per unit per unit per unit per unit Device ID 01A04h 1 6Fh 6Eh 6Dh 61h 59h 58h Device ID 01A05h 1 81h 81h 81h 80h 80h 80h Hardware revision 01A06h 1 per unit per unit per unit per unit per unit per unit Firmware revision 01A07h 1 per unit per unit per unit per unit per unit per unit Die Record Tag 01A08h 1 08h 08h 08h 08h 08h 08h Die Record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah Lot/Wafer ID 01A0Ah 4 per unit per unit per unit per unit per unit per unit Die X position 01A0Eh 2 per unit per unit per unit per unit per unit per unit Die Y position 01A10h 2 per unit per unit per unit per unit per unit per unit Test results 01A12h 2 per unit per unit per unit per unit per unit per unit 13h ADC10 Calibration Tag 01A14h 1 13h 13h 13h 13h 13h ADC10 Calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC Gain Factor 01A16h 2 per unit per unit per unit per unit per unit per unit ADC Offset 01A18h 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 30°C 01A1Ah 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 85°C 01A1Ch 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 30°C 01A1Eh 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 85°C 01A20h 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 01A24h 2 per unit per unit per unit per unit per unit per unit Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback 113 MSP430F673x MSP430F672x SLAS731C – DECEMBER 2011 – REVISED FEBRUARY 2013 www.ti.com REVISION HISTORY REVISION SLAS731 COMMENTS Production Data release SLAS731A Changed the SYSRSTIV, System Reset Interrupt Event at offset 1Ch to Reserved in Table 16. Changed LPM3 current in Features. Changed limits for ILPM0,1MHz, ILPM2, and ILPM3,XT1LF in Low-Power Mode Supply Currents (Into VCC) Excluding External Current. Changed limits for ILPM3,LCD,int. bias in Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current. Corrected values in "x" column in Table 70. SLAS731B Added "reverse byte" registers to Table 28. Added note to Recommended Operating Conditions regarding interaction between minimum VCC and SVSH. SLAS731C Recommended Operating Conditions, Added test conditions for typical characteristics. DCO Frequency, Added note (1). 10-Bit ADC, External Reference, Changed note (1): "12-bit accuracy" to "10-bit accuracy". Flash Memory, Changed IERASE and IMERASE values. 114 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430A155IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6733 MSP430A155IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6733 MSP430F6720IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6720IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6720IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6720IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6721IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6721IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6721IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6721IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6723IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPNR-S ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6724IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6724 MSP430F6724IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6724 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 15-Apr-2017 Status (1) Package Type Package Pins Package Drawing Qty 90 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6724 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6724 (4/5) MSP430F6724IPZ ACTIVE LQFP PZ 100 MSP430F6724IPZR ACTIVE LQFP PZ 100 MSP430F6725IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6725IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6725IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6725IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6726IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6726IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6726IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6726IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6730IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6730IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6730IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6730IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6731IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6731 MSP430F6731IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6731 MSP430F6731IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6731 MSP430F6731IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6731 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 15-Apr-2017 Status (1) (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F6733IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6733 MSP430F6733IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6733 MSP430F6733IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F6733 MSP430F6733IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F6733 MSP430F6734IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6734IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6734IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6734IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6735IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6735 MSP430F6735IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6735 MSP430F6735IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6735 MSP430F6735IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6735 MSP430F6736IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6736 MSP430F6736IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6736 MSP430F6736IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6736 MSP430F6736IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6736 SN0806723IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 F6723 The marketing status values are defined as follows: Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jan-2017 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing MSP430F6720IPNR LQFP SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6720IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6721IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6721IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6723IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6723IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6724IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6724IPZR LQFP PZ 100 0 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6725IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6725IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6726IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6726IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6730IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6730IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6731IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6731IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6733IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6733IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jan-2017 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430F6734IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6734IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6735IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6735IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F6736IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F6736IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F6720IPNR LQFP MSP430F6720IPZR LQFP PN 80 1000 367.0 367.0 45.0 PZ 100 1000 367.0 367.0 45.0 MSP430F6721IPNR LQFP MSP430F6721IPZR LQFP PN 80 1000 367.0 367.0 45.0 PZ 100 1000 367.0 367.0 MSP430F6723IPNR LQFP 45.0 PN 80 1000 367.0 367.0 45.0 MSP430F6723IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6724IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6724IPZR LQFP PZ 100 0 367.0 367.0 45.0 MSP430F6725IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6725IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6726IPNR LQFP PN 80 1000 367.0 367.0 45.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jan-2017 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F6726IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6730IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6730IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6731IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6731IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6733IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6733IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6734IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6734IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6735IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6735IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F6736IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F6736IPZR LQFP PZ 100 1000 367.0 367.0 45.0 Pack Materials-Page 3 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated