SILABS EFM32HG309F64G-A-QFN24 Output state retention and wake-up from shutoff mode Datasheet

Preliminary
...the world's most energy friendly microcontrollers
EFM32HG309 DATASHEET
F64/F32
Preliminary
• ARM Cortex-M0+ CPU platform
• High Performance 32-bit processor @ up to 25 MHz
• Wake-up Interrupt Controller
• Flexible Energy Management System
• 20 nA @ 3 V Shutoff Mode
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out
Detector, RAM and CPU retention
• 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU
retention
• 53 µA/MHz @ 3 V Sleep Mode
• 132 µA/MHz @ 3 V Run Mode, with code executed from flash
• 64/32 KB Flash
• 8/8 KB RAM
• 24 General Purpose I/O pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive
strength
• Configurable peripheral I/O locations
• 10 asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• 6 Channel DMA Controller
• 6 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
• Hardware AES with 128-bit keys in 54 cycles
• Timers/Counters
• 3× 16-bit Timer/Counter
• 3×3 Compare/Capture/PWM channels
• Dead-Time Insertion on TIMER0
• 1× 24-bit Real-Time Counter
• 1× 16-bit Pulse Counter
• Watchdog Timer with dedicated RC oscillator @ 50 nA
• Communication interfaces
• 2× Universal Synchronous/Asynchronous Receiver/Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
• Triple buffered full/half-duplex operation
• Low Energy UART
• Autonomous operation with DMA in Deep Sleep
Mode
2
• I C Interface with SMBus support
• Address recognition in Stop Mode
• Low Energy Universal Serial Bus (USB) Device
• Fully USB 2.0 compliant
• On-chip PHY and embedded 5V to 3.3V regulator
• Crystal-free operation
• Ultra low power precision analog peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter
• 2 single ended channels/ differential channels
• On-chip temperature sensor
• Current Digital to Analog Converter
• Selectable current range between 0.05 and 64 uA
• 1× Analog Comparator
• Capacitive sensing with up to 2 inputs
• Supply Voltage Comparator
• Ultra efficient Power-on Reset and Brown-Out Detector
• Debug Interface
• 2-pin Serial Wire Debug interface
• Micro Trace Buffer (MTB)
• Pre-Programmed USB/UART Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.98 to 3.8 V
• QFN24 package
• Preliminary - This datasheet revision applies to a product
under development
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:
• Energy, gas, water and smart metering
• Health and fitness applications
• Smart accessories
• Alarm and security systems
• Industrial and home automation
Preliminary
...the world's most energy friendly microcontrollers
1 Ordering Information
Table 1.1 (p. 2) shows the available EFM32HG309 devices.
Table 1.1. Ordering Information
Ordering Code
Flash (kB)
RAM (kB)
Max
Speed
(MHz)
Supply
Voltage
(V)
Temperature
(ºC)
Package
EFM32HG309F32G-A-QFN24
32
8
25
1.98 - 3.8
-40 - 85
QFN24
EFM32HG309F64G-A-QFN24
64
8
25
1.98 - 3.8
-40 - 85
QFN24
Adding the suffix 'R' to the part number (e.g. EFM32HG309F32G-A-QFN24R) denotes tape and reel.
Visit www.silabs.com for information on global distributors and representatives.
2015-05-06 - EFM32HG309FXX - _Rev0.91
2
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
2 System Summary
2.1 System Introduction
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination
of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from
energy saving modes, and a wide selection of peripherals, the EFM32HG microcontroller is well suited
for any battery operated application as well as other systems requiring high performance and low-energy
consumption. This section gives a short introduction to each of the modules in general terms and also
shows a summary of the configuration for the EFM32HG309 devices. For a complete feature set and
in-depth information on the modules, the reader is referred to the EFM32HG Reference Manual.
A block diagram of the EFM32HG309 is shown in Figure 2.1 (p. 3) .
Figure 2.1. Block Diagram
HG309F64/ F32
Core and Mem ory
ARM Cortex ™ M0+ processor
Flash
Program
Mem ory
RAM
Mem ory
Debug
Interface
w/ MTB
DMA
Controller
Clock Managem ent
Energy Managem ent
High Freq
RC
Oscillator
48/ 24 MHz
Com m . RC
Oscillator
Voltage
Regulator
Voltage
Com parator
Aux High
Freq RC
Oscillator
High Freq
Crystal
Oscillator
Low Freq
RC
Oscillator
Low Freq
Crystal
Oscillator
Brown- out
Detector
Power- on
Reset
Ultra Low Freq
RC
Oscillator
32- bit bus
Peripheral Ref lex Syst em
Serial Interfaces
USART
Low
Energy
UART™
2
IC
I/ O Ports
Tim ers and Triggers
Analog Interfaces
Ex ternal
Interrupts
General
Purpose
I/ O
Tim er/
Counter
Real Tim e
Counter
ADC
Pin
Reset
Pin
Wakeup
Pulse
Counter
Watchdog
Tim er
Current
DAC
Analog
Com parator
Security
Hardware
AES
2.1.1 ARM Cortex-M0+ Core
The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone
MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+
Devices Generic User Guide.
2.1.2 Debug Interface (DBG)
This device includes hardware debug support through a 2-pin serial-wire debug interface and a Micro
Trace Buffer (MTB) for data/instruction tracing.
2.1.3 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the EFM32HG microcontroller.
The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is
divided into two blocks; the main block and the information block. Program code is normally written to
the main block. Additionally, the information block is available for special user data and flash lock bits.
2015-05-06 - EFM32HG309FXX - _Rev0.91
3
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
There is also a read-only page in the information block containing system and device calibration data.
Read and write operations are supported in the energy modes EM0 and EM1.
2.1.4 Direct Memory Access Controller (DMA)
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables
the system to stay in low energy modes when moving for instance data from the USART to RAM or
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA
controller licensed from ARM.
2.1.5 Reset Management Unit (RMU)
The RMU is responsible for handling the reset functionality of the EFM32HG.
2.1.6 Energy Management Unit (EMU)
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32HG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU
can also be used to turn off the power to unused SRAM blocks.
2.1.7 Clock Management Unit (CMU)
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the
EFM32HG. The CMU provides the capability to turn on and off the clock on an individual basis to all
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree
of flexibility enables software to minimize energy consumption in any specific application by not wasting
power on peripherals and oscillators that are inactive.
2.1.8 Watchdog (WDOG)
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a
software failure.
2.1.9 Peripheral Reflex System (PRS)
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module
communicate directly with each other without involving the CPU. Peripheral modules which send out
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which
apply actions depending on the data received. The format for the Reflex signals is not given, but edge
triggers and other functionality can be applied by the PRS.
2.1.10 Low Energy USB
The unique Low Energy USB peripheral provides a full-speed USB 2.0 compliant device controller and
PHY with ultra-low current consumption. The device supports both full-speed (12MBit/s) and low speed
(1.5MBit/s) operation, and includes a dedicated USB oscillator with clock recovery mechanism for crystal-free operation. No external components are required. The Low Energy Mode ensures the current
consumption is optimized and enables USB communication on a strict power budget. The USB device
includes an internal dedicated descriptor-based Scatter/Gather DMA and supports up to 3 OUT endpoints and 3 IN endpoints, in addition to endpoint 0. The on-chip PHY includes software controllable
pull-up and pull-down resistors.
2.1.11 Inter-Integrated Circuit Interface (I2C)
2
2
The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.
2015-05-06 - EFM32HG309FXX - _Rev0.91
4
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.
2
The interface provided to software by the I C module, allows both fine-grained control of the transmission
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all
energy modes.
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.
2.1.13 Pre-Programmed USB/UART Bootloader
The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The
bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART
without the need for a debugger. The autobaud feature, interface and commands are described further
in the application note.
2.1.14 Low Energy Universal Asynchronous Receiver/Transmitter
(LEUART)
TM
The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/
s. The LEUART includes all necessary hardware support to make asynchronous serial communication
possible with minimum of software intervention and energy consumption.
2.1.15 Timer/Counter (TIMER)
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor
control applications.
2.1.16 Real Time Counter (RTC)
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where
most of the device is powered down.
2.1.17 Pulse Counter (PCNT)
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.
The module may operate in energy mode EM0 - EM3.
2.1.18 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from
external pins. Response time and thereby also the current consumption can be configured by altering
the current supply to the comparator.
2.1.19 Voltage Comparator (VCMP)
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can
be generated when the supply falls below or rises above a programmable threshold. Response time and
thereby also the current consumption can be configured by altering the current supply to the comparator.
2015-05-06 - EFM32HG309FXX - _Rev0.91
5
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
2.1.20 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits
at up to one million samples per second. The integrated input mux can select inputs from 2 external
pins and 6 internal signals.
2.1.21 Current Digital to Analog Converter (IDAC)
The current digital to analog converter can source or sink a configurable constant current, which can
be output on, or sinked from pin or ADC. The current is configurable with several ranges of various
step sizes.
2.1.22 Advanced Encryption Standard Accelerator (AES)
The AES accelerator performs AES encryption and decryption with 128-bit. Encrypting or decrypting one
128-bit data block takes 52 HFCORECLK cycles with 128-bit keys. The AES module is an AHB slave
which enables efficient access to the data and key registers. All write accesses to the AES module must
be 32-bit operations, i.e. 8- or 16-bit operations are not supported.
2.1.23 General Purpose Input/Output (GPIO)
In the EFM32HG309, there are 24 General Purpose Input/Output (GPIO) pins, which are divided into
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More
advanced configurations like open-drain, filtering and drive strength can also be configured individually
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM
outputs or USART communication, which can be routed to several locations on the device. The GPIO
supports up to 10 asynchronous external pin interrupts, which enables interrupts from any pin on the
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other
peripherals.
2.2 Configuration Summary
The features of the EFM32HG309 is a subset of the feature set described in the EFM32HG Reference
Manual. Table 2.1 (p. 6) describes device specific implementation of the features.
Table 2.1. Configuration Summary
Module
Configuration
Pin Connections
Cortex-M0+
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO,
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
USB
Full configuration
USB_VREGI, USB_VREGO, USB_DM,
USB_DMPU, USB_DP
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA and I2S
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S and IrDA
US1_TX, US1_RX, US1_CLK, US1_CS
2015-05-06 - EFM32HG309FXX - _Rev0.91
6
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Module
Configuration
Pin Connections
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
TIMER2
Full configuration
TIM2_CC[2:0]
RTC
Full configuration
NA
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[1:0], ACMP0_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[9:8]
IDAC0
Full configuration
IDAC0_OUT
AES
Full configuration
NA
GPIO
24 pins
Available pins are shown in
Table 4.3 (p. 56)
2.3 Memory Map
The EFM32HG309 memory map is shown in Figure 2.2 (p. 7) , with RAM and Flash sizes for the
largest memory configuration.
Figure 2.2. EFM32HG309 Memory Map with largest RAM and Flash sizes
2015-05-06 - EFM32HG309FXX - _Rev0.91
7
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3 Electrical Characteristics
3.1 Test Conditions
3.1.1 Typical Values
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 8) , by simulation and/or technology characterisation unless otherwise specified.
3.1.2 Minimum and Maximum Values
The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.
3.2 Absolute Maximum Ratings
The absolute maximum ratings are stress ratings, and functional operation under such conditions are
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.
8) .
Table 3.1. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min
Typ
Max
-40
Unit
150
1
TSTG
Storage temperature range
TS
Maximum soldering
temperature
VDDMAX
External main supply voltage
0
3.8 V
VIOPIN
Voltage on any I/O
pin
-0.3
VDD+0.3 V
Latest IPC/JEDEC J-STD-020
Standard
°C
260 °C
1
Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.
3.3 General Operating Conditions
3.3.1 General Operating Conditions
Table 3.2. General Operating Conditions
Symbol
Parameter
TAMB
Ambient temperature range
VDDOP
Operating supply voltage
fAPB
Internal APB clock frequency
25 MHz
fAHB
Internal AHB clock frequency
25 MHz
2015-05-06 - EFM32HG309FXX - _Rev0.91
Min
Typ
-40
1.98
8
Max
Unit
85 °C
3.8 V
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.4 Current Consumption
Table 3.3. Current Consumption
Symbol
IEM0
IEM1
Parameter
EM0 current. No
prescaling. Running
prime number calculation code from
Flash.
EM1 current
2015-05-06 - EFM32HG309FXX - _Rev0.91
Condition
Min
Typ
Max
Unit
24 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
148
158 µA/
MHz
24 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
153
163 µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
132
140 µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
134
143 µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
134
143 µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
137
145 µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
136
144 µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
139
148 µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
142
150 µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
146
154 µA/
MHz
1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
184
196 µA/
MHz
1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
194
208 µA/
MHz
24 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
64
68 µA/
MHz
24 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
67
71 µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
53
57 µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
54
58 µA/
MHz
9
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
IEM2
IEM3
IEM4
Parameter
Condition
Min
Typ
Max
Unit
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
56
59 µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
57
61 µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
58
61 µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
59
63 µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
64
68 µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
67
71 µA/
MHz
1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
106
114 µA/
MHz
1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
114
126 µA/
MHz
EM2 current with RTC
prescaled to 1 Hz, 32.768
kHz LFRCO, VDD= 3.0 V,
TAMB=25°C
0.9
1.35 µA
EM2 current with RTC
prescaled to 1 Hz, 32.768
kHz LFRCO, VDD= 3.0 V,
TAMB=85°C
1.6
3.50 µA
EM3 current (ULFRCO enabled, LFRCO/LFXO disabled),
VDD= 3.0 V, TAMB=25°C
0.6
0.90 µA
EM3 current (ULFRCO enabled, LFRCO/LFXO disabled),
VDD= 3.0 V, TAMB=85°C
1.2
2.65 µA
VDD= 3.0 V, TAMB=25°C
0.02
0.035 µA
VDD= 3.0 V, TAMB=85°C
0.18
0.480 µA
EM2 current
EM3 current
EM4 current
2015-05-06 - EFM32HG309FXX - _Rev0.91
10
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.4.1 EM0 Current Consumption
Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash
with HFRCO running at 24 MHz
2.84
2.80
Idd [m A]
2.78
2.82
2.80
2.78
Idd [m A]
2.82
2.84
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
2.76
2.76
2.74
2.74
2.72
2.72
2.70
2.70
2.68
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.68
–40
3.8
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–15
5
25
Tem perature [°C]
45
65
85
Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash
with HFRCO running at 21 MHz
2.40
2.40
Idd [m A]
2.45
Idd [m A]
2.45
2.35
2.35
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
2.30
2.0
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
2.30
3.8
–40
11
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
1.68
1.68
1.66
1.66
1.64
1.64
1.62
1.62
Idd [m A]
Idd [m A]
Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash
with HFRCO running at 14 MHz
1.60
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
1.58
1.56
1.54
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
1.60
1.58
1.56
1.54
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
1.34
1.34
1.32
1.32
1.30
1.30
Idd [m A]
Idd [m A]
Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash
with HFRCO running at 11 MHz
1.28
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
1.26
1.24
1.22
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
1.28
1.26
1.24
1.22
–40
3.8
12
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
0.84
0.84
0.83
0.83
0.82
0.82
0.81
0.81
Idd [m A]
Idd [m A]
Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash
with HFRCO running at 6.6 MHz
0.80
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.79
0.78
0.77
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
0.80
0.79
0.78
0.77
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
3.4.2 EM1 Current Consumption
Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 24 MHz
1.20
1.18
1.20
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
1.18
Idd [m A]
1.16
Idd [m A]
1.16
1.14
1.14
1.12
1.12
1.10
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
1.10
–40
3.8
13
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
1.04
1.04
1.03
1.03
1.02
1.02
1.01
1.01
Idd [m A]
Idd [m A]
Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 21 MHz
1.00
0.99
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.98
0.97
0.96
0.95
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
1.00
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
0.99
0.98
0.97
0.96
0.95
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
0.73
0.73
0.72
0.72
0.71
0.71
0.70
0.70
Idd [m A]
Idd [m A]
Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 14 MHz
0.69
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.68
0.67
0.66
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
0.69
0.68
0.67
0.66
–40
3.8
14
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
0.59
0.59
0.58
0.58
0.57
0.57
Idd [m A]
Idd [m A]
Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 11 MHz
0.56
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.55
0.54
0.53
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
0.56
0.55
0.54
0.53
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
0.395
0.395
0.390
0.390
0.385
0.385
0.380
0.380
Idd [m A]
Idd [m A]
Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 6.6 MHz
0.375
0.370
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.365
0.360
0.355
0.350
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
0.375
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
0.370
0.365
0.360
0.355
0.350
–40
3.8
15
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.4.3 EM2 Current Consumption
Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.
2.0
2.0
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
1.8
1.6
1.4
Idd [uA]
Idd [uA]
1.6
1.8
1.2
1.4
1.2
1.0
1.0
0.8
0.8
0.6
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
0.6
–40
3.8
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–15
5
25
Tem perature [°C]
45
65
85
5
25
Tem perature [°C]
45
65
85
3.4.4 EM3 Current Consumption
Figure 3.12. EM3 current consumption.
1.6
1.6
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
1.4
1.2
Idd [uA]
Idd [uA]
1.2
1.4
1.0
1.0
0.8
0.8
0.6
0.6
0.4
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
0.4
–40
3.8
16
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–15
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.4.5 EM4 Current Consumption
Figure 3.13. EM4 current consumption.
0.5
Idd [uA]
0.3
0.4
0.3
Idd [uA]
0.4
0.5
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.2
0.2
0.1
0.1
0.0
0.0
–0.1
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–0.1
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
3.5 Transition between Energy Modes
The transition times are measured from the trigger to the first clock edge in the CPU.
Table 3.4. Energy Modes Transitions
Symbol
Parameter
Min
Typ
Max
Unit
tEM10
Transition time from EM1 to EM0
0
HFCORECLK
cycles
tEM20
Transition time from EM2 to EM0
2
µs
tEM30
Transition time from EM3 to EM0
2
µs
tEM40
Transition time from EM4 to EM0
163
µs
3.6 Power Management
The EFM32HG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with
optional filter) at the PCB level. For practical schematic recommendations, please see the application
note, "AN0002 EFM32 Hardware Design Considerations".
2015-05-06 - EFM32HG309FXX - _Rev0.91
17
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Table 3.5. Power Management
Symbol
Parameter
VBODextthr-
BOD threshold on
falling external supply voltage
VBODextthr+
BOD threshold on
rising external supply voltage
tRESET
Delay from reset
is released until
program execution
starts
CDECOUPLE
Condition
Min
Typ
Max
1.74
Unit
1.96 V
1.89
V
Applies to Power-on Reset,
Brown-out Reset and pin reset.
163
µs
Voltage regulator
decoupling capacitor.
X5R capacitor recommended.
Apply between DECOUPLE pin
and GROUND
1
µF
CUSB_VREGO
USB voltage regulator out decoupling
capacitor.
X5R capacitor recommended.
Apply between USB_VREGO
pin and GROUND
1
µF
CUSB_VREGI
USB voltage regula- X5R capacitor recommended.
tor in decoupling ca- Apply between USB_VREGI
pacitor.
pin and GROUND
4.7
µF
3.7 Flash
Table 3.6. Flash
Symbol
Parameter
ECFLASH
Flash erase cycles
before failure
Condition
Min
TAMB<150°C
RETFLASH
Flash data retention
Typ
Max
Unit
20000
cycles
10000
h
TAMB<85°C
10
years
TAMB<70°C
20
years
µs
tW_PROG
Word (32-bit) programming time
20
tP_ERASE
Page erase time
20
20.4
20.8 ms
tD_ERASE
Device erase time
40
40.8
41.6 ms
IERASE
Erase current
IWRITE
Write current
VFLASH
Supply voltage during flash erase and
write
1.98
7
1
mA
7
1
mA
3.8 V
1
Measured at 25°C
3.8 General Purpose Input Output
Table 3.7. GPIO
Symbol
Parameter
VIOIL
Input low voltage
VIOIH
Input high voltage
2015-05-06 - EFM32HG309FXX - _Rev0.91
Condition
Min
Typ
Max
Unit
0.30VDD V
0.70VDD
18
V
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
VIOOH
VIOOL
Parameter
Output high voltage (Production test
condition = 3.0V,
DRIVEMODE =
STANDARD)
Output low voltage
(Production test
condition = 3.0V,
DRIVEMODE =
STANDARD)
IIOLEAK
Input leakage current
RPU
I/O pin pull-up resistor
2015-05-06 - EFM32HG309FXX - _Rev0.91
Condition
Min
Typ
Max
Unit
Sourcing 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.80VDD
V
Sourcing 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.90VDD
V
Sourcing 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.85VDD
V
Sourcing 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.90VDD
V
Sourcing 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.75VDD
V
Sourcing 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.85VDD
V
Sourcing 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.60VDD
V
Sourcing 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.80VDD
V
Sinking 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.20VDD
V
Sinking 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.10VDD
V
Sinking 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.10VDD
V
Sinking 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.05VDD
V
Sinking 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.30VDD V
Sinking 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.20VDD V
Sinking 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.35VDD V
Sinking 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.25VDD V
High Impedance IO connected
to GROUND or Vdd
±0.1
40
19
±40 nA
kOhm
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
Parameter
RPD
I/O pin pull-down resistor
40
kOhm
RIOESD
Internal ESD series
resistor
200
Ohm
tIOGLITCH
Pulse width of pulses to be removed
by the glitch suppression filter
tIOOF
VIOHYST
Condition
Min
Typ
Max
Unit
10
50 ns
GPIO_Px_CTRL DRIVEMODE
= LOWEST and load capacitance CL=12.5-25pF.
20+0.1CL
250 ns
GPIO_Px_CTRL DRIVEMODE
= LOW and load capacitance
CL=350-600pF
20+0.1CL
250 ns
Output fall time
I/O pin hysteresis
(VIOTHR+ - VIOTHR-)
2015-05-06 - EFM32HG309FXX - _Rev0.91
VDD = 1.98 - 3.8 V
0.1VDD
20
V
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage
5
0.20
4
Low- Level Output Current [m A]
Low- Level Output Current [m A]
0.15
0.10
3
2
0.05
1
- 40°C
25°C
85°C
0.00
0.0
0.5
1.5
1.0
Low- Level Output Voltage [V]
- 40°C
25°C
85°C
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
Low- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
45
20
40
35
Low- Level Output Current [m A]
Low- Level Output Current [m A]
15
10
30
25
20
15
5
10
5
- 40°C
25°C
85°C
0
0.0
0.5
1.5
1.0
Low- Level Output Voltage [V]
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2015-05-06 - EFM32HG309FXX - _Rev0.91
- 40°C
25°C
85°C
0.5
1.5
1.0
Low- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = HIGH
21
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage
0.00
0.0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–0.5
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.05
–0.10
–1.0
–1.5
–0.15
–2.0
–0.20
0.0
1.5
0.5
1.0
High- Level Output Voltage [V]
–2.5
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
1.5
0.5
1.0
High- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
High- Level Output Current [m A]
–5
–10
–20
–30
–15
–40
–20
0.0
1.5
0.5
1.0
High- Level Output Voltage [V]
–50
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2015-05-06 - EFM32HG309FXX - _Rev0.91
1.5
0.5
1.0
High- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = HIGH
22
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
0.5
10
0.4
8
Low- Level Output Current [m A]
Low- Level Output Current [m A]
Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage
0.3
0.2
0.1
6
4
2
- 40°C
25°C
85°C
0.0
0.0
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
- 40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = LOW
40
50
35
40
Low- Level Output Current [m A]
Low- Level Output Current [m A]
30
25
20
15
30
20
10
10
5
0
0.0
- 40°C
25°C
85°C
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
- 40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2015-05-06 - EFM32HG309FXX - _Rev0.91
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = HIGH
23
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage
0.0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–1
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.1
–0.2
–0.3
–2
–3
–4
–0.4
–5
–0.5
0.0
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
–6
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
2.5
3.0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
–10
High- Level Output Current [m A]
1.5
1.0
2.0
High- Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
–50
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2015-05-06 - EFM32HG309FXX - _Rev0.91
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = HIGH
24
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage
0.8
14
0.7
12
Low- Level Output Current [m A]
Low- Level Output Current [m A]
0.6
0.5
0.4
0.3
10
8
6
4
0.2
2
0.1
0.0
0.0
- 40°C
25°C
85°C
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
- 40°C
25°C
85°C
0
0.0
3.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
50
50
40
40
30
20
10
30
20
10
- 40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOW
Low- Level Output Current [m A]
Low- Level Output Current [m A]
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
- 40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2015-05-06 - EFM32HG309FXX - _Rev0.91
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = HIGH
25
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage
0.0
–0.1
0
- 40°C
25°C
85°C
–1
- 40°C
25°C
85°C
–2
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.2
–0.3
–0.4
–0.5
–3
–4
–5
–6
–0.6
–7
–0.7
–0.8
0.0
–8
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
–9
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOWEST
3.0
3.5
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
–10
High- Level Output Current [m A]
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
–50
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2015-05-06 - EFM32HG309FXX - _Rev0.91
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = HIGH
26
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.9 Oscillators
3.9.1 LFXO
Table 3.8. LFXO
Symbol
Parameter
Condition
Min
Typ
Max
fLFXO
Supported nominal
crystal frequency
ESRLFXO
Supported crystal
equivalent series resistance (ESR)
CLFXOL
Supported crystal
external load range
ILFXO
Current consumption for core and
buffer after startup.
ESR=30 kOhm, CL=10 pF,
LFXOBOOST in CMU_CTRL is
1
190
nA
tLFXO
Start- up time.
ESR=30 kOhm, CL=10 pF,
40% - 60% duty cycle has
been reached, LFXOBOOST in
CMU_CTRL is 1
1100
ms
32.768
Unit
kHz
30
120 kOhm
5
25 pF
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help
users configure both load capacitance and software settings for using the LFXO. For details regarding
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design
Consideration".
3.9.2 HFXO
Table 3.9. HFXO
Symbol
Parameter
fHFXO
Supported nominal
crystal Frequency
ESRHFXO
The transconductance of the HFXO
input transistor at
crystal startup
CHFXOL
Supported crystal
external load range
tHFXO
Min
Typ
Current consumption for HFXO after
startup
Startup time
2015-05-06 - EFM32HG309FXX - _Rev0.91
Max
4
Supported crystal
Crystal frequency 25 MHz
equivalent series reCrystal frequency 4 MHz
sistance (ESR)
gmHFXO
IHFXO
Condition
HFXOBOOST in CMU_CTRL
equals 0b11
Unit
25 MHz
30
100 Ohm
400
1500 Ohm
20
mS
5
25 pF
4 MHz: ESR=400 Ohm,
CL=20 pF, HFXOBOOST in
CMU_CTRL equals 0b11
85
µA
25 MHz: ESR=30 Ohm,
CL=10 pF, HFXOBOOST in
CMU_CTRL equals 0b11
165
µA
25 MHz: ESR=30 Ohm,
CL=10 pF, HFXOBOOST in
CMU_CTRL equals 0b11
785
µs
27
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.9.3 LFRCO
Table 3.10. LFRCO
Symbol
Parameter
fLFRCO
Oscillation frequency , VDD= 3.0 V,
TAMB=25°C
tLFRCO
Startup time not including software
calibration
150
µs
ILFRCO
Current consumption
361
nA
TUNESTEPL-
Frequency step
for LSB change in
TUNING value
1.5
%
FRCO
Condition
Min
Typ
31.3
Max
32.768
Unit
34.3 kHz
42
42
40
40
38
38
Frequency [kHz]
Frequency [kHz]
Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage
- 40°C
25°C
85°C
36
34
34
32
32
30
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
30
–40
3.8
28
2.0 V
3.0 V
3.8 V
36
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.9.4 HFRCO
Table 3.11. HFRCO
Symbol
Parameter
Oscillation frequency, VDD= 3.0 V,
TAMB=25°C
fHFRCO
tHFRCO_settling
Settling time after
start-up
Current consumption
IHFRCO
TUNESTEPHFRCO
Condition
Min
Typ
Max
Unit
24 MHz frequency band
23.28
24.0
24.72 MHz
21 MHz frequency band
20.37
21.0
21.63 MHz
14 MHz frequency band
13.58
14.0
14.42 MHz
11 MHz frequency band
10.67
11.0
11.33 MHz
7 MHz frequency band
6.40
6.60
6.80 MHz
1 MHz frequency band
1.15
1.20
1.25 MHz
fHFRCO = 14 MHz
0.6
Cycles
fHFRCO = 24 MHz
158
184 µA
fHFRCO = 21 MHz
143
175 µA
fHFRCO = 14 MHz
113
140 µA
fHFRCO = 11 MHz
101
125 µA
fHFRCO = 6.6 MHz
84
105 µA
fHFRCO = 1.2 MHz
27
40 µA
1
Frequency step
for LSB change in
TUNING value
0.3
%
1
The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 21 MHz across operating conditions.
1.45
1.45
1.40
1.40
1.35
1.35
Frequency [MHz]
Frequency [MHz]
Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature
1.30
- 40°C
25°C
85°C
1.25
1.20
1.30
1.25
1.20
1.15
1.15
1.10
1.10
1.05
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
1.05
–40
3.8
29
2.0 V
3.0 V
3.8 V
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
6.70
6.70
6.65
6.65
6.60
6.60
Frequency [MHz]
Frequency [MHz]
Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature
6.55
6.50
6.45
6.40
6.50
6.45
6.40
- 40°C
25°C
85°C
6.35
6.30
2.0
6.55
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
6.35
6.30
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
11.2
11.2
11.1
11.1
11.0
11.0
Frequency [MHz]
Frequency [MHz]
Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature
10.9
10.8
10.8
10.7
10.6
2.0
10.9
10.7
- 40°C
25°C
85°C
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
10.6
–40
3.8
2.0 V
3.0 V
3.8 V
–15
5
25
Tem perature [°C]
45
65
85
14.2
14.2
14.1
14.1
14.0
14.0
Frequency [MHz]
Frequency [MHz]
Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature
13.9
13.8
13.7
13.6
13.8
13.7
13.6
- 40°C
25°C
85°C
13.5
13.4
2.0
13.9
2.2
2.4
2.6
2.8
3.0
Vdd [V]
2015-05-06 - EFM32HG309FXX - _Rev0.91
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
13.5
13.4
–40
3.8
30
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
21.2
21.2
21.0
21.0
Frequency [MHz]
Frequency [MHz]
Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature
20.8
20.6
20.4
20.8
20.6
20.4
- 40°C
25°C
85°C
20.2
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
20.2
–40
3.8
–15
5
25
Tem perature [°C]
45
Typ
Max
65
85
3.9.5 AUXHFRCO
Table 3.12. AUXHFRCO
Symbol
fAUXHFRCO
Parameter
Oscillation frequency, VDD= 3.0 V,
TAMB=25°C
tAUXHFRCO_settlingSettling time after
start-up
Condition
Min
Unit
21 MHz frequency band
20.37
21.0
21.63 MHz
14 MHz frequency band
13.58
14.0
14.42 MHz
11 MHz frequency band
10.67
11.0
11.33 MHz
7 MHz frequency band
6.40
6.60
6.80 MHz
1 MHz frequency band
1.15
1.20
1.25 MHz
fAUXHFRCO = 14 MHz
TUNESTEPAUX- Frequency step
for LSB change in
HFRCO
TUNING value
0.6
Cycles
0.3
%
3.9.6 USHFRCO
Table 3.13. USHFRCO
Symbol
fUSHFRCO
Parameter
Oscillation frequency
Condition
Min
Typ
Max
Unit
No Clock Recovery, Full Temperature and Supply Range
47.10
48.00
48.90 MHz
No Clock Recovery, 25°C, 3.3V
47.50
48.00
48.50 MHz
USB Active with Clock Recovery, Full Temperature and Supply Range
47.88
48.00
48.12 MHz
TCUSHFRCO
Temperature coefficient
3.3V
0.0175
%/°C
VCUSHFRCO
Supply voltage coefficient
25°C
0.0045
%/V
2015-05-06 - EFM32HG309FXX - _Rev0.91
31
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.9.7 ULFRCO
Table 3.14. ULFRCO
Symbol
Parameter
Condition
Min
Typ
Max
fULFRCO
Oscillation frequency
25°C, 3V
TCULFRCO
Temperature coefficient
0.05
%/°C
VCULFRCO
Supply voltage coefficient
-18.2
%/V
0.70
Unit
1.75 kHz
3.10 Analog Digital Converter (ADC)
Table 3.15. ADC
Symbol
Parameter
VADCIN
Input voltage range
Condition
Min
Single ended
Differential
VADCREFIN
Input range of external reference voltage, single ended
and differential
Typ
Max
Unit
0
VREF V
-VREF/2
VREF/2 V
1.25
VDD V
VADCREFIN_CH7 Input range of external negative reference voltage on
channel 7
See VADCREFIN
0
VDD - 1.1 V
VADCREFIN_CH6 Input range of external positive reference voltage on
channel 6
See VADCREFIN
0.625
VDD V
0
VDD V
VADCCMIN
Common mode input range
IADCIN
Input current
CMRRADC
Analog input common mode rejection
ratio
IADC
Average active current
2015-05-06 - EFM32HG309FXX - _Rev0.91
2pF sampling capacitors
<100
nA
65
dB
1 MSamples/s, 12 bit, external
reference
392
510 µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b00
67
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b01
63
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b10
64
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUP-
244
µA
32
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
Max
Unit
MODE in ADCn_CTRL set to
0b11
IADCREF
Current consumption of internal voltage reference
CADCIN
Input capacitance
RADCIN
Input ON resistance
RADCFILT
Input RC filter resistance
CADCFILT
Input RC filter/decoupling capacitance
fADCCLK
ADC Clock Frequency
tADCCONV
Acquisition time
tADCACQVDD3
Required acquisition time for VDD/3
reference
SNRADC
65
µA
2
pF
1
MOhm
10
250
kOhm
fF
13 MHz
6 bit
7
ADCCLK
Cycles
8 bit
11
ADCCLK
Cycles
12 bit
13
ADCCLK
Cycles
1
256 ADCCLK
Cycles
Conversion time
tADCACQ
tADCSTART
Internal voltage reference
Programmable
2
µs
Startup time of reference generator
and ADC core in
NORMAL mode
5
µs
Startup time of reference generator
and ADC core in
KEEPADCWARM
mode
1
µs
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
59
dB
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
63
dB
1 MSamples/s, 12 bit, single
ended, VDD reference
65
dB
1 MSamples/s, 12 bit, differential, internal 1.25V reference
60
dB
1 MSamples/s, 12 bit, differential, internal 2.5V reference
65
dB
1 MSamples/s, 12 bit, differential, 5V reference
54
dB
Signal to Noise Ratio (SNR)
2015-05-06 - EFM32HG309FXX - _Rev0.91
33
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
SINADADC
Parameter
SIgnal-to-Noise
And Distortion-ratio
(SINAD)
2015-05-06 - EFM32HG309FXX - _Rev0.91
Condition
Min
Typ
Max
Unit
1 MSamples/s, 12 bit, differential, VDD reference
67
dB
1 MSamples/s, 12 bit, differential, 2xVDD reference
69
dB
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
62
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
63
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
67
dB
200 kSamples/s, 12 bit, differential, internal 1.25V reference
63
dB
200 kSamples/s, 12 bit, differential, internal 2.5V reference
66
dB
200 kSamples/s, 12 bit, differential, 5V reference
66
dB
200 kSamples/s, 12 bit, differential, VDD reference
66
dB
200 kSamples/s, 12 bit, differential, 2xVDD reference
70
dB
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
58
dB
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
62
dB
1 MSamples/s, 12 bit, single
ended, VDD reference
64
dB
1 MSamples/s, 12 bit, differential, internal 1.25V reference
60
dB
1 MSamples/s, 12 bit, differential, internal 2.5V reference
64
dB
1 MSamples/s, 12 bit, differential, 5V reference
54
dB
1 MSamples/s, 12 bit, differential, VDD reference
66
dB
1 MSamples/s, 12 bit, differential, 2xVDD reference
68
dB
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
61
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
65
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
66
dB
200 kSamples/s, 12 bit, differential, internal 1.25V reference
63
dB
200 kSamples/s, 12 bit, differential, internal 2.5V reference
66
dB
34
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
SFDRADC
Parameter
Spurious-Free Dynamic Range (SFDR)
Condition
Min
DNLADC
Unit
66
dB
200 kSamples/s, 12 bit, differential, VDD reference
66
dB
200 kSamples/s, 12 bit, differential, 2xVDD reference
69
dB
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
64
dBc
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
76
dBc
1 MSamples/s, 12 bit, single
ended, VDD reference
73
dBc
1 MSamples/s, 12 bit, differential, internal 1.25V reference
66
dBc
1 MSamples/s, 12 bit, differential, internal 2.5V reference
77
dBc
1 MSamples/s, 12 bit, differential, VDD reference
76
dBc
1 MSamples/s, 12 bit, differential, 2xVDD reference
75
dBc
1 MSamples/s, 12 bit, differential, 5V reference
69
dBc
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
75
dBc
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
75
dBc
200 kSamples/s, 12 bit, single
ended, VDD reference
76
dBc
200 kSamples/s, 12 bit, differential, internal 1.25V reference
79
dBc
200 kSamples/s, 12 bit, differential, internal 2.5V reference
79
dBc
200 kSamples/s, 12 bit, differential, 5V reference
78
dBc
200 kSamples/s, 12 bit, differential, VDD reference
79
dBc
200 kSamples/s, 12 bit, differential, 2xVDD reference
79
dBc
0.3
4 mV
0.3
mV
-4
Offset voltage
After calibration, differential
TGRADADCTH
Max
200 kSamples/s, 12 bit, differential, 5V reference
After calibration, single ended
VADCOFFSET
Typ
Thermometer output gradient
Differential non-linearity (DNL)
2015-05-06 - EFM32HG309FXX - _Rev0.91
VDD= 3.0 V, external 2.5V reference
35
-1
-1.92
mV/°C
-6.3
ADC
Codes/
°C
±0.7
4 LSB
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
INLADC
Integral non-linearity (INL), End point
method
MCADC
No missing codes
Min
Typ
Max
±1.2
11.999
1
12
Unit
LSB
bits
1
On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale
input for chips that have the missing code issue.
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.26 (p.
36) and Figure 3.27 (p. 37) , respectively.
Figure 3.26. Integral Non-Linearity (INL)
Digital ouput code
INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1
4095
4094
4093
4092
Actual ADC
tranfer function
before offset and
gain correction
Actual ADC
tranfer function
after offset and
gain correction
INL Error
(End Point INL)
3
Ideal transfer
curve
2
1
VOFFSET
0
Analog Input
2015-05-06 - EFM32HG309FXX - _Rev0.91
36
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.27. Differential Non-Linearity (DNL)
Digital
ouput
code
DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2
Full Scale Range
4095
4094
Example: Adjacent
input value VD+ 1
corrresponds to digital
output code D+ 1
4093
4092
Actual transfer
function with one
m issing code.
Example: Input value
VD corrresponds to
digital output code D
Code width = 2 LSB
DNL= 1 LSB
Ideal transfer
curve
5
0.5
LSB
Ideal spacing
between two
adjacent codes
VLSBIDEAL= 1 LSB
4
3
2
1
Ideal 50%
Transition Point
Ideal Code Center
0
Analog Input
2015-05-06 - EFM32HG309FXX - _Rev0.91
37
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.10.1 Typical performance
Figure 3.28. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2015-05-06 - EFM32HG309FXX - _Rev0.91
38
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.29. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2015-05-06 - EFM32HG309FXX - _Rev0.91
39
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2015-05-06 - EFM32HG309FXX - _Rev0.91
40
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.31. ADC Absolute Offset, Common Mode = Vdd /2
5
2.0
Vref= 1V25
Vref= 2V5
Vref= 2XVDDVSS
Vref= 5VDIFF
Vref= VDD
4
1.5
2
Actual Offset [LSB]
Actual Offset [LSB]
3
VRef= 1V25
VRef= 2V5
VRef= 2XVDDVSS
VRef= 5VDIFF
VRef= VDD
1
0
–1
1.0
0.5
0.0
–2
–0.5
–3
–4
2.0
2.2
2.4
2.6
2.8
3.0
Vdd (V)
3.2
3.4
3.6
–1.0
–40
3.8
Offset vs Supply Voltage, Temp = 25°C
–15
5
25
Tem p (C)
45
65
85
Offset vs Temperature, Vdd = 3V
Figure 3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V
79.4
71
2XVDDVSS
70
1V25
79.2
Vdd
69
79.0
67
5VDIFF
2V5
66
SFDR [dB]
SNR [dB]
68
Vdd
2V5
78.8
78.6
2XVDDVSS
78.4
65
78.2
64
63
–40
–15
5
25
Tem perature [°C]
45
65
5VDIFF
1V25
85
78.0
–40
Signal to Noise Ratio (SNR)
2015-05-06 - EFM32HG309FXX - _Rev0.91
–15
5
25
Tem perature [°C]
45
65
85
Spurious-Free Dynamic Range (SFDR)
41
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.33. ADC Temperature sensor readout
2800
Vdd = 2.0
Vdd = 3.0
Vdd = 3.8
2700
2600
Sensor readout
2500
2400
2300
2200
2100
2000
1900
–40
–15
5
25
Tem perature [°C]
45
65
85
3.11 Current Digital Analog Converter (IDAC)
Table 3.16. IDAC Range 0 Source
Symbol
Parameter
Condition
Min
Active current with
STEPSEL=0x10
EM0, default settings
IIDAC
Typ
Duty-cycled
Max
Unit
13.0
µA
10
nA
I0x10
Nominal IDAC output current with
STEPSEL=0x10
0.85
µA
ISTEP
Step size
0.05
µA
ID
Current drop at high
impedance load
VIDAC_OUT = VDD - 100mV
0.79
%
TCIDAC
Temperature coefficient
VDD = 3.0V, STEPSEL=0x10
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
0.3
nA/°C
11.7
nA/V
Table 3.17. IDAC Range 0 Sink
Symbol
Parameter
Condition
Min
IIDAC
Active current with
STEPSEL=0x10
EM0, default settings
I0x10
Typ
Max
Unit
15.1
µA
Nominal IDAC output current with
STEPSEL=0x10
0.85
µA
ISTEP
Step size
0.05
µA
ID
Current drop at high
impedance load
VIDAC_OUT = 200 mV
0.30
%
TCIDAC
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
2015-05-06 - EFM32HG309FXX - _Rev0.91
42
0.2
nA/°C
12.5
nA/V
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Table 3.18. IDAC Range 1 Source
Symbol
Parameter
Condition
Min
Active current with
STEPSEL=0x10
EM0, default settings
IIDAC
Typ
Duty-cycled
Max
Unit
14.4
µA
10
nA
I0x10
Nominal IDAC output current with
STEPSEL=0x10
3.2
µA
ISTEP
Step size
0.1
µA
ID
Current drop at high
impedance load
VIDAC_OUT = VDD - 100mV
0.75
%
TCIDAC
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
0.7
nA/°C
38.4
nA/V
Table 3.19. IDAC Range 1 Sink
Symbol
Parameter
Condition
Min
IIDAC
Active current with
STEPSEL=0x10
EM0, default settings
I0x10
Typ
Max
Unit
19.4
µA
Nominal IDAC output current with
STEPSEL=0x10
3.2
µA
ISTEP
Step size
0.1
µA
ID
Current drop at high
impedance load
VIDAC_OUT = 200 mV
0.32
%
TCIDAC
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
0.7
nA/°C
40.9
nA/V
Table 3.20. IDAC Range 2 Source
Symbol
Parameter
Condition
Min
Active current with
STEPSEL=0x10
EM0, default settings
IIDAC
Typ
Duty-cycled
Max
Unit
17.3
µA
10
nA
I0x10
Nominal IDAC output current with
STEPSEL=0x10
8.5
µA
ISTEP
Step size
0.5
µA
ID
Current drop at high
impedance load
VIDAC_OUT = VDD - 100mV
1.22
%
TCIDAC
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
2.8
nA/°C
96.6
nA/V
Table 3.21. IDAC Range 2 Sink
Symbol
Parameter
Condition
IIDAC
Active current with
STEPSEL=0x10
EM0, default settings
2015-05-06 - EFM32HG309FXX - _Rev0.91
Min
43
Typ
Max
29.3
Unit
µA
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
Max
Unit
I0x10
Nominal IDAC output current with
STEPSEL=0x10
8.5
µA
ISTEP
Step size
0.5
µA
ID
Current drop at high
impedance load
VIDAC_OUT = 200 mV
0.62
%
TCIDAC
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
2.8
nA/°C
94.4
nA/V
Table 3.22. IDAC Range 3 Source
Symbol
Parameter
Condition
Min
Active current with
STEPSEL=0x10
EM0, default settings
IIDAC
Typ
Duty-cycled
Max
Unit
18.7
µA
10
nA
33.9
µA
2.0
µA
I0x10
Nominal IDAC output current with
STEPSEL=0x10
ISTEP
Step size
ID
Current drop at high
impedance load
VIDAC_OUT = VDD - 100 mV
3.54
%
TCIDAC
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
10.9
nA/°C
VCIDAC
Voltage coefficient
T = 25 °C, STEPSEL=0x10
159.5
nA/V
Table 3.23. IDAC Range 3 Sink
Symbol
Parameter
Condition
Min
IIDAC
Active current with
STEPSEL=0x10
EM0, default settings
I0x10
Nominal IDAC output current with
STEPSEL=0x10
ISTEP
Step size
ID
Current drop at high
impedance load
TCIDAC
VCIDAC
Typ
Max
Unit
62.5
µA
34.1
µA
2.0
µA
VIDAC_OUT = 200 mV
1.75
%
Temperature coefficient
VDD = 3.0 V, STEPSEL=0x10
10.9
nA/°C
Voltage coefficient
T = 25 °C, STEPSEL=0x10
148.6
nA/V
Table 3.24. IDAC
Symbol
Parameter
tIDACSTART
Start-up time, from enabled to output settled
2015-05-06 - EFM32HG309FXX - _Rev0.91
Min
44
Typ
Max
40
Unit
µs
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.34. IDAC Source Current as a function of voltage on IDAC_OUT
101
101
100
100
99
Percentage of nom inal current [%]
Percentage of nom inal current [%]
99
98
97
96
95
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
94
93
92
98
97
96
95
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
94
93
92
91
91
90
–2.0
90
–2.0
–1.5
–1.0
V(IDAC_OUT) - Vdd [V]
–0.5
0.0
–1.5
101
101
100
100
99
99
98
97
96
95
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
94
93
96
95
90
–2.0
0.0
Range 2
2015-05-06 - EFM32HG309FXX - _Rev0.91
0.0
93
91
–0.5
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
94
91
–1.0
V(IDAC_OUT) - Vdd [V]
–0.5
97
92
–1.5
0.0
98
92
90
–2.0
–0.5
Range 1
Percentage of nom inal current [%]
Percentage of nom inal current [%]
Range 0
–1.0
V(IDAC_OUT) - Vdd [V]
–1.5
–1.0
V(IDAC_OUT) - Vdd [V]
Range 3
45
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
101
101
100
100
Percentage of nom inal current [%]
Percentage of nom inal current [%]
Figure 3.35. IDAC Sink Current as a function of voltage from IDAC_OUT
99
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
98
97
99
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
98
97
96
96
95
0.0
0.5
1.0
V(IDAC_OUT) [V]
1.5
95
0.0
2.0
0.5
1.0
V(IDAC_OUT) [V]
2.0
Range 1
101
101
100
100
Percentage of nom inal current [%]
Percentage of nom inal current [%]
Range 0
1.5
99
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
98
97
96
99
- 40°C, 2.0V
25°C, 3.0V
85°C, 3.8V
98
97
96
95
0.0
0.5
1.0
V(IDAC_OUT) [V]
1.5
95
0.0
2.0
0.5
1.0
V(IDAC_OUT) [V]
Range 2
1.5
2.0
Range 3
Figure 3.36. IDAC linearity
5
70
60
4
50
Idd [uA]
Idd [uA]
3
Range 0
Range 1
2
40
Range 2
Range 3
30
20
1
10
0
0
5
10
15
Step
20
2015-05-06 - EFM32HG309FXX - _Rev0.91
25
0
30
46
0
5
10
15
Step
20
25
30
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.12 Analog Comparator (ACMP)
Table 3.25. ACMP
Symbol
Parameter
VACMPIN
Input voltage range
0
VDD V
VACMPCM
ACMP Common
Mode voltage range
0
VDD V
IACMP
IACMPREF
Condition
Active current
Current consumption of internal voltage reference
Min
Typ
Max
Unit
BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in
ACMPn_CTRL register
0.1
0.4 µA
BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
2.87
15 µA
BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in
ACMPn_CTRL register
195
520 µA
Internal voltage reference off.
Using external voltage reference
0
µA
Internal voltage reference
5
µA
0
12 mV
VACMPOFFSET
Offset voltage
BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
VACMPHYST
ACMP hysteresis
Programmable
17
mV
CSRESSEL=0b00 in
ACMPn_INPUTSEL
40
kOhm
CSRESSEL=0b01 in
ACMPn_INPUTSEL
70
kOhm
CSRESSEL=0b10 in
ACMPn_INPUTSEL
101
kOhm
CSRESSEL=0b11 in
ACMPn_INPUTSEL
132
kOhm
RCSRES
tACMPSTART
Capacitive Sense
Internal Resistance
Startup time
-12
10 µs
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference
as given in Equation 3.1 (p. 47) . IACMPREF is zero if an external voltage reference is used.
Total ACMP Active Current
IACMPTOTAL = IACMP + IACMPREF
2015-05-06 - EFM32HG309FXX - _Rev0.91
47
(3.1)
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1
20
2.5
HYSTSEL= 0
HYSTSEL= 2
HYSTSEL= 4
HYSTSEL= 6
2.0
Response Tim e [us]
Current [uA]
15
1.5
1.0
10
5
0.5
0.0
4
8
ACMP_CTRL_BIASPROG
0
0
12
Current consumption, HYSTSEL = 4
0
2
4
6
8
10
ACMP_CTRL_BIASPROG
12
14
Response time , Vcm =
1.25V, CP+ to CP- = 100mV
100
BIASPROG= 0.0
BIASPROG= 4.0
BIASPROG= 8.0
BIASPROG= 12.0
Hysteresis [m V]
80
60
40
20
0
0
1
2
4
3
ACMP_CTRL_HYSTSEL
5
6
7
Hysteresis
2015-05-06 - EFM32HG309FXX - _Rev0.91
48
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
3.13 Voltage Comparator (VCMP)
Table 3.26. VCMP
Symbol
Parameter
VVCMPIN
Input voltage range
VDD
V
VVCMPCM
VCMP Common
Mode voltage range
VDD
V
BIASPROG=0b0000 and
HALFBIAS=1 in VCMPn_CTRL
register
0.2
µA
BIASPROG=0b1111 and
HALFBIAS=0 in VCMPn_CTRL
register. LPREF=0.
22
35 µA
NORMAL
10
µs
Single ended
10
mV
Differential
10
mV
17
mV
IVCMP
Condition
Min
Typ
Max
Unit
Active current
tVCMPREF
Startup time reference generator
VVCMPOFFSET
Offset voltage
VVCMPHYST
VCMP hysteresis
tVCMPSTART
Startup time
10 µs
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in
accordance with the following equation:
VCMP Trigger Level as a Function of Level Setting
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL
(3.2)
3.14 I2C
Table 3.27. I2C Standard-mode (Sm)
Symbol
Parameter
Min
Typ
0
Max
Unit
fSCL
SCL clock frequency
tLOW
SCL clock low time
4.7
µs
tHIGH
SCL clock high time
4.0
µs
tSU,DAT
SDA set-up time
250
ns
tHD,DAT
SDA hold time
tSU,STA
Repeated START condition set-up time
4.7
µs
tHD,STA
(Repeated) START condition hold time
4.0
µs
tSU,STO
STOP condition set-up time
4.0
µs
tBUF
Bus free time between a STOP and START condition
4.7
µs
8
100
1
2,3
3450
kHz
ns
1
For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32HG Reference Manual.
The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3
-9
When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 5).
2
2015-05-06 - EFM32HG309FXX - _Rev0.91
49
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Table 3.28. I2C Fast-mode (Fm)
Symbol
Parameter
Min
Typ
Max
fSCL
SCL clock frequency
tLOW
SCL clock low time
1.3
µs
tHIGH
SCL clock high time
0.6
µs
tSU,DAT
SDA set-up time
100
0
Unit
1
400
kHz
ns
2,3
tHD,DAT
SDA hold time
8
900
ns
tSU,STA
Repeated START condition set-up time
0.6
µs
tHD,STA
(Repeated) START condition hold time
0.6
µs
tSU,STO
STOP condition set-up time
0.6
µs
tBUF
Bus free time between a STOP and START condition
1.3
µs
1
For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32HG Reference Manual.
The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3
-9
When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 5).
2
Table 3.29. I2C Fast-mode Plus (Fm+)
Symbol
Parameter
Min
Typ
Max
Unit
fSCL
SCL clock frequency
tLOW
SCL clock low time
0.5
µs
tHIGH
SCL clock high time
0.26
µs
tSU,DAT
SDA set-up time
50
ns
tHD,DAT
SDA hold time
8
ns
tSU,STA
Repeated START condition set-up time
0.26
µs
tHD,STA
(Repeated) START condition hold time
0.26
µs
tSU,STO
STOP condition set-up time
0.26
µs
tBUF
Bus free time between a STOP and START condition
0.5
µs
1
0
1000
kHz
1
For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32HG Reference Manual.
3.15 USB
The USB hardware in the EFM32HG309 passes all tests for USB 2.0 Full Speed certification. The test
report will be distributed with application note "AN0046 - USB Hardware Design Guide" when ready.
3.16 Digital Peripherals
Table 3.30. Digital Peripherals
Symbol
Parameter
Condition
IUSART
USART current
USART idle current, clock enabled
7.5
µA/
MHz
ILEUART
LEUART current
LEUART idle current, clock enabled
150
nA
II2C
I2C current
I2C idle current, clock enabled
6.25
µA/
MHz
ITIMER
TIMER current
TIMER_0 idle current, clock
enabled
8.75
µA/
MHz
2015-05-06 - EFM32HG309FXX - _Rev0.91
Min
50
Typ
Max
Unit
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
IPCNT
PCNT current
PCNT idle current, clock enabled
100
nA
IRTC
RTC current
RTC idle current, clock enabled
100
nA
IAES
AES current
AES idle current, clock enabled
2.5
µA/
MHz
IGPIO
GPIO current
GPIO idle current, clock enabled
5.31
µA/
MHz
IPRS
PRS current
PRS idle current
2.81
µA/
MHz
IDMA
DMA current
Clock enable
8.12
µA/
MHz
2015-05-06 - EFM32HG309FXX - _Rev0.91
Min
51
Typ
Max
Unit
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
4 Pinout and Package
Note
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32HG309.
4.1 Pinout
The EFM32HG309 pinout is shown in Figure 4.1 (p. 52) and Table 4.1 (p. 52). Alternate locations
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module
in question.
Figure 4.1. EFM32HG309 Pinout (top view, not to scale)
Table 4.1. Device Pinout
Pin #
QFN24 Pin#
and Name
Pin Name
0
VSS
1
PA0
Pin Alternate Functionality / Description
Analog
Timers
Communication
Other
TIM0_CC1 #6
TIM0_CC0 #0/1/4
PCNT0_S0IN #4
USB_DMPU #0
US1_RX #4
LEU0_RX #4
I2C0_SDA #0
PRS_CH0 #0
PRS_CH3 #3
GPIO_EM4WU0
Ground.
2015-05-06 - EFM32HG309FXX - _Rev0.91
52
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Pin Alternate Functionality / Description
Pin #
QFN24 Pin#
and Name
Pin Name
Analog
Timers
Communication
Other
2
IOVDD_0
3
PC0
ACMP0_CH0
TIM0_CC1 #4
PCNT0_S0IN #2
US0_TX #5/6
US1_TX #0
US1_CS #5
I2C0_SDA #4
PRS_CH2 #0
4
PC1
ACMP0_CH1
TIM0_CC2 #4
PCNT0_S1IN #2
US0_RX #5/6
US1_TX #5
US1_RX #0
I2C0_SCL #4
PRS_CH3 #0
5
PB7
LFXTAL_P
TIM1_CC0 #3
US0_TX #4
US1_CLK #0
6
PB8
LFXTAL_N
TIM1_CC1 #3
US0_RX #4
US1_CS #0
7
RESETn
8
PB11
9
AVDD_2
10
PB13
HFXTAL_P
US0_CLK #4/5
LEU0_TX #1
11
PB14
HFXTAL_N
US0_CS #4/5
LEU0_RX #1
12
AVDD_0
13
VDD_DREG
Power supply for on-chip voltage regulator.
14
DECOUPLE
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.
15
USB_VREGI
16
USB_VREGO
17
PC14
TIM0_CDTI1 #1/6
TIM1_CC1 #0
PCNT0_S1IN #0
US0_CS #3
US1_CS #3/4
LEU0_TX #5
USB_DM
PRS_CH0 #2
18
PC15
TIM0_CDTI2 #1/6
TIM1_CC2 #0
US0_CLK #3
US1_CLK #3
LEU0_RX #5
USB_DP
PRS_CH1 #2
19
PF0
TIM0_CC0 #5
US1_CLK #2
LEU0_TX #3
I2C0_SDA #5
DBG_SWCLK #0
BOOT_TX
20
PF1
TIM0_CC1 #5
US1_CS #2
LEU0_RX #3
I2C0_SCL #5
DBG_SWDIO #0
GPIO_EM4WU3
BOOT_RX
21
PF2
TIM0_CC2 #5/6
TIM2_CC0 #3
US1_TX #4
LEU0_TX #4
CMU_CLK0 #3
PRS_CH0 #3
GPIO_EM4WU4
22
IOVDD_5
23
PE12
ADC0_CH0
TIM1_CC2 #1
TIM2_CC1 #3
US0_RX #3
US0_CLK #0/6
I2C0_SDA #6
CMU_CLK1 #2
PRS_CH1 #3
24
PE13
ADC0_CH1
TIM2_CC2 #3
US0_TX #3
US0_CS #0/6
I2C0_SCL #6
ACMP0_O #0
PRS_CH2 #3
GPIO_EM4WU5
Digital IO power supply 0.
Reset input, active low.
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up
ensure that reset is released.
IDAC0_OUT
TIM1_CC2 #3
PCNT0_S1IN #4
US1_CLK #4
CMU_CLK1 #3
ACMP0_O #3
Analog power supply 2.
Analog power supply 0.
Digital IO power supply 5.
2015-05-06 - EFM32HG309FXX - _Rev0.91
53
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
4.2 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in
Table 4.2 (p. 54) . The table shows the name of the alternate functionality in the first column, followed
by columns showing the possible LOCATION bitfield settings.
Note
Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.
Table 4.2. Alternate functionality overview
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
ACMP0_CH0
PC0
Analog comparator ACMP0, channel 0.
ACMP0_CH1
PC1
Analog comparator ACMP0, channel 1.
ACMP0_O
PE13
ADC0_CH0
PE12
Analog to digital converter ADC0, input channel number 0.
ADC0_CH1
PE13
Analog to digital converter ADC0, input channel number 1.
BOOT_RX
PF1
Bootloader RX.
BOOT_TX
PF0
Bootloader TX.
PB11
CMU_CLK0
CMU_CLK1
PE12
Analog comparator ACMP0, digital output.
PF2
Clock Management Unit, clock output number 0.
PB11
Clock Management Unit, clock output number 1.
Debug-interface Serial Wire clock input.
DBG_SWCLK
PF0
DBG_SWDIO
PF1
Note that this function is enabled to pin out of reset, and
has a built-in pull up.
GPIO_EM4WU0
PA0
Pin can be used to wake the system up from EM4
GPIO_EM4WU3
PF1
Pin can be used to wake the system up from EM4
GPIO_EM4WU4
PF2
Pin can be used to wake the system up from EM4
GPIO_EM4WU5
PE13
Pin can be used to wake the system up from EM4
HFXTAL_N
PB14
High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P
PB13
High Frequency Crystal positive pin.
Note that this function is enabled to pin out of reset, and
has a built-in pull down.
Debug-interface Serial Wire data input / output.
I2C0_SCL
I2C0_SDA
PA0
IDAC0_OUT
PB11
PC1
PF1
PE13
I2C0 Serial Clock Line input / output.
PC0
PF0
PE12
I2C0 Serial Data input / output.
IDAC0 output.
LEU0_RX
PB14
PF1
PA0
PC15
LEUART0 Receive input.
LEU0_TX
PB13
PF0
PF2
PC14
LEUART0 Transmit output. Also used as receive input in
half duplex communication.
LFXTAL_N
PB8
Low Frequency Crystal (typically 32.768 kHz) negative
pin. Also used as an optional external clock input pin.
LFXTAL_P
PB7
Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN
PC0
PA0
Pulse Counter PCNT0 input number 0.
PB11
Pulse Counter PCNT0 input number 1.
PCNT0_S1IN
PC14
PC1
PRS_CH0
PA0
PC14
2015-05-06 - EFM32HG309FXX - _Rev0.91
PF2
Peripheral Reflex System PRS, channel 0.
54
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
PRS_CH1
2
PC15
3
4
5
6
Description
PE12
Peripheral Reflex System PRS, channel 1.
PRS_CH2
PC0
PE13
Peripheral Reflex System PRS, channel 2.
PRS_CH3
PC1
PA0
Peripheral Reflex System PRS, channel 3.
TIM0_CC0
PA0
PA0
PA0
PF0
Timer 0 Capture Compare input / output channel 0.
TIM0_CC1
PC0
PF1
PA0
Timer 0 Capture Compare input / output channel 1.
TIM0_CC2
PC1
PF2
PF2
Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI1
PC14
PC14
Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2
PC15
PC15
Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0
PB7
Timer 1 Capture Compare input / output channel 0.
PB8
Timer 1 Capture Compare input / output channel 1.
PB11
Timer 1 Capture Compare input / output channel 2.
TIM2_CC0
PF2
Timer 2 Capture Compare input / output channel 0.
TIM2_CC1
PE12
Timer 2 Capture Compare input / output channel 1.
TIM2_CC2
PE13
Timer 2 Capture Compare input / output channel 2.
TIM1_CC1
PC14
TIM1_CC2
PC15
PE12
US0_CLK
PE12
PC15
PB13
PB13
PE12
USART0 clock input / output.
US0_CS
PE13
PC14
PB14
PB14
PE13
USART0 chip select input / output.
PE12
PB8
PC1
PC1
USART0 Asynchronous Receive.
US0_RX
USART0 Synchronous mode Master Input / Slave Output
(MISO).
USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX
PE13
PB7
PC0
PC0
USART0 Synchronous mode Master Output / Slave Input
(MOSI).
US1_CLK
PB7
PF0
PC15
PB11
US1_CS
PB8
PF1
PC14
PC14
US1_RX
PC1
USART1 clock input / output.
PC0
USART1 chip select input / output.
USART1 Asynchronous Receive.
PA0
USART1 Synchronous mode Master Input / Slave Output
(MISO).
USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX
PC0
PF2
PC1
USART1 Synchronous mode Master Output / Slave Input
(MOSI).
USB_DM
PC14
USB D- pin.
USB_DMPU
PA0
USB D- Pullup control.
USB_DP
PC15
USB D+ pin.
USB_VREGI
USB_VREGI
USB Input to internal 3.3 V regulator
USB_VREGO
USB_VREGO
USB Decoupling for internal 3.3 V USB regulator and regulator output
4.3 GPIO Pinout Overview
The specific GPIO pins available in EFM32HG309 is shown in Table 4.3 (p. 56) . Each GPIO port is
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated
by a number from 15 down to 0.
2015-05-06 - EFM32HG309FXX - _Rev0.91
55
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Table 4.3. GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Pin
9
Pin
8
Pin
7
Pin
6
Pin
5
Pin
4
Pin
3
Pin
2
Pin
1
Pin
0
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0
Port B
-
PB14
PB13
-
PB11
-
-
PB8
PB7
-
-
-
-
-
-
-
Port C
PC15
PC14
-
-
-
-
-
-
-
-
-
-
-
-
PC1
PC0
Port D
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port E
-
-
PE13
PE12
-
-
-
-
-
-
-
-
-
-
-
-
Port F
-
-
-
-
-
-
-
-
-
-
-
-
-
PF2
PF1
PF0
4.4 QFN24 Package
Figure 4.2. QFN24
Note:
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from
the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is
acceptable.
4. Coplanarity applies to the exposed heat slug as well as the terminal.
5. Radius on terminal is optional
2015-05-06 - EFM32HG309FXX - _Rev0.91
56
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Table 4.4. QFN24 (Dimensions in mm)
Symbol
A
A1
Min
0.80
0.00
Nom
0.85
-
Max
0.90
0.05
A3
b
D
E
0.25
0.203
0.30
REF
0.35
5.00 5.00
BSC BSC
D2
E2
3.50
3.50
3.60
3.60
3.70
3.70
e
0.65
BSC
L
L1
0.35
0.00
0.40
0.45
aaa
bbb
ccc
ddd
eee
0.10
0.10
0.10
0.05
0.08
0.10
The QFN24 package uses matte-Sn post plated leadframe.
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see:
http://www.silabs.com/support/quality/pages/default.aspx
2015-05-06 - EFM32HG309FXX - _Rev0.91
57
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
5 PCB Layout and Soldering
5.1 Recommended PCB Layout
Figure 5.1. QFN24 PCB Land Pattern
a
p8
b
p7
p1
p6
e
g
p9
c
p2
p5
p3
p4
f
d
Table 5.1. QFN24 PCB Land Pattern Dimensions (Dimensions in mm)
Symbol
Dim. (mm)
Symbol
Pin number
Symbol
Pin number
a
0.80
P1
1
P8
24
b
0.30
P2
6
P9
25
c
0.65
P3
7
-
-
d
5.00
P4
12
-
-
e
5.00
P5
13
-
-
f
3.60
P6
18
-
-
g
3.60
P7
19
-
-
2015-05-06 - EFM32HG309FXX - _Rev0.91
58
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 5.2. QFN24 PCB Solder Mask
a
b
g
e
c
f
d
Table 5.2. QFN24 PCB Solder Mask Dimensions (Dimensions in mm)
Symbol
Dim. (mm)
Symbol
Dim. (mm)
a
0.92
e
5.00
b
0.42
f
3.72
c
0.65
g
3.72
d
5.00
-
-
2015-05-06 - EFM32HG309FXX - _Rev0.91
59
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Figure 5.3. QFN24 PCB Stencil Design
a
b
x
y
e
z
c
d
Table 5.3. QFN24 PCB Stencil Design Dimensions (Dimensions in mm)
1.
2.
3.
4.
5.
6.
Symbol
Dim. (mm)
Symbol
Dim. (mm)
a
0.60
e
5.00
b
0.25
x
1.00
c
0.65
y
1.00
d
5.00
z
0.50
The drawings are not to scale.
All dimensions are in millimeters.
All drawings are subject to change without notice.
The PCB Land Pattern drawing is in compliance with IPC-7351B.
Stencil thickness 0.125 mm.
For detailed pin-positioning, see Figure 4.2 (p. 56) .
5.2 Soldering Information
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.
Place as many and as small as possible vias underneath each of the solder patches under the ground
pad.
2015-05-06 - EFM32HG309FXX - _Rev0.91
60
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
6 Chip Marking, Revision and Errata
6.1 Chip Marking
In the illustration below package fields and position are shown.
Figure 6.1. Example Chip Marking (top view)
6.2 Revision
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 61) .
6.3 Errata
Please see the errata document for EFM32HG309 for description and resolution of device erratas. This
document is available in Simplicity Studio and online at:
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit
2015-05-06 - EFM32HG309FXX - _Rev0.91
61
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
7 Revision History
7.1 Revision 0.91
May 6th, 2015
Updated current consumption table for energy modes.
Updated GPIO max leakage current.
Updated startup time for HFXO and LFXO.
Updated current consumption for HFRCO and LFRCO.
Updated ADC current consumption.
Updated IDAC characteristics tables.
Updated ACMP internal resistance.
Updated VCMP current consumption.
7.2 Revision 0.90
March 16th, 2015
Note
This datasheet revision applies to a product under development. It’s characteristics and
specifications are subject to change without notice.
Corrected EM2 current consumption condition in Electrical Characteristics section.
Updated GPIO electrical characteristics.
Updated Max ESRHFXO value for Crystal Frequency of 25 MHz.
Updated LFRCO plots.
Updated HFRCO table and plots.
Updated ADC table and temp sensor plot.
Added DMA current in Digital Peripherals section.
Updated block diagram.
Updated Package dimensions table.
Corrected leadframe type to matte-Sn.
7.3 Revision 0.20
December 11th, 2014
Preliminary Release.
2015-05-06 - EFM32HG309FXX - _Rev0.91
62
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
A Disclaimer and Trademarks
A.1 Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation
of all peripherals and modules available for system and software implementers using or intending to use
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and
do vary in different applications. Application examples described herein are for illustrative purposes only.
Silicon Laboratories reserves the right to make changes without further notice and limitation to product
information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life
Support System" is any product or system intended to support or sustain life and/or health, which, if it
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories
products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological
or chemical weapons, or missiles capable of delivering such weapons.
A.2 Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products
or brand names mentioned herein are trademarks of their respective holders.
2015-05-06 - EFM32HG309FXX - _Rev0.91
63
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
B Contact Information
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Please visit the Silicon Labs Technical Support web page:
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
2015-05-06 - EFM32HG309FXX - _Rev0.91
64
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
Table of Contents
1. Ordering Information .................................................................................................................................. 2
2. System Summary ...................................................................................................................................... 3
2.1. System Introduction ......................................................................................................................... 3
2.2. Configuration Summary .................................................................................................................... 6
2.3. Memory Map ................................................................................................................................. 7
3. Electrical Characteristics ............................................................................................................................. 8
3.1. Test Conditions .............................................................................................................................. 8
3.2. Absolute Maximum Ratings .............................................................................................................. 8
3.3. General Operating Conditions ........................................................................................................... 8
3.4. Current Consumption ....................................................................................................................... 9
3.5. Transition between Energy Modes .................................................................................................... 17
3.6. Power Management ....................................................................................................................... 17
3.7. Flash .......................................................................................................................................... 18
3.8. General Purpose Input Output ......................................................................................................... 18
3.9. Oscillators .................................................................................................................................... 27
3.10. Analog Digital Converter (ADC) ...................................................................................................... 32
3.11. Current Digital Analog Converter (IDAC) .......................................................................................... 42
3.12. Analog Comparator (ACMP) .......................................................................................................... 47
3.13. Voltage Comparator (VCMP) ......................................................................................................... 49
3.14. I2C ........................................................................................................................................... 49
3.15. USB .......................................................................................................................................... 50
3.16. Digital Peripherals ....................................................................................................................... 50
4. Pinout and Package ................................................................................................................................. 52
4.1. Pinout ......................................................................................................................................... 52
4.2. Alternate Functionality Pinout .......................................................................................................... 54
4.3. GPIO Pinout Overview ................................................................................................................... 55
4.4. QFN24 Package ........................................................................................................................... 56
5. PCB Layout and Soldering ........................................................................................................................ 58
5.1. Recommended PCB Layout ............................................................................................................ 58
5.2. Soldering Information ..................................................................................................................... 60
6. Chip Marking, Revision and Errata .............................................................................................................. 61
6.1. Chip Marking ................................................................................................................................ 61
6.2. Revision ...................................................................................................................................... 61
6.3. Errata ......................................................................................................................................... 61
7. Revision History ...................................................................................................................................... 62
7.1. Revision 0.91 ............................................................................................................................... 62
7.2. Revision 0.90 ............................................................................................................................... 62
7.3. Revision 0.20 ............................................................................................................................... 62
A. Disclaimer and Trademarks ....................................................................................................................... 63
A.1. Disclaimer ................................................................................................................................... 63
A.2. Trademark Information ................................................................................................................... 63
B. Contact Information ................................................................................................................................. 64
B.1. ................................................................................................................................................. 64
2015-05-06 - EFM32HG309FXX - _Rev0.91
65
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
List of Figures
2.1. Block Diagram ....................................................................................................................................... 3
2.2. EFM32HG309 Memory Map with largest RAM and Flash sizes ........................................................................ 7
3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24
MHz ........................................................................................................................................................ 11
3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21
MHz ........................................................................................................................................................ 11
3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14
MHz ........................................................................................................................................................ 12
3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11
MHz ........................................................................................................................................................ 12
3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6
MHz ........................................................................................................................................................ 13
3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz .............................. 13
3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14
3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14
3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15
3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz ........................... 15
3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ....................................................... 16
3.12. EM3 current consumption. ................................................................................................................... 16
3.13. EM4 current consumption. ................................................................................................................... 17
3.14. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21
3.15. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22
3.16. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23
3.17. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24
3.18. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25
3.19. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26
3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28
3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29
3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30
3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30
3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30
3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31
3.26. Integral Non-Linearity (INL) ................................................................................................................... 36
3.27. Differential Non-Linearity (DNL) .............................................................................................................. 37
3.28. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38
3.29. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39
3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40
3.31. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41
3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41
3.33. ADC Temperature sensor readout ......................................................................................................... 42
3.34. IDAC Source Current as a function of voltage on IDAC_OUT ....................................................................... 45
3.35. IDAC Sink Current as a function of voltage from IDAC_OUT ........................................................................ 46
3.36. IDAC linearity .................................................................................................................................... 46
3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 48
4.1. EFM32HG309 Pinout (top view, not to scale) ............................................................................................. 52
4.2. QFN24 ................................................................................................................................................ 56
5.1. QFN24 PCB Land Pattern ...................................................................................................................... 58
5.2. QFN24 PCB Solder Mask ....................................................................................................................... 59
5.3. QFN24 PCB Stencil Design .................................................................................................................... 60
6.1. Example Chip Marking (top view) ............................................................................................................. 61
2015-05-06 - EFM32HG309FXX - _Rev0.91
66
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
List of Tables
1.1. Ordering Information ................................................................................................................................ 2
2.1. Configuration Summary ............................................................................................................................ 6
3.1. Absolute Maximum Ratings ...................................................................................................................... 8
3.2. General Operating Conditions ................................................................................................................... 8
3.3. Current Consumption ............................................................................................................................... 9
3.4. Energy Modes Transitions ...................................................................................................................... 17
3.5. Power Management ............................................................................................................................... 18
3.6. Flash .................................................................................................................................................. 18
3.7. GPIO .................................................................................................................................................. 18
3.8. LFXO .................................................................................................................................................. 27
3.9. HFXO ................................................................................................................................................. 27
3.10. LFRCO .............................................................................................................................................. 28
3.11. HFRCO ............................................................................................................................................. 29
3.12. AUXHFRCO ....................................................................................................................................... 31
3.13. USHFRCO ......................................................................................................................................... 31
3.14. ULFRCO ............................................................................................................................................ 32
3.15. ADC .................................................................................................................................................. 32
3.16. IDAC Range 0 Source ......................................................................................................................... 42
3.17. IDAC Range 0 Sink ............................................................................................................................. 42
3.18. IDAC Range 1 Source ......................................................................................................................... 43
3.19. IDAC Range 1 Sink ............................................................................................................................. 43
3.20. IDAC Range 2 Source ......................................................................................................................... 43
3.21. IDAC Range 2 Sink ............................................................................................................................. 43
3.22. IDAC Range 3 Source ......................................................................................................................... 44
3.23. IDAC Range 3 Sink ............................................................................................................................. 44
3.24. IDAC ................................................................................................................................................. 44
3.25. ACMP ............................................................................................................................................... 47
3.26. VCMP ............................................................................................................................................... 49
3.27. I2C Standard-mode (Sm) ...................................................................................................................... 49
3.28. I2C Fast-mode (Fm) ............................................................................................................................ 50
3.29. I2C Fast-mode Plus (Fm+) .................................................................................................................... 50
3.30. Digital Peripherals ............................................................................................................................... 50
4.1. Device Pinout ....................................................................................................................................... 52
4.2. Alternate functionality overview ................................................................................................................ 54
4.3. GPIO Pinout ........................................................................................................................................ 56
4.4. QFN24 (Dimensions in mm) .................................................................................................................... 57
5.1. QFN24 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 58
5.2. QFN24 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 59
5.3. QFN24 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 60
2015-05-06 - EFM32HG309FXX - _Rev0.91
67
www.silabs.com
Preliminary
...the world's most energy friendly microcontrollers
List of Equations
3.1. Total ACMP Active Current ..................................................................................................................... 47
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 49
2015-05-06 - EFM32HG309FXX - _Rev0.91
68
www.silabs.com
Similar pages