IRF IRGB4060DPBF Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 97073B
IRGB4060DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
VCES = 600V
Features
•
•
•
•
•
•
•
•
•
•
Low VCE (on) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5µs SCSOA
Square RBSOA
100% of The Parts Tested for 4X Rated Current (ILM)
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
IC = 8.0A, TC = 100°C
G
tsc > 5µs, Tjmax = 175°C
E
VCE(on) typ. = 1.55V
n-channel
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
• Low EMI
E
G
C
TO-220AB
G
C
E
Gate
Collector
Emitter
Absolute Maximum Ratings
Parameter
VCES
IC@ TC = 25°C
IC@ TC = 100°C
ICM
ILM
IF@TC=25°C
IF@TC=100°C
IFM
VGE
PD @ TC =25°
PD @ TC =100°
TJ
TSTG
Max.
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current c
Units
V
600
16
8
32
32
16
8
32
± 20
± 30
99
50
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current d
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
A
V
W
°C
-55 to + 175
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
1
Min.
Typ.
Junction-to-Case - IGBT e
Junction-to-Case - Diode e
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount e
Weight
Max.
1.51
3.66
0.5
80
1.44
Units
°C/W
g
www.irf.com
9/22/06
IRGB4060DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
f
Collector-to-Emitter Breakdown Voltage
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.3
—
—
1.55
1.85
VCE(on)
Collector-to-Emitter Saturation Voltage
—
2.00
—
—
1.95
VGE(th)
Gate Threshold Voltage
4.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-18
—
gfe
Forward Transconductance
—
5.6
—
—
1
25
µA
VGE = 0V,VCE = 600V
ICES
VFM
IGES
Collector-to-Emitter Leakage Current
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
VGE = 0V,Ic =100 µA
V(BR)CES
o
V/°C VGE = 0V, Ic = 250 µA ( 25 -175 C )
IC = 8A, VGE = 15V, TJ = 25°C
5,6,7,9,
IC = 8A, VGE = 15V, TJ = 175°C
10 ,11
V
VCE = VGE, IC = 250 µA
400
—
µA
VGE = 0v, VCE = 600V, TJ =175°C
1.80
2.80
V
IF = 8A
—
1.30
—
nA
VGE = ± 20 V
±100
9,10,11,12
o
mV/°C VCE = VGE, IC = 250 µA ( 25 -175 C )
S VCE = 50V, IC = 8A, PW =80µs
—
—
CT6
IC = 8A, VGE = 15V, TJ = 150°C
—
—
f
V
—
6.5
Ref.Fig
8
IF = 8A, TJ = 175°C
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Qg
Total Gate Charge (turn-on)
—
19
29
Qge
Gate-to-Emitter Charge (turn-on)
—
5
7
Qgc
Gate-to-Collector Charge (turn-on)
—
8
12
VGE = 15V
Eon
Turn-On Switching Loss
—
70
115
IC = 8A, VCC = 400V, VGE = 15V
Eoff
Turn-Off Switching Loss
—
145
195
Etotal
Total Switching Loss
—
215
310
td(on)
Turn-On delay time
—
30
39
tr
Rise time
—
15
21
td(off)
Turn-Off delay time
—
95
106
tf
Fall time
—
20
26
Eon
Turn-On Switching Loss
—
165
—
Eoff
Turn-Off Switching Loss
—
240
—
Etotal
Total Switching Loss
—
405
—
td(on)
Turn-On delay time
—
28
—
tr
Rise time
—
17
—
td(off)
Turn-Off delay time
—
117
—
tf
Fall time
—
35
—
Cies
Input Capacitance
—
535
—
Coes
Output Capacitance
—
45
—
Cres
Reverse Transfer Capacitance
—
15
—
IC = 8A
nC
µJ
24
VCC = 400V
Reverse Bias Safe Operating Area
CT1
RG = 47Ω, L=1mH, LS= 150nH, TJ = 25°C
CT4
Energy losses include tail and diode reverse recovery
IC = 8A, VCC = 400V
ns
RG = 47Ω, L=1mH, LS= 150nH
CT4
TJ = 25°C
IC = 8A, VCC = 400V, VGE = 15V
µJ
13,15
RG = 47Ω, L=1mH, LS= 150nH, TJ = 175°C
CT4
Energy losses include tail and diode reverse recovery
IC = 8A, VCC = 400V
ns
RG = 47Ω, L=1mH, LS= 150nH
TJ = 175°C
VGE = 0V
pF
WF1,WF2
14,16
CT4
WF1,WF2
22
VCC = 30V
f = 1Mhz
TJ = 175°C, IC = 32A
RBSOA
Ref.Fig
FULL SQUARE
VCC = 480V, Vp =600V
4
CT2
RG = 47Ω, VGE = +15V to 0V
5
µs
VCC = 400V, Vp =600V
22, CT3
SCSOA
Short Circuit Safe Operating Area
Erec
Reverse recovery energy of the diode
165
µJ
TJ = 175 C
trr
Diode Reverse recovery time
60
ns
VCC = 400V, IF = 8A
20,21
Irr
Peak Reverse Recovery Current
14
A
VGE = 15V, Rg = 47Ω, L=1mH, LS=150nH
WF3
RG = 47Ω, VGE = +15V to 0V
o
WF4
17,18,19
Notes:
VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 47 Ω.
‚ Pulse width limited by max. junction temperature.
