IRL6297SDPbF DirectFET® Dual N-Channel Power MOSFET Typical values (unless otherwise specified) Applications l Charge and Discharge Switch for Battery Application l Isolation Switch for Input Power or Battery Application VDSS Environmentaly Friendly Product l RoHs Compliant, Halogen Free l RDS(on) RDS(on) 20V max ±12V max 3.8mΩ@4.5V Features and Benefits l VGS 5.4mΩ@2.5V Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) 27nC 9.5nC 1.4nC 21nC 15nC 0.80V Dual Common-Drain N-Channel MOSFETs Provides High Level of Integration and Very Low RDS(on) D G G S S D DirectFET® ISOMETRIC SA Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ SA MX MT MP MC Description The IRL6297SDPbF combines the latest HEXFET® N-Channel Power MOSFET Silicon technology with the advanced DirectFET ® packaging to achieve the lowest on-state resistance in a package that has the footprint smaller than an SO-8 and only 0.6 mm profile. The DirectFET ® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET ® package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. Base Part Number Package Type IRL6297SDPbF DirectFET Small Can Standard Pack Form Quantity Tape and Reel 4800 Absolute Maximum Ratings IDM Pulsed Drain Current g e e f Typical RDS(on) (mΩ) 20 ID = 15A 15 10 T J = 125°C 5 T J = 25°C 0 0 1 2 3 4 5 6 7 8 9 10 11 12 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. 1 www.irf.com © 2013 International Rectifier Units 20 ±12 15 12 58 V A 140 VGS, Gate-to-Source Voltage (V) VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V IRL6297SDTRPbF Max. Parameter VDS Orderable part number 14.0 ID= 12A 12.0 10.0 VDS= 16V VDS= 10V VDS= 4.0V 8.0 6.0 4.0 2.0 0.0 0 10 20 30 40 50 60 70 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. September 5, 2013 IRL6297SDPbF Static @ TJ = 25°C (unless otherwise specified) Min. Typ. BVDSS ∆ΒVDSS/∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Parameter 20 ––– ––– 6.1 ––– ––– R DS(on) Static Drain-to-Source On-Resistance ––– 3.8 4.9 Gate Threshold Voltage ––– 0.50 5.4 0.80 6.9 1.10 IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -4.1 ––– ––– 1.0 IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– 150 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Qg Forward Transconductance Total Gate Charge 60 ––– ––– 54 ––– ––– Qg Qgs1 Total Gate Charge Pre- Vth Gate-to-Source Charge ––– ––– 27 2.2 ––– ––– Qgs2 Qgd Post -Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– 1.4 9.5 ––– ––– Qgodr Gate Charge Overdrive ––– 13.9 ––– Qsw Qoss Switch charge (Qgs2 + Qgd) Output Charge ––– ––– 10.9 15 ––– ––– RG td(on) Gate Resistance Turn-On Delay Time ––– ––– 1.8 8.8 ––– ––– tr td(off) Rise Time Turn-Off Delay Time ––– ––– 29 41 ––– ––– tf Fall Time ––– 41 ––– C iss C oss Input Capacitance Output Capacitance ––– ––– 2245 610 ––– ––– C rss Reverse Transfer Capacitance ––– 395 ––– Min. Typ. ––– ––– VGS(th) ∆VGS(th) /∆TJ Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current Max. Units Conditions V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1.0mA mΩ V mV/°C µA nA S VGS = 4.5V, ID = 15A VGS = 2.5V, ID = 12A h h VDS = VGS, ID = 35µA VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 150°C VGS = 12V VGS = -12V VDS = 10V, ID =12A VDS = 10V, VGS = 10V, ID = 12A VDS = 10V nC VGS = 4.5V ID = 12A See Fig.15 nC VDS = 16 V, VGS = 0V Ω VDD = 10V, VGS = 4.5V ns pF Max. Units h ID = 12A R G = 2.0 Ω See Fig.17 VGS = 0V VDS = 10V ƒ = 1.0MHz Conditions MOSFET symbol 25 A showing the integral reverse D G ––– 140 VSD (Body Diode) Diode Forward Voltage ––– ––– ––– 1.2 V TJ = 25°C, IS = 12A, VGS = 0V trr Reverse Recovery Time ––– 28 42 ns Qrr Reverse Recovery Charge ––– 21 32 nC TJ = 25°C, IF = 12A, VDD = 10V di/dt = 100 A/µs g p-n junction diode. S h h Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com © 2013 International Rectifier September 5, 2013 IRL6297SDPbF Absolute Maximum Ratings Max. Parameter e e f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and TSTG Storage Temperature Range Units 1.7 1.1 25 270 -40 to + 150 W °C Thermal Resistance e i j fk RθJA RθJA RθJA RθJC RθJ-PCB Parameter Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case , Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 72 ––– ––– 5.1 ––– °C/W 0.014 W/°C Thermal Response ( Z thJA ) 100 10 D = 0.50 0.20 0.10 0.05 1 0.02 0.01 0.1 0.01 0.001 1E-006 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling, mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). 3 Mounted to a PCB with small clip heatsink (still air) www.irf.com © 2013 International Rectifier Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) September 5, 2013 IRL6297SDPbF 1000 1000 100 BOTTOM VGS 10V 4.5V 3.5V 3.0V 2.6V 2.4V 2.2V 2.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 4.5V 3.5V 3.0V 2.6V 2.4V 2.2V 2.0V 100 2.0V 10 ≤60µs PULSE WIDTH BOTTOM 2.0V 10 ≤60µs PULSE WIDTH Tj = 25°C Tj = 150°C 1 0.01 0.1 1 10 1 100 0.01 VDS, Drain-to-Source Voltage (V) 10 100 Fig 5. Typical Output Characteristics 1000 1.6 ID = -8.5A VDS = 10V ≤60µs PULSE WIDTH Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 0.1 V GS = -10V V GS = -4.5V 1.4 1.2 1.0 0.8 0.6 0 1 1 2 2 3 3 9.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Typical RDS(on) ( mΩ) 10000 Ciss Coss Crss T J = 25°C Vgs = 2.5V Vgs = 3.5V Vgs = 4.5V Vgs = 6.0V Vgs = 8.0V Vgs = 10V Vgs = 12V 8.0 C oss = C ds + C gd 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) 0.1 7.0 6.0 5.0 4.0 3.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 www.irf.com © 2013 International Rectifier 0 20 40 60 80 100 120 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage September 5, 2013 IRL6297SDPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 10 10msec 1msec 1 0.1 VGS = 0V 0 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.01 VSD, Source-to-Drain Voltage (V) 40 30 20 10 100 125 100 1.4 1.2 1.0 0.8 ID = 35µA ID = 250µA 0.6 ID = 1.0mA ID = 1.0A 0.4 0.2 0 75 10 1.6 Typical VGS(th) Gate threshold Voltage (V) 50 50 1 Fig 11. Maximum Safe Operating Area 60 25 0.1 VDS, Drain-to-Source Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) DC Tc = 25°C Tj = 150°C Single Pulse -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 300 ID 2.1A 3.0A BOTTOM 12A TOP 250 200 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current 5 www.irf.com © 2013 International Rectifier September 5, 2013 IRL6297SDPbF Id Vds Vgs L VDD VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS tp 15V DRIVER L VDS D.U.T RG 20V + - VDD IAS A I AS 0.01Ω tp Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG Fig 16b. Unclamped Inductive Waveforms td(on) RD tr t d(off) tf VGS 10% D.U.T. + - VDD 90% V10V GS VDS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 www.irf.com © 2013 International Rectifier Fig 17b. Switching Time Waveforms September 5, 2013 IRL6297SDPbF D.U.T Driver Gate Drive + + - • • • • * D.U.T. ISD Waveform Reverse Recovery Current + RG di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET® Board Footprint, SA Outline (Small Size Can, A-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G=GATE D=DRAIN S=SOURCE D D S G S G D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 7 www.irf.com © 2013 International Rectifier September 5, 2013 IRL6297SDPbF DirectFET® Outline Dimension, SA Outline (Small Size Can, A-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS CODE A B C D E F G H J J1 K L M P R METRIC MIN MAX 4.75 4.85 3.70 3.95 2.75 2.85 0.35 0.45 0.48 0.52 0.48 0.52 0.68 0.72 0.83 0.87 0.38 0.42 1.08 1.12 0.95 1.05 2.05 2.15 0.59 0.70 0.08 0.17 0.02 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.019 0.020 0.019 0.020 0.027 0.028 0.033 0.034 0.015 0.016 0.043 0.044 0.037 0.041 0.081 0.085 0.023 0.028 0.003 0.007 0.0008 0.0031 DirectFET® Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com © 2013 International Rectifier September 5, 2013 IRL6297SDPbF DirectFET® Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION H D E A B A D C B F F C G H E NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H G NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRL6297SDTRPBF). For 1000 parts on 7" reel, order IRL6297SDTR1PBF DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 7.90 0.319 8.10 0.154 3.90 0.161 4.10 0.469 11.90 0.484 12.30 0.215 0.219 5.45 5.55 0.158 4.00 0.165 4.20 0.197 5.00 0.205 5.20 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC CODE MIN MIN MAX MIN MAX MAX MIN MAX A 12.992 N.C 6.9 N.C 330.0 N.C 177.77 N.C B 0.795 0.75 N.C 20.2 N.C 19.06 N.C N.C C 0.504 0.53 0.50 12.8 0.520 13.5 13.2 12.8 D 0.059 0.059 N.C 1.5 N.C 1.5 N.C N.C E 3.937 2.31 100.0 58.72 N.C N.C N.C N.C F N.C N.C 0.53 N.C 0.724 N.C 18.4 13.50 G 0.488 0.47 12.4 11.9 N.C 0.567 14.4 12.01 H 0.469 0.47 11.9 11.9 N.C 15.4 0.606 12.01 Qualification Information† Qualification level Moisture Sensitivity Level Consumer †† (per JEDEC JESD47F††† guidelines) (per JEDEC J-STD-020D†††) Yes RoHS Compliant MSL1 DirectFET Small Can Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com © 2013 International Rectifier September 5, 2013