[AK4675] AK4675 Stereo CODEC with MIC/RCV/HP/SPK-AMP GENERAL DESCRIPTION The AK4675 is a stereo CODEC with a built-in Microphone-Amplifier, Receiver-Amplifier, cap-less Headphone-Amplifier and stereo audio class-D Speaker-Amplifier. The AK4675 features dual PCM I/F in addition to audio I/F that allows easy interfacing in mobile phone designs with Bluetooth I/F. The Speaker-Amplifier includes ALC (Automatic Level Control) circuit what is able to stabilize each output sound levels. The AK4675 is available in an 83pin BGA, utilizing less board space than competitive offerings. FEATURES 1. Recording Function (Stereo CODEC) • 4 Stereo Input Selector x 2ch • 4 Stereo Inputs (Single-ended) or 2 Stereo Input (Full-differential) • MIC Amplifier: +30dB ∼ −12dB, 3dB step • Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute • Wind-noise Reduction Filter • Stereo Separation Emphasis • 5-band Programmable Notch Filter • Audio Interface Format: 16bit MSB justified, I2S, DSP Mode 2. Playback Function (Stereo CODEC) • Digital Volume (+12dB ∼ −115.0dB, 0.5dB Step, Mute) • Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute • Stereo Separation Emphasis • 5-band EQ • Stereo Line Output • Mono Receiver-Amp - BTL Output - Output Power: 30mW@32Ω (AVDD=3.3V) • Stereo Cap-less Headphone Amplifier - Mono / Stereo Mode - Output Power: 64mW x 2ch @ 16Ω, SVDDA=3.3V, THD+N = –40dB - THD+N: -58dB @ 16Ω, Po=30mW, SVDDA=3.3V - Output Noise Level: 24μVrms - Outputs Volume: +12dB to –50dB, 2dB Step - Pop Noise Free at Power-ON/OFF and Mute • Class-D Speaker Amplifier - BTL output - Output Power: 1.6W @ 8Ω, SVDDA=5.0V 0.8W @ 8Ω, SVDDA=3.6V - THD+N: –65dB @8Ω, Po=0.25W, SVDDA=3.6V - Output Noise Level: 71μVrms - ALC (Automatic Level Control) Circuit - Pop Noise Free at Power-ON/OFF and Mute - External filter-less - Short Protection circuit • Thermal Shutdown / Short protection circuit • Analog Mixing: 4 Stereo Input • Audio Interface Format: 16bit MSB justified, 16bit LSB justified, 16-24bit I2S, DSP Mode 3. Dual PCM I/F for Baseband & Bluetooth Interface MS0963-E-00 2008/05 -1- [AK4675] • Sample Rate Converter (Up sample: up to x6: Down sample: down to x1/6) • Sample Rate: 8kHz • Digital Volume • Audio Interface Format: - 16bit Linear, 8bit A-law, 8bit μ-law - Short/Long Frame, I2S, MSB justified 4. 10bit SAR ADC • 3 Input Selectors 5. Power Management 6. Master Clock: (1) PLL Mode • Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz, 27MHz (MCKI pin) 1fs (LRCK pin) 32fs or 64fs (BICK pin) (2) External Clock Mode • Sampling Rate: 256fs, 384fs, 512fs, 768fs or 1024fs (MCKI pin) 7. Output Master Clock Frequencies: 32fs/64fs/128fs/256fs 8. Sampling Rate (Stereo CODEC): • PLL Slave Mode (LRCK pin): 8kHz ∼ 48kHz • PLL Slave Mode (BICK pin): 8kHz ∼ 48kHz • PLL Slave Mode (MCKI pin): 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz • PLL Master Mode: 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz • EXT Master/Slave Mode: 8kHz ∼ 48kHz (256fs, 384fs), 8kHz ∼ 26kHz (512fs, 768fs), 8kHz ∼ 13kHz (1024fs) 9. μP I/F: I2C Bus (Ver 1.0, 400kHz High Speed Mode) 10. Master/Slave mode 11. Ta = –30 ∼ 85°C 12. Power Supply: • Analog1: 2.2 ∼ 3.6V • Analog2: 2.6 ∼ 3.6V • Digital I/F: 1.6 ∼ 3.6V • Speaker Amp: 3.0 ∼ 5.5V 13. Package: 83pin BGA (5.5mm x 5.5mm, 0.5mm pitch) MS0963-E-00 2008/05 -2- [AK4675] ■ Block Diagram (CODEC Block) AVDD VSS1 SAIN1 SAIN2 SAIN3 VCOM SAVDD VSS3 DVDD VSS4 TEST GPO1 GPO2 PMSAD MDT MPWR PMMP MPWR TEST5 A/D MIC Power Supply Control Register MIC-Amp PMADL or PMADR RIN1/IN1− A/D LIN2/IN2 External MIC TEST4 PMMICL LIN1/IN1+ Internal MIC TEST6 PDN HPF PMMICR PFSEL=0 PMADL or PMADR RIN2/IN2 LIN3/IN3 PFSEL=1 PMDAL or PMDAR or PMSRA RIN3/IN3 LIN4/IN4 PMLO1 LOUT1/RCP PMLOOPR PMLOOPL PMAINR4 PMAINL4 PMAINR2 PMAINR3 PMAINL3 PMAINL2 PMAINL1 PMAINR1 RIN4/IN4 HPF LPF BICK Stereo Separation 5-band Notch ALC LRCK Audio I/F PMDAL or PMDAR PMDAL or PMDAR or SVOLA M DATT 5-band I SMUTE EQ X S E L MCKI MCKO PMRO1 ROUT1/RC N PMPLL PLL PMLO2S PMPCM LOUT2S Stereo Line Out SDTO SDTI MIX D/A Stereo Line Out or Mono Receiver SCL SDA VCOCBT PLLBT PMSRA PMRO2S ROUT2S VCOC SRC-A BICKA SVOLB PMSRB PCM I/F A PMLO3 SRC-B LOUT3/LOP Stereo Line Out DATT-C ROUT3/LON BVOL PVDD VSS2 TVDD2 SDTOA SDTIA DATT-B PMRO3 SYNCA PCM I/F B BICKB SYNCB SDTOB SDTIB TVDD3 Figure 1. Block Diagram (CODEC Block) MS0963-E-00 2008/05 -3- [AK4675] ■ Block Diagram (HP/SPK-Amp Block) AVDDA VSS1A TEST3 TEST2 SVDDA PMSP SPIN ALCA SPP SPN VSS2A PMMHL PMHPL PMV1 Mixing LIN1A Vol RIN1A Vol Selector VOL HPL VOL HPR Mixing Selector PMHPR PMMHR VCOMA MCKIA VCOMA PMVCMA Int Osc or Ext Clock PMOSC TVDDA PMCP R1 SDA SCL Serial I/F PDNA R2 VBATIN VBATO Charge Pump CP CN PVDDA VSS3A PVEE Figure 2. Block Diagram (HP/SPK-Amp Block) MS0963-E-00 2008/05 -4- [AK4675] ■ Ordering Guide −30 ∼ +85°C 83pin BGA (0.5mm pitch) Evaluation board for AK4675 AK4675EG AKD4675 ■ Pin Layout 10 9 8 7 AK4675 6 Top View 5 4 3 2 1 A 10 TEST 9 AVDD 8 VSS1 7 VBATIN 6 5 4 3 LOUT1 /RCP RIN3 /IN3− LIN2 /IN2+ LIN1 /IN1+ HPR ROUT1 /RCN ROUT3 /LON LOUT3 /LOP LIN4 /IN4+ RIN2 /IN2− SAIN3 B C D E F G H J K VCOM VCOC HPL PVDDA VSS3A CP SDTIA GPO2 VBATO VCOCBT PVEE SDTOA SYNCA CN PDNA BICKA VCOMA RIN4 /IN4− PVDD VSS2 TVDD2 TVDDA VSS4 MCKIA TEST6 DVDD SDA MCKO NC SCL SAIN2 MCKI TEST5 BICK SAIN1 LRCK PDN VSS1A LIN3 /IN3+ RIN1A Top View RIN1 /IN1− SAVDD SDTOB SDTO BICKB NC TEST3 AVDDA 2 LIN1A MPWR ROUT2S NC VSS3 SPN SYNCB SDTIB TEST4 SPIN 1 MDT LOUT2S NC SVDDA VSS2A TVDD3 SPP TEST2 SDTI GPO1 A B C D E F G H J K MS0963-E-00 2008/05 -5- [AK4675] PIN/FUNCTION No. A1 B2 B4 C5 C4 D3 E2 F1 E3 G2 G3 H2 J1 K1 Pin Name MDT MPWR SAIN3 SAIN2 SAIN1 SAVDD VSS3 TVDD3 SDTOB SYNCB BICKB SDTIB SDTI GPO1 I/O I O I I I O I/O I/O I I O J2 TEST4 O F3 SDTO O J4 PDN I H4 H5 H6 LRCK MCKI MCKO I/O I O H7 TEST6 I K5 BICK I/O J5 TEST5 I K6 J8 J7 K7 K10 SCL VSS4 DVDD SDA GPO2 I I/O O Function MIC Detection Pin (Internal pull down by typ. 500kΩ) MIC Power Supply Pin 10bit SAR ADC Analog Input 3 Pin 10bit SAR ADC Analog Input 2 Pin 10bit SAR ADC Analog Input 1 Pin 10bit SAR ADC Power Supply Pin 2.2V ~ 3.6V Ground 3 Pin for CODEC Digital I/O Power Supply 3 Pin for CODEC 1.6V ~ 3.6V Serial Data Output B Pin Sync Signal B Pin Serial Data Clock B Pin Serial Data Input B Pin Audio Serial Data Input Pin General Purpose Output 1 Pin TEST Pin This pin must be open. Audio Serial Data Output Pin CODEC Power-Down Mode Pin “H”: Power-up “L”: Power-down, reset and initializes the control registers for CODEC. “L” time of 150ns or more after power-up is needed to reset the AK4675. Input / Output Channel Clock Pin External Master Clock Input Pin Master Clock Output Pin Test Pin Connect to DVDD. Audio Serial Data Clock Pin TEST Pin This pin must be connected to VSS4. Control Data Clock Input Pin Ground 4 Pin for CODEC Digital Power Supply Pin for CODEC 1.6V ~ 3.6V Control Data Input/Output Pin General Purpose Output 2 Pin MS0963-E-00 2008/05 -6- [AK4675] No. J10 K9 G9 F9 G8 F8 E8 Pin Name SDTIA BICKA SYNCA SDTOA TVDD2 VSS2 PVDD I/O I I/O I/O O - D9 VCOCBT O D10 VCOC O C10 VCOM O A10 TEST - A9 A8 AVDD VSS1 ROUT1 RCN LOUT1 RCP ROUT3 LON LOUT3 LOP RIN4 IN4− LIN4 IN4+ RIN3 IN3− LIN3 IN3+ RIN2 IN2− LIN2 IN2+ RIN1 IN1− LIN1 IN1+ ROUT2S LOUT2S O O O O O O O O I I I I I I I I I I I I I I I I O O B9 A6 B8 B7 D8 B6 A5 C7 B5 A4 B3 A3 C2 B1 Function Serial Data Input A Pin Serial Data Clock A Pin Sync Signal A Pin Serial Data Output A Pin Digital I/O Power Supply 2 Pin for CODEC 1.6V ~ 3.6V Ground 2 Pin for CODEC PLLBT Power Supply Pin 2.2V ~ 3.6V Output Pin for Loop Filter of PLLBT Circuit This pin must be connected to VSS2 pin with one resistor and capacitor in series. Output Pin for Loop Filter of PLL Circuit This pin must be connected to VSS1 pin with one resistor and capacitor in series. Common Voltage Output Pin, 0.5 x AVDD Bias voltage of ADC inputs and DAC outputs. Test Pin This pin must be open. Analog Power Supply Pin for CODEC 2.2V ~ 3.6V Ground 1 Pin for CODEC Rch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output) Receiver-Amp Negative Output Pin (RCV bit = “1”: Receiver Output) Lch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output) Receiver-Amp Positive Output Pin (RCV bit = “1”: Receiver Output) Rch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output) Negative Line Output Pin (LODIF bit = “1”: Full-differential Mono Output) Lch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output) Positive Line Output Pin (LODIF bit = “1”: Full-differential Mono Output) Rch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input) Negative Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input) Lch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input) Positive Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input) Rch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input) Negative Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input) Lch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input) Positive Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input) Lch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input) Rch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input) Negative Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input) Lch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input) Positive Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input) Rch Stereo Line Output 2 Pin Lch Stereo Line Output 2 Pin MS0963-E-00 2008/05 -7- [AK4675] No. Pin Name I/O Function Test 2 Pin This pin must be open. No Connect Pin H3 NC No internal bonding. This pin must be opened or connected to the ground. HP/SPK-Amp Analog Power Supply Pin 2.6V ~ 3.6V K3 AVDDA HP/SPK-Amp Ground 1 Pin K4 VSS1A HP/SPK-Amp Digital Interface Power Supply Pin 1.6V ~ 3.6V H8 TVDDA This pin must be connected to DVDD. No Connect Pin J6 NC No internal bonding. This pin must be opened or connected to the ground. HP/SPK-Amp External Clock Input Pin (Internal Pull-down pin to VSS1A: typ. I K8 MCKIA 100kΩ) HP/SPK-Amp Power-Down Mode Pin “H”: Power-up I J9 PDNA “L”: Power-down, reset and initializes the control registers for HP/SPK-Amp. “L” time of 150ns or more after power-up is needed to reset the AK4675. O H10 CP Positive Charge Pump Capacitor Terminal Pin I H9 CN Negative Charge Pump Capacitor Terminal Pin F10 PVDDA Charge Pump Circuit Positive Power Supply Pin 2.6V ~ 3.6V G10 VSS3A HP/SPK-Amp Ground 3 Pin O E9 PVEE Charge Pump Circuit Negative Voltage Output Pin O E10 HPL Lch Headphone-Amp Output Pin O B10 HPR Rch Headphone-Amp Output Pin I Battery Monitor Input Pin A7 VBATIN O Battery Monitor Output Pin C9 VBATO O HP/SPK-Amp Analog Common Voltage Output Pin C8 VCOMA RIN1A I Rch HP-Amp Input Pin C6 I Lch HP-Amp Input Pin A2 LIN1A No Connect Pin D2 NC No internal bonding. This pin must be opened or connected to the ground. No Connect Pin C1 NC No internal bonding. This pin must be opened or connected to the ground. Speaker-Amp Power Supply Pin 3.0V ~ 5.5V D1 SVDDA HP/SPK-Amp Ground 2 Pin E1 VSS2A O Positive Speaker-Amp Output Pin G1 SPP O Negative Speaker-Amp Output Pin F2 SPN TEST Pin J3 TEST3 This pin must be open. I K2 SPIN Speaker-Amp Input Pin Note 1. All input pins except analog input pins (MDT, LIN1/IN1+, RIN1/IN1−, LIN2/IN2+, RIN2/IN2−, LIN3/IN3+, RIN3/IN3−, LIN4/IN4+, RIN4/IN4−, SAIN1, SAIN2, SAIN3, LIN1A, RIN1A, SPIN, VBATIN) must not be left floating. I/O pins except the SDA pin (LRCK, BICK, SYNCA, BICKA, SYNCB, BICK) must be processed appropriately as shown in “Master Mode/Slave Mode” and “PCM I/F Master Mode/Slave Mode”. The PDA pin should be pulled-up externally and connected to (DVDD+0.3)V or less. H1 TEST2 - MS0963-E-00 2008/05 -8- [AK4675] ■ Handling of Unused Pins The unused I/O pins must be processed appropriately as below. Classification Analog Digital Pin Name MPWR, MDT, VCOC, ROUT3/LON, LOUT3/LOP, ROUT2S, LOUT2S, ROUT1/RCN, LOUT1/RCP, RIN4/IN4−, LIN4/IN4+, RIN3/IN3−, LIN3/IN3+, RIN2/IN2−, LIN2/IN2+, RIN1/IN1−, LIN1/IN1+, VCOCBT, SAIN1, SAIN2, SAIN3, HPL, HPR, SPIN, SPP, SPN, LIN1A, RIN1A, VBATIN, VBATO, TEST2 MCKO, SDTOA, SDTOB, GPO1, GPO2, BICKA, SYNCA, BICKB, SYNCB Setting These pins msut be open. These pins must be open. These pins must be connected to VSS4. These pins must be connected to VSS1A. MCKI, , SDTIA, SDTIB MCKIA MS0963-E-00 2008/05 -9- [AK4675] ABSOLUTE MAXIMUM RATINGS (VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Note 2, Note 3) Parameter Symbol Min Power Supplies: CODEC Analog AVDD −0.3 (Note 4) PLLBT PVDD −0.3 10bit SAR ADC SAVDD −0.3 CODEC Digital DVDD −0.3 CODEC Digital I/O 2 TVDD2 −0.3 CODEC Digital I/O 3 TVDD3 −0.3 HP/SPK-Amp Analog AVDDA −0.3 HP/SPK-Amp Digital I/F TVDDA −0.3 Speaker-Amp & Headphone-Amp SVDDA −0.3 Charge Pump PVDDA −0.3 Input Current, Any Pin Except Supplies IIN Analog Input Voltage 1 (Note 5) VINA1 −0.3 Analog Input Voltage 2 (Note 6) VINA2 −0.3 Analog Input Voltage 3 (Note 7) VINA3 −0.3 Analog Input Voltage 4 (Note 8) VINA4 −0.3 Digital Input Voltage 1 (Note 9) VIND1 −0.3 Digital Input Voltage 2 (Note 10) VIND2 −0.3 Digital Input Voltage 3 (Note 11) VIND3 −0.3 Digital Input Voltage 4 (Note 12) VIND4 −0.3 Ambient Temperature (powered applied) Ta −30 Storage Temperature Tstg −65 Maximum Power Dissipation Ta=85ºC (Note 14) Pd1 (Note 13) Pd2 Ta=70ºC (Note 15) max 4.0 4.0 4.0 4.0 4.0 4.0 6.0 6.0 6.0 4.0 ±10 AVDD+0.3 SAVDD+0.3 (AVDDA+0.3) or 6.0 6.0 DVDD+0.3 TVDD2+0.3 TVDD3+0.3 (TVDDA+0.3) or 6.0 85 150 0.91 1.18 Units V V V V V V V V V V mA V V V V V V V V °C °C W W Note 2. All voltages with respect to ground. Note 3. VSS1, VSS2, VSS3, VSS4, VSS1A, VSS2A and VSS3A must be connected to the same analog ground plane. Note 4. TVDDA should be connected to DVDD. Note 5. RIN4/IN4−, LIN4/IN4+, RIN3/IN3−, LIN3/IN3+, RIN2/IN2−, LIN2/IN2+, RIN1/IN1−, LIN1/IN1+ pins Note 6. SAIN1, SAIN2, SAIN3 pins Note 7. LIN1A, RIN1A, SPIN pins. The maximum value is smaller value between (AVDDA+0.3)V and 6.0V. Note 8. VBATIN pin Note 9. PDN, SCL, SDA, SDTI, LRCK, BICK, MCKI pins Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage. Note 10. BICKA, SYNCA, SDTIA pins Note 11. BICKB, SYNCB, SDTIB pins Note 12. PDNA, MCKIA pins. The maximum value is smaller value between (AVDDA+0.3)V and 6.0V. Note 13. In case that the PCB wiring density is 300%. This power is the AK4675 internal dissipation that does not include power of externally connected speaker and headphone. Note 14. When Ta=85°C, the HP-Amp power must be under 30mW@16Ω and SPK-Amp power must be 1.0W@8Ω. Note 15. When Ta=70°C, the HP-Amp power must be under 30mW@16Ω and SPK-Amp power must be 1.6W@8Ω. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. MS0963-E-00 2008/05 - 10 - [AK4675] RECOMMENDED OPERATING CONDITIONS (VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Note 2) Parameter Symbol min Power Supplies CODEC Analog AVDD 2.2 (Note 16) PLLBT PVDD 2.2 10bit SAR ADC SAVDD 2.2 CODEC Digital DVDD 1.6 CODEC Digital I/O 2 TVDD2 1.6 CODEC Digital I/O 3 TVDD3 1.6 HP/SPK-Amp Analog AVDDA 2.6 HP/SPK-Amp Digital I/F TVDDA 1.6 Speaker-Amp & Headphone-Amp SVDDA 3.0 Charge Pump PVDDA 2.6 Difference 1 AVDD−PVDD −0.1 Difference 2 PVDDA–AVDDA −0.3 Difference 3 SVDDA–AVDDA −0.3 Difference 4 DVDD–TVDDA −0.3 typ 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.6 3.3 0 0 0 max 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 5.5 3.6 +0.1 +0.3 +0.3 Units V V V V V V V V V V V V V V Note 2. All voltages with respect to ground. Note 16. TVDDA must be connected to DVDD. The power-up sequence between AVDD, PVDD, SAVDD, DVDD, TVDD2, TVDD3, AVDDA, TVDDA, SVDDA and PVDDA is not critical. However, the PDN and PDNA pin must be held to “L” until all power supply pins are supplied. After all power supplies are filled, PDN and PDNA pins should be set to “H”. * The AK4675 supports the following two cases of partial power ON/OFF. In these cases, PDNA pin should be “L” and all power management bits (PMVCM, PMMP, PMMICL, PMMICR, PMADL, PMADR, PMDAL, PMDAR, PMPLL, PMLOOPL, PMLOOPR, PMAINL1, PMAINR1, PMAINL2, PMAINR2, PMAINL3, PMAINR3, PMAINL4, PMAINR4, PMLO1, PMRO1, PMLO2S, PMRO2S, PMLO3, PMRO3, PMSRA, PMSRB, PMPCM, and PMSAD) should be OFF or PDN and PDNA pins should be “L”. 1. DVDD=TVDDA=SVDDA=ON, AVDD=PVDD=SAVDD=TVDD2=TVDD3=AVDDA=PVDDA=OFF 2. DVDD=TVDDA=ON, AVDD=PVDD=SAVDD=TVDD2=TVDD3=AVDDA=PVDDA=SVDDA=OFF When the power state is changed from OFF to ON in the above cases, the PDN and PDNA pins should be set to “H” after all power supply pins are supplied. When DVDD and TVDDA are powered OFF, AVDD, PVDD, SAVDD, TVDD2, TVDD3, AVDDA, TVDDA, SVDDA or PVDDA must be powered OFF. When only DVDD and TVDDA are OFF, leak current of 10mA to 100mA may occur. * AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet. MS0963-E-00 2008/05 - 11 - [AK4675] ANALOG CHARACTERISTICS (CODEC) (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=AVDDA=PVDDA=TVDDA=3.3V, SVDDA=3.6V; VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Signal Frequency=1kHz; 16bit Data; fs=44.1kHz, BICK=64fs, LP bit = “0”; Measurement frequency=20Hz ∼ 20kHz; unless otherwise specified) min typ max Units Parameter MIC Amplifier: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins; PMAINL1/R1/L2/R2/L3/R3/L4/R4 bits = “0” Input Resistance MGNL/R0 bit = “0” 28 42 56 kΩ MGNL/R0 bit = “1” 20 30 40 kΩ Gain (Note 17) Max (MGNL/R3-0 bits = “FH”) +30 dB Min (MGNL/R3-0 bits = “1H”) dB −12 MIC Power Supply: MPWR pin Output Voltage (Note 18) 2.47 2.64 2.81 V Load Resistance 0.5 kΩ Load Capacitance 30 pF MIC Detection: MDT pin 0.247 0.165 mV Comparator Voltage Level (Note 19) 750 250 500 Internal pull down Resistance kΩ Stereo ADC Analog Input Characteristics: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins → Stereo ADC → IVOL, IVOL=0dB, ALC=OFF Resolution 16 Bits (Note 21) 0.150 0.176 0.203 Vpp Input Voltage (Note 20) 1.68 1.98 2.28 Vpp (Note 22) (Note 21) 72 82 dB S/(N+D) (−1dBFS) 87 dB (Note 22) (Note 21) 75 86 dB D-Range (−60dBFS, A-weighted) 95 dB (Note 22) (Note 21) 75 86 dB S/N (A-weighted) 95 dB (Note 22) (Note 21) 75 90 dB Interchannel Isolation 100 dB (Note 22) (Note 21) 0.1 0.8 dB Interchannel Gain Mismatch 0.1 0.8 dB (Note 22) Note 17. In