ƒRθ is measured at TJ approximately 90°C
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely
2
www.irf.com
IRGB4060DPbF
120
18
16
100
14
80
Ptot (W)
12
IC (A)
10
8
60
40
6
4
20
2
0
0
0
20
40
60
0
80 100 120 140 160 180
20
40
60
80 100 120 140 160 180
TC (°C)
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10 µs
IC A)
IC (A)
10
100 µs
1
10
1ms
DC
0.1
1
1
10
100
1000
10
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VCE = 15V
Fig. 3 - Forward SOA,
TC = 25°C; TJ ≤ 175°C
30
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
15
15
10
10
5
5
0
0
0
2
4
6
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
VGE = 18V
25
ICE (A)
20
ICE (A)
30
VGE = 18V
25
1000
0
2
4
6
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRGB4060DPbF
80
30
VGE = 18V
60
-40°C
25°C
175°C
50
IF (A)
20
ICE (A)
70
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
15
40
30
10
20
5
10
0
0
0
2
4
6
0.0
8
1.0
2.0
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
20
20
18
18
16
16
ICE = 4.0A
12
ICE = 16A
10
ICE = 4.0A
14
ICE = 8.0A
VCE (V)
VCE (V)
14
8
ICE = 8.0A
12
ICE = 16A
10
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
35
20
18
TJ = 25°C
TJ = 175°C
30
16
14
ICE = 4.0A
25
ICE = 16A
20
ICE = 8.0A
12
10
ICE (A)
VCE (V)
4.0
VF (V)
VCE (V)
8
6
15
10
4
5
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
3.0
20
0
5
10
15
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGB4060DPbF
1000
500
450
400
300
Swiching Time (ns)
Energy (µJ)
350
EOFF
250
200
EON
150
tdOFF
100
tF
tdON
tR
10
100
50
0
1
0
5
10
15
20
0
5
10
I C (A)
20
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L=1mH; VCE= 400V
RG= 47Ω; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1mH; VCE = 400V, RG = 47Ω; VGE = 15V.
350
1000
300
EOFF
Swiching Time (ns)
250
Energy (µJ)
15
EON
200
150
100
tdOFF
100
tdON
tR
tF
50
0
10
0
25
50
75
100
125
0
25
RG (Ω)
100
125
Fig. 16- Typ. Switching Time vs. RG
TJ = 175°C; L=1mH; VCE= 400V
ICE= 8A; VGE= 15V
25
30
25
R G =10 Ω
20
RG =22 Ω
20
IRR (A)
IRR (A)
75
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 8A; VGE = 15V
15
RG =47 Ω
10
RG = 100 Ω
15
10
5
5
0
0
0
5
10
15
IF (A)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 175°C
www.irf.com
50
20
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 175°C; IF = 8.0A
5
IRGB4060DPbF
1400
25
10Ω
1200
47 Ω
QRR (nC)
IRR (A)
1000
15
10
16A
22Ω
20
100Ω
800
8.0A
600
4.0A
400
5
200
0
0
0
500
0
1000
500
1000
1500
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 175°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 8A; TJ = 175°C
500
450
18
80
16
70
14
60
12
50
10
40
8
30
6
20
300
Time (µs)
Energy (µJ)
350
250
10 Ω
200
22 Ω
150
47 Ω
100 Ω
100
50
10
4
0
0
5
10
15
20
8
10
12
14
VGE (V)
I F (A)
16
18
Fig. 22- Typ. VGE vs Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 175°C
1000
16
14
Cies
300V
12
100
VGE (V)
Capacitance (pF)
Current (A)
400
Coes
400V
10
8
6
10
Cres
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
100
0
5
10
15
20
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 8A, L=600µH
www.irf.com
IRGB4060DPbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ2
τ3
τ
τ3
Ci= τi/Ri
Ci= τi/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
τι (sec)
0.555579 0.000216
0.590565 0.00117
0.365255 0.009076
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
0.001
1E-006
τJ
0.0001
R2
R2
R3
R3
Ri (°C/W)
τC
τ1
τ2
τ2
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R1
R1
τJ
τ1
τ3
τ3
τ
τι (sec)
0.821094 0.000233
1.913817 0.001894
0.926641 0.014711
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4060DPbF
L
L
DUT
0
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.5 - Resistive Load Circuit
8
VCC
80 V
+
-
DUT
Rg
480V
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
www.irf.com
IRGB4060DPbF
500
25
500
25
400
20
400
20
tr
90% ICE
15
tf
10
5% ICE
100
5
200
90% test
t
10
100
10% test current
5
5% VCE
5% VCE
0
0
0
0
EOFF Loss
-100
-0.40
0.10
EON Loss
-5
1.10
0.60
-100
11.70
Time(µs)
500
tRR
ICE
300
10%
Peak
IRR
Peak
IRR
0.05
0.15
time (µS)
WF.3- Typ. Reverse Recovery Waveform
@ TJ = 175°C using CT.4
80
60
200
40
100
20
0
-15
-20
-0.05
VCE (V)
IRR (A)
VCE
400
0
www.irf.com
100
QRR
5
-10
11.90
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
15
-5
-5
12.10
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
10
15
TEST
ICE (A)
200
300
VCE (V)
VCE (V)
300
0
-100
-5.00
0.00
5.00
-20
10.00
time (µS)
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
9
IRGB4060DPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN T HE AS S EMBLY LINE "C"
Note: "P" in ass embly line pos ition
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/06
10
www.irf.com
Similar pages