PD - 97073B IRGB4060DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5µs SCSOA Square RBSOA 100% of The Parts Tested for 4X Rated Current (ILM) Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package IC = 8.0A, TC = 100°C G tsc > 5µs, Tjmax = 175°C E VCE(on) typ. = 1.55V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E G C TO-220AB G C E Gate Collector Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25° PD @ TC =100° TJ TSTG Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Units V 600 16 8 32 32 16 8 32 ± 20 ± 30 99 50 Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds A V W °C -55 to + 175 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 Min. Typ. Junction-to-Case - IGBT e Junction-to-Case - Diode e Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount e Weight Max. 1.51 3.66 0.5 80 1.44 Units °C/W g www.irf.com 9/22/06 IRGB4060DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions f Collector-to-Emitter Breakdown Voltage 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.3 — — 1.55 1.85 VCE(on) Collector-to-Emitter Saturation Voltage — 2.00 — — 1.95 VGE(th) Gate Threshold Voltage 4.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -18 — gfe Forward Transconductance — 5.6 — — 1 25 µA VGE = 0V,VCE = 600V ICES VFM IGES Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V VGE = 0V,Ic =100 µA V(BR)CES o V/°C VGE = 0V, Ic = 250 µA ( 25 -175 C ) IC = 8A, VGE = 15V, TJ = 25°C 5,6,7,9, IC = 8A, VGE = 15V, TJ = 175°C 10 ,11 V VCE = VGE, IC = 250 µA 400 — µA VGE = 0v, VCE = 600V, TJ =175°C 1.80 2.80 V IF = 8A — 1.30 — nA VGE = ± 20 V ±100 9,10,11,12 o mV/°C VCE = VGE, IC = 250 µA ( 25 -175 C ) S VCE = 50V, IC = 8A, PW =80µs — — CT6 IC = 8A, VGE = 15V, TJ = 150°C — — f V — 6.5 Ref.Fig 8 IF = 8A, TJ = 175°C Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Qg Total Gate Charge (turn-on) — 19 29 Qge Gate-to-Emitter Charge (turn-on) — 5 7 Qgc Gate-to-Collector Charge (turn-on) — 8 12 VGE = 15V Eon Turn-On Switching Loss — 70 115 IC = 8A, VCC = 400V, VGE = 15V Eoff Turn-Off Switching Loss — 145 195 Etotal Total Switching Loss — 215 310 td(on) Turn-On delay time — 30 39 tr Rise time — 15 21 td(off) Turn-Off delay time — 95 106 tf Fall time — 20 26 Eon Turn-On Switching Loss — 165 — Eoff Turn-Off Switching Loss — 240 — Etotal Total Switching Loss — 405 — td(on) Turn-On delay time — 28 — tr Rise time — 17 — td(off) Turn-Off delay time — 117 — tf Fall time — 35 — Cies Input Capacitance — 535 — Coes Output Capacitance — 45 — Cres Reverse Transfer Capacitance — 15 — IC = 8A nC µJ 24 VCC = 400V Reverse Bias Safe Operating Area CT1 RG = 47Ω, L=1mH, LS= 150nH, TJ = 25°C CT4 Energy losses include tail and diode reverse recovery IC = 8A, VCC = 400V ns RG = 47Ω, L=1mH, LS= 150nH CT4 TJ = 25°C IC = 8A, VCC = 400V, VGE = 15V µJ 13,15 RG = 47Ω, L=1mH, LS= 150nH, TJ = 175°C CT4 Energy losses include tail and diode reverse recovery IC = 8A, VCC = 400V ns RG = 47Ω, L=1mH, LS= 150nH TJ = 175°C VGE = 0V pF WF1,WF2 14,16 CT4 WF1,WF2 22 VCC = 30V f = 1Mhz TJ = 175°C, IC = 32A RBSOA Ref.Fig FULL SQUARE VCC = 480V, Vp =600V 4 CT2 RG = 47Ω, VGE = +15V to 0V 5 µs VCC = 400V, Vp =600V 22, CT3 SCSOA Short Circuit Safe Operating Area Erec Reverse recovery energy of the diode 165 µJ TJ = 175 C trr Diode Reverse recovery time 60 ns VCC = 400V, IF = 8A 20,21 Irr Peak Reverse Recovery Current 14 A VGE = 15V, Rg = 47Ω, L=1mH, LS=150nH WF3 RG = 47Ω, VGE = +15V to 0V o WF4 17,18,19 Notes: VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 47 Ω. Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guidelines for measuring V(BR)CES safely 2 www.irf.com IRGB4060DPbF 120 18 16 100 14 80 Ptot (W) 12 IC (A) 10 8 60 40 6 4 20 2 0 0 0 20 40 60 0 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 TC (°C) TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs IC A) IC (A) 10 100 µs 1 10 1ms DC 0.1 1 1 10 100 1000 10 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C 30 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 15 15 10 10 5 5 0 0 0 2 4 6 8 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com VGE = 18V 25 ICE (A) 20 ICE (A) 30 VGE = 18V 25 1000 0 2 4 6 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGB4060DPbF 80 30 VGE = 18V 60 -40°C 25°C 175°C 50 IF (A) 20 ICE (A) 70 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 15 40 30 10 20 5 10 0 0 0 2 4 6 0.0 8 1.0 2.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 20 18 18 16 16 ICE = 4.0A 12 ICE = 16A 10 ICE = 4.0A 14 ICE = 8.0A VCE (V) VCE (V) 14 8 ICE = 8.0A 12 ICE = 16A 10 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 35 20 18 TJ = 25°C TJ = 175°C 30 16 14 ICE = 4.0A 25 ICE = 16A 20 ICE = 8.0A 12 10 ICE (A) VCE (V) 4.0 VF (V) VCE (V) 8 6 15 10 4 5 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 3.0 20 0 5 10 15 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGB4060DPbF 1000 500 450 400 300 Swiching Time (ns) Energy (µJ) 350 EOFF 250 200 EON 150 tdOFF 100 tF tdON tR 10 100 50 0 1 0 5 10 15 20 0 5 10 I C (A) 20 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 47Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 47Ω; VGE = 15V. 350 1000 300 EOFF Swiching Time (ns) 250 Energy (µJ) 15 EON 200 150 100 tdOFF 100 tdON tR tF 50 0 10 0 25 50 75 100 125 0 25 RG (Ω) 100 125 Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 8A; VGE= 15V 25 30 25 R G =10 Ω 20 RG =22 Ω 20 IRR (A) IRR (A) 75 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 8A; VGE = 15V 15 RG =47 Ω 10 RG = 100 Ω 15 10 5 5 0 0 0 5 10 15 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C www.irf.com 50 20 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 8.0A 5 IRGB4060DPbF 1400 25 10Ω 1200 47 Ω QRR (nC) IRR (A) 1000 15 10 16A 22Ω 20 100Ω 800 8.0A 600 4.0A 400 5 200 0 0 0 500 0 1000 500 1000 1500 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 8A; TJ = 175°C 500 450 18 80 16 70 14 60 12 50 10 40 8 30 6 20 300 Time (µs) Energy (µJ) 350 250 10 Ω 200 22 Ω 150 47 Ω 100 Ω 100 50 10 4 0 0 5 10 15 20 8 10 12 14 VGE (V) I F (A) 16 18 Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C 1000 16 14 Cies 300V 12 100 VGE (V) Capacitance (pF) Current (A) 400 Coes 400V 10 8 6 10 Cres 4 2 0 1 0 20 40 60 80 VCE (V) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 100 0 5 10 15 20 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 8A, L=600µH www.irf.com IRGB4060DPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.1 0.10 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) τC τ2 τ1 τ2 τ3 τ τ3 Ci= τi/Ri Ci= τi/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 τι (sec) 0.555579 0.000216 0.590565 0.00117 0.365255 0.009076 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 0.001 1E-006 τJ 0.0001 R2 R2 R3 R3 Ri (°C/W) τC τ1 τ2 τ2 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R1 R1 τJ τ1 τ3 τ3 τ τι (sec) 0.821094 0.000233 1.913817 0.001894 0.926641 0.014711 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4060DPbF L L DUT 0 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 VCC 80 V + - DUT Rg 480V Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGB4060DPbF 500 25 500 25 400 20 400 20 tr 90% ICE 15 tf 10 5% ICE 100 5 200 90% test t 10 100 10% test current 5 5% VCE 5% VCE 0 0 0 0 EOFF Loss -100 -0.40 0.10 EON Loss -5 1.10 0.60 -100 11.70 Time(µs) 500 tRR ICE 300 10% Peak IRR Peak IRR 0.05 0.15 time (µS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4 80 60 200 40 100 20 0 -15 -20 -0.05 VCE (V) IRR (A) VCE 400 0 www.irf.com 100 QRR 5 -10 11.90 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 15 -5 -5 12.10 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 10 15 TEST ICE (A) 200 300 VCE (V) VCE (V) 300 0 -100 -5.00 0.00 5.00 -20 10.00 time (µS) WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGB4060DPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/06 10 www.irf.com