case of full-differential input, MGAIN=0dB (min) and AVDD=2.4V (min). Note 18. Output voltage is proportional to AVDD voltage. Vout = 0.8 x AVDD (typ). Note 19. Comparator Voltage Level is proportional to AVDD voltage. Vth = 0.05 x AVDD(min), 0.075 x AVDD(max). Note 20. Input voltage is proportional to AVDD voltage. Vin = 0.053 x AVDD (typ)@MGNL3-0=MGNR3-0 bits = “CH” (+21dB), Vin = 0.6 x AVDD(typ)@MGNL3-0=MGNR3-0 bits = “5H” (0dB). Note 21. MGNL3-0=MGNR3-0 bits = “CH” (+21dB). Note 22. MGNL3-0=MGNR3-0 bits = “5H” (0dB). MS0963-E-00 2008/05 - 12 - [AK4675] min typ max Units Parameter Stereo DAC Characteristics: Resolution 16 Bits Stereo Line Output Characteristics: Stereo DAC → LOUT1/ROUT1/LOUT3/ROUT3 pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=L3VL=0dB, RCV bit = “0”, RL=10kΩ; unless otherwise specified. Output Voltage (Note 23) 1.78 1.98 2.18 Vpp S/(N+D) (0dBFS) 75 85 dB S/N (A-weighted) 82 92 dB Interchannel Isolation 85 100 dB Interchannel Gain Mismatch 0.1 0.5 dB Load Resistance 10 kΩ Load Capacitance 30 pF Stereo Line Output Characteristics: Stereo DAC → LOUT2S/ROUT2S pins, ALC=OFF, IVOL=0dB, OVOL=0dB, RL=25kΩ; unless otherwise specified. Output Voltage (Note 23) 1.78 1.98 2.18 Vpp S/(N+D) (0dBFS) 72 85 dB S/N (A-weighted) 82 92 dB Interchannel Isolation 85 100 dB Interchannel Gain Mismatch 0.1 0.5 dB Load Resistance 25 kΩ Load Capacitance 30 pF Mono Receiver-Amp Output Characteristics: Stereo DAC → RCP/RCN pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=0dB, RCV bit = “1”, RL=32Ω, BTL; unless otherwise specified. Output Voltage (Note 24) 1.57 1.96 2.35 Vpp −6dBFS, RL=32Ω (Po=15mW) 2.77 Vpp −3dBFS, RL=32Ω (Po=30mW) S/(N+D) 40 60 dB −6dBFS, RL=32Ω (Po=15mW) 20 dB −3dBFS, RL=32Ω (Po=30mW) S/N (A-weighted) 82 92 dB Load Resistance 32 Ω Load Capacitance 30 pF Note 23. The Output voltage is proportional to the AVDD voltage. Vout = 0.6 x AVDD (typ). Note 24. The Output voltage is proportional to the AVDD voltage. Vout = (RCP) − (RCN) = 0.59 x AVDD (typ)@−6dBFS. Note 25. VSS1 load capacitance to output pins. MS0963-E-00 2008/05 - 13 - [AK4675] min typ max Parameter Mono Line Output Characteristics: Stereo DAC → LOP/LON pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L3VL=0dB, LODIF bit = “1”, RL=10kΩ for each pin (Full-differential) Output Voltage (Note 26) 3.52 3.96 4.36 S/(N+D) (0dBFS) 75 85 S/N (A-weighted) 85 95 Load Resistance (LOP/LON pins, respectively) 10 Load Capacitance (LOP/LON pins, respectively) 30 Single-ended Line Input: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins; (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) Maximum Input Voltage (Note 28) 1.98 Gain InputÆLOUT1/ROUT1/LOUT2S/ROUT2S/LOUT3/ROUT3 (LODIF=RCV bits = “0”) 0 +1 −1 Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”) +6 Full-differential Line Input: IN1+/−, IN2+/−, IN3+/−, IN4+/− pins; (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) Maximum Input Voltage (Note 29) 1.98 Gain InputÆLOUT1/ROUT1/LOUT2S/ROUT2S/LOUT3/ROUT3 (LODIF=RCV bits = “0”) 0 +1 −1 Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”, Note 30) +6 - Units Vpp dB dB kΩ pF Vpp dB dB Vpp dB dB Note 26. The Output voltage is proportional to the AVDD voltage. Vout = (LOP) − (LON) = 1.2 x AVDD (typ). Note 27. VSS1 load capacitance to output pins. Note 28. The Maximum Input voltage is proportional to the AVDD voltage. Vin = 0.6 x AVDD (typ). Note 29. The Maximum Input voltage is proportional to the AVDD voltage. Vin = (IN4+) − (IN4−) = 0.6 x AVDD (typ). Note 30. Vout = (RCP) − (RCN) at RCV bit = “1”, Vout = (LOP) − (LON) at LODIF bit = “1”. MS0963-E-00 2008/05 - 14 - [AK4675] ANALOG CHARACTERISTICS (HP/SPK-Amp) (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=AVDDA=PVDDA=TVDDA=3.3V, SVDDA=3.6V; VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Input Signal Frequency =1kHz; Measurement band width=10Hz ∼ 20kHz; Headphone-Amp: RL =16Ω; Speaker-Amp: RL =8Ω + 10μH; Charge Pump Circuit External Capacitance: C1=C2= 2.2μF (Figure 3); unless otherwise specified) Parameter min typ max Units LIN1A, RIN1A pins Input Resistance 25 50 110 kΩ Input Analog Volume: L1V3-0, R1V3-0 bits Step Size 1 2 3 dB Gain Control Range +10 dB −20 Headphone-Amp: (LIN1A/RIN1A Æ HPL/HPR pins), HPGA = 0dB Output Power (THD+N=1%) SVDDA=3.3V 64 mW THD+N 0.7Vrms Single-ended Input, Po = 30mW -58 dB Output Noise (A-weighted) 24 40 μVrms Interchannel Gain Mismatch 0.2 0.8 dB Load Resistance 16 Ω Load Capacitance 300 pF Output Voltage: 0.7Vrms at single-ended Input 0.62 0.69 0.76 Vrms PSRR 217Hz (Note 31) 70 dB 1kHz (Note 31) 70 dB 217Hz (Note 32) 100 dB 1kHz (Note 32) 80 dB Interchannel Isolation 60 80 dB Headphone Analog Volume 1 (HPGA4-0 bits) Step Size 0.5 2 3.5 dB Gain Control Range +12 dB −50 SPIN pins Input Resistance 15 26 36 kΩ Speaker Analog Volume: SPGA5-0 bits Step Size 0.1 0.5 0.9 dB Gain Control Range +19.5 dB −12 Class-D Speaker-Amp: SPIN Æ SPP/SPN; ALC = OFF, Input Volume=SPGA=0dB, BTL Output Power (THD+N=10%) SVDDA=5.0V 1.6 W SVDDA=3.6V 0.8 W Output Level (Note 33) SVDDA = 5.0V, Input Level = 0.85Vrms 2.7 Vrms SVDDA = 3.6V, Input Level = 0.64Vrms 2.0 Vrms SVDDA = 3.6V, Input Level = 0.46Vrms 1.33 1.48 1.63 Vrms THD+N: Po=0.25W, Input Level=0.46Vrms(Note 33) -65 -40 dB Output Noise (A-weighted) 71 150 μVrms Load Resistance 8 Ω Load Capacitance (Note 34) 300 pF PSRR 217Hz (Note 35) 60 dB 1kHz (Note 35) 50 dB 217Hz (Note 36) 50 dB 1kHz (Note 36) 50 dB Switching Frequency 150 250 400 kHz Short Protection Current (Note 37) 40 120 mA Start-Up Time 18 30 48 ms MS0963-E-00 2008/05 - 15 - [AK4675] Note 31. PSR is applied to AVDDA and PVDDA with 100mVpp. This is the value of convoluting sinusoidal voltage of 100mVpp. Note 32. PSR is applied to SVDDA with 0.89Vpp. This is the value of convoluting sinusoidal voltage of 100mVpp. Note 33. When the input data is single-ended. Note 34. VSS1 load capacitance to output pins. For differential signals, the load capacitance will be twice as big as this value. Note 35. PSR is applied to AVDDA with 100mVpp. This is the value of convoluting sinusoidal voltage of 100mVpp. Note 36. PSR is applied to SVDDA with 100mVpp. This is the value of convoluting sinusoidal voltage of 100mVpp. Note 37. The average current between SVDDA and VSS2A, when the SPP pin and SPN pin are shorted and 1kHz, 0.85Vrms sine wave is input at Single-ended mode. Headphone-amp negative voltage PVEE pin C1 CN pin VSS3A CP pin C2 Charge Pump Circuit Figure 3. Charge Pump Circuit External Capacitor Parameter Battery Monitor: (BATCPU bit = “1”) Input Resistance (VBATIN pin) Attenuation (VBATO / VBATIN) (Note 38) Note 38. When input 4.4V to the VBATIN pin. MS0963-E-00 min typ max Units 5 0.245 10 0.25 0.255 kΩ - 2008/05 - 16 - [AK4675] ANALOG CHARACTERISTICS (Power Supply Current) (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=AVDDA=PVDDA=TVDDA=3.3V, SVDDA=3.6V; VSS1=VSS2=VSS3=VSS4=VSS1A=VSS2A=VSS3A=0V; Signal Frequency=1kHz; 16bit Data; fs=44.1kHz, BICK=64fs, LP bit = “0”; Measurement frequency=20Hz ∼ 20kHz; Headphone-Amp: RL =16Ω; Speaker-Amp: RL =8Ω + 10μH; Charge Pump Circuit External Capacitance: C1=C2=2.2μF (Figure 3); unless otherwise specified) Parameter min typ max Units Power Supplies: CODEC Block Power Up (PDN pin = “H”, All Circuits Power-up) (Note 39) 20 mA AVDD+PVDD+DVDD 40) 21 30 mA (Note +TVDD2+TVDD3+SAVDD 8 12 mA (Note 41) HP/SPK-Amp Block Power Up (PDNA pin = “H”, All Circuits Power-up) AVDDA+TVDDA: ALL ON (Note 42) 4.0 6.5 mA HP-Amp ON (Note 43) 2.0 mA SPK-Amp ON (Note 44) 2.8 mA PVDDA (No Output) HP-Amp ON 1.3 3.2 mA SVDDA (No Output): HP-Amp ON 2.0 4.0 mA SPK-Amp ON 1.0 4.0 mA Power Down (PDN=PDNA pins = “L”) (Note 45) AVDD+PVDD+DVDD+TVDD2+TVDD3+SAVD 1 60 μA D+ AVDDA+PVDDA+SVDDA+TVDDA Note 39. EXT Slave Mode and LP bit = “0”, fs=44.1kHz, PMMICL = PMMICR = PMADL = PMADR = PMDAL = PMDAR = PMLO1 = PMRO1 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD = PMVCM bits = “1”, PMPLL = MCKO = PMMP = M/S = PMSRA = PMSRB = PMPCM bits = “0”. AVDD=12.1mA (typ), PVDD=0mA (typ), DVDD=5.6mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ), SAVDD=0.8mA (typ). Note 40. PLL Master Mode and LP bit = “0”, fs=44.1kHz, PMADL = PMMICL= PMMICR= PMADR = PMDAL = PMDAR = PMLO1 = PMRO1 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD = PMVCM = PMPLL = M/S = PMMP bits = “1”, MCKO = PMSRA = PMSRB = PMPCM bits = “0”, MCKI=11.2896MHz. AVDD=TBDmA (typ), PVDD=TBDmA (typ), DVDD=TBDmA (typ), TVDD2=TBDmA (typ), TVDD3=TBDmA (typ), SAVDD=TBDmA (typ). Note 41. EXT Slave Mode and LP bit = “1”, fs=8kHz, PMVCM = PMMP = PMMICL = PMADL = PMDAL = RCV = PMLO1 = PMRO1 = PMSRA = PMSRB = PMPCM = “1”. AVDD=3.2mA (typ), PVDD=0.8mA (typ), DVDD=2.7mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ), SAVDD=0mA (typ). Note 42. Headphone-Amp & Speaker-Amp are powered-up. (PMVCMA=PMOSC=PMCP=PMHPL=PMHPR=PMMHL=PMMHR=PMSPK=PMV1 bits= “1”) Note 43. Headphone-Amp is powered-up. (PMVCMA=PMOSC=PMCP=PMHPL=PMHPR=PMMHL=PMMHR=PMV1 bits= “1”, PMSPK bits= “0”) Note 44. Speaker-Amp is powered-up (PMVCMA=PMOSC=PMCP=PMSPK bits= “1”, PMHPL=PMHPR=PMMHL=PMMHR=PMV1 bits= “0”) Note 45. All digital input pins are fixed to each supply pin (DVDD, TVDD2 or TVDD3) or VSS4. MS0963-E-00 2008/05 - 17 - [AK4675] SRC CHARACTERISTICS (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; Signal Frequency=1kHz; 16bit Data; Measurement frequency=20Hz ∼ 3.4kHz; unless otherwise specified) Parameter Symbol min typ max SRC Characteristics (Down Sampling: SRC-A): SDTI Æ SRC-A Æ SDTOA/SDTOB Resolution 16 Input Sample Rate (Note 47) FSI (fs) 8 48 Output Sample Rate (Note 47) FSO (fs2) 8 THD+N (Input = 1kHz, −1dBFS, Note 46) FSO/FSI = 8kHz/44.1kHz -94 Dynamic Range (Input = 1kHz, −60dBFS, Note 46) FSO/FSI = 8kHz/44.1kHz 97 Ratio between Input and Output Sample Rate FSO/FSI 1/6 1 SRC Characteristics (Up Sampling: SRC-B): SDTIA/SDTIB Æ SRC-B Æ SDTO Resolution 16 Input Sample Rate (Note 47) FSI (fs2) 8 Output Sample Rate (Note 47) FSO (fs) 8 48 THD+N (Input = 1kHz, −1dBFS, Note 46) FSO/FSI = 44.1kHz/8kHz -95 Dynamic Range (Input = 1kHz, −60dBFS, Note 46) FSO/FSI = 44.1kHz/8kHz 100 Ratio between Input and Output Sample Rate FSO/FSI 1 6 Units Bits kHz kHz dB dB Bits kHz kHz dB dB - Note 46. Measured by Audio Precision System Two Cascade. Note 47. “fs” is the sampling frequency for Stereo CODEC. “fs2” is for PCM I/F. MS0963-E-00 2008/05 - 18 - [AK4675] ANALOG CHARACTERISTICS (10bit SAR ADC) (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; unless otherwise specified) Parameter min typ max Units 10bit SAR ADC Characteristics Resolution 10 Bits No Missing Codes 9 10 Bits Integral Linearity Error LSB ±2 DNL LSB ±1 Analog Input Voltage Range 0 SAVDD V Offset Error LSB ±3 Gain Error LSB ±2 Accuracy (Note 48) % ±1 Note 48. Accuracy is the difference between the output code when 1.1V is input to SAIN1, SAIN2 or SAIN3 pin and the “ideal” code at 1.1V. MS0963-E-00 2008/05 - 19 - [AK4675] FILTER CHARACTERISTICS (CODEC) (Ta=25°C; AVDD=PVDD=SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2=TVDD3=1.6 ∼ 3.6V; fs=44.1kHz; Programmable Filter=OFF) Parameter Symbol min typ max Units ADC Digital Filter (Decimation LPF): Passband (Note 49) PB 0 17.3 kHz ±0.16dB 19.4 kHz −0.66dB 19.9 kHz −1.1dB 22.1 kHz −6.9dB Stopband SB 25.9 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 50) GD 19 1/fs Group Delay Distortion 0 ΔGD μs DAC Digital Filter (LPF): Passband (Note 49) PB 0 17.4 kHz ±0.1dB 20.0 kHz −1.0dB 21.1 kHz −3.0dB Stopband SB 25.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 50) GD 19 1/fs DAC Digital Filter (LPF) + SCF: FR dB Frequency Response: 0 ∼ 20.0kHz ±1.4 Note 49. The passband and stopband frequencies scale with fs (system sampling rate). For example, DAC is PB=0.454 x fs (@−0.7dB). Each response refers to that of 1kHz. Note 50. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the 16-bit data of both channels from the input register to the output register of the ADC. For the DAC, this time is from setting the 16-bit data of both channels from the input register to the output of analog signal. MS0963-E-00 2008/05 - 20 - [AK4675] FILTER CHARACTERISTICS (SRC) (Ta=25°C; AVDD=PVDD=SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2=TVDD3=1.6 ∼ 3.6V; fs2=8kHz; Programmable Filter=OFF) Parameter Symbol min typ max Units Down Sampling (SRC-A): fs=8kHz Passband PB 0 3.0 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 5 ms Down Sampling (SRC-A): fs=11.025kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 4 ms Down Sampling (SRC-A): fs=12kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 4 ms Down Sampling (SRC-A): fs=16kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 3 ms Down Sampling (SRC-A): fs=22.05kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 3 ms Down Sampling (SRC-A): fs=24kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 3 ms Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0963-E-00 2008/05 - 21 - [AK4675] Parameter Symbol min typ max Units Down Sampling (SRC-A): fs=32kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 3 ms Down Sampling (SRC-A): fs=44.1kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 3 ms Down Sampling (SRC-A): fs=48kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 51) GD 3 ms Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0963-E-00 2008/05 - 22 - [AK4675] Parameter Symbol min typ max Units Up Sampling (SRC-B): fs=8kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=11.025kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=12kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=16kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=22.05kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=24kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0963-E-00 2008/05 - 23 - [AK4675] Parameter Symbol min typ max Units Up Sampling (SRC-B): fs=32kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=44.1kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Up Sampling (SRC-B): fs=48kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 51) GD 2 ms Note 51. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0963-E-00 2008/05 - 24 - [AK4675] DC CHARACTERISTICS (CODEC, SRC) (Ta=25°C; AVDD=PVDD=SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2=TVDD3=1.6 ∼ 3.6V) Parameter Symbol min typ High-Level Input Voltage 1 2.2V≤DVDD≤3.6V VIH1 70%DVDD (Note 52) 1.6V≤DVDD<2.2V VIH1 80%DVDD Low-Level Input Voltage 1 2.2V≤DVDD≤3.6V VIL1 (Note 52) 1.6V≤DVDD<2.2V VIL1 High-Level Input Voltage 2 2.2V≤TVDD2≤3.6V VIH2 70%TVDD2 (Note 53) 1.6V≤TVDD2<2.2V VIH2 80%TVDD2 Low-Level Input Voltage 2 2.2V≤TVDD2≤3.6V VIL2 (Note 53) 1.6V≤TVDD2<2.2V VIL2 High-Level Input Voltage 3 2.2V≤TVDD3≤3.6V VIH3 70%TVDD3 (Note 54) 1.6V≤TVDD3<2.2V VIH3 80%TVDD3 Low-Level Input Voltage 3 2.2V≤TVDD3≤3.6V VIL3 (Note 54) 1.6V≤TVDD3<2.2V VIL3 High-Level Output Voltage (Note 55, Iout=−200μA) VOH1 DVDD−0.2 VOH2 (Note 56, Iout=−200μA) TVDD2−0.2 (Note 57, Iout=−200μA) VOH3 TVDD3−0.2 Low-Level Output Voltage (Except SDA pin: Iout=200μA) VOL1 (SDA pin, 2.0V≤DVDD≤3.6V: Iout=3mA) VOL2 (SDA pin, 1.6V≤DVDD<2.0V: Iout=3mA) VOL2 Input Leakage Current (Note 58) Iind (Note 59) Iina - max 30%DVDD 20%DVDD 30%TVDD2 20%TVDD2 30%TVDD3 20%TVDD3 Units V V V V V V V V V V V V - V V V 0.2 0.4 20%DVDD V V V ±2 ±2 μA μA Note 52. TEST5, SCL, SDA, TEST3, PDN, BICK, LRCK, SDTI, MCKI pins. Note 53. BICKA, SYNCA, SDTIA pins. Note 54. BICKB, SYNCB, SDTIB pins. Note 55. MCKO, BICK, LRCK, SDTO, GPO1, GPO2 pins. Note 56. BICKA, SYNCA, SDTOA pins. Note 57. BICKB, SYNCB, SDTOB pins. Note 58. SYNCB, BICKB, SDTIB, SDTI, LRCK, MCKI, BICK, SCL, SDA, SDTIA, BICKA, SYNCA pins. I/O pins (SYNCB, BICKB, LRCK, BICK, SDA, BICKA, SYNCA) are at the time of Input state. Note 59. SAIN1, SAIN2, SAIN3 pins. DC CHARACTERISTICS (HP/SPK-Amp) (Ta= 25°C; AVDDA=PVDDA=2.6 ∼ 3.6V; SVDDA=2.6 ∼ 5.5V, TVDDA=1.6 ∼ 3.6V) Parameter Symbol min typ max High-Level Input Voltage (2.2V≤TVDDA≤3.6V) VIH4 70%TVDDA (Note 60) VIH4 80%TVDDA (1.6V≤TVDDA<2.2V) Low-Level Input Voltage (2.2V≤TVDDA≤3.6V) VIL4 30%TVDDA (Note 60) VIL4 (1.6V≤TVDDA<2.2V) 20%TVDDA Input Leakage Current (Note 61) Iin ±10 Note 60. PDNA, MCKIA pins. Note 61. Except the MCKIA pin. The MCKIA pin has internal pulled-down device, nominally 100kΩ. Units V V V V μA MS0963-E-00 2008/05 - 25 - [AK4675] SWITCHING CHARACTERISTICS (CODEC, SRC) (Ta=25°C; AVDD=PVDD=SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2=TVDD3=1.6 ∼ 3.6V; CL=20pF (except SDA pin) or 400pF (SDA pin); unless otherwise specified) Parameter Symbol min typ max Units PLL Master Mode (PLL Reference Clock = MCKI pin) MCKI Input Timing Frequency fCLK 11.2896 27 MHz Pulse Width Low tCLKL 0.4/fCLK ns Pulse Width High tCLKH 0.4/fCLK ns MCKO Output Timing Frequency fMCK 0.256 12.288 MHz Duty Cycle Except 256fs at fs=32kHz dMCK 40 50 60 % 256fs at fs=32kHz dMCK 33 % LRCK Output Timing Frequency fs 8 48 kHz DSP Mode: Pulse Width High tLRCKH tBCK ns Except DSP Mode: Duty Cycle Duty 50 % BICK Output Timing Period BCKO bit = “0” tBCK 1/(32fs) ns BCKO bit = “1” tBCK 1/(64fs) ns Duty Cycle dBCK 50 % PLL Slave Mode (PLL Reference Clock = MCKI pin) MCKI Input Timing Frequency fCLK 11.2896 27 MHz Pulse Width Low tCLKL 0.4/fCLK ns Pulse Width High tCLKH 0.4/fCLK ns MCKO Output Timing Frequency fMCK 0.256 12.288 MHz Duty Cycle Except 256fs at fs=32kHz, 29.4kHz dMCK 40 50 60 % 256fs at fs=32kHz, 29.4kHz dMCK 33 % LRCK Input Timing Frequency fs 8 48 kHz DSP Mode: Pulse Width High tLRCKH tBCK−60 1/fs − tBCK ns Except DSP Mode: Duty Cycle Duty 45 55 % BICK Input Timing Period tBCK 1/(64fs) 1/(32fs) ns Pulse Width Low tBCKL 0.4 x tBCK ns Pulse Width High tBCKH 0.4 x tBCK ns MS0963-E-00 2008/05 - 26 - [AK4675] Parameter Symbol PLL Slave Mode (PLL Reference Clock = LRCK pin) LRCK Input Timing Frequency fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Input Timing Period tBCK Pulse Width Low tBCKL Pulse Width High tBCKH PLL Slave Mode (PLL Reference Clock = BICK pin) LRCK Input Timing Frequency fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Input Timing Period PLL3-0 bits = “0010” tBCK PLL3-0 bits = “0011” tBCK Pulse Width Low tBCKL Pulse Width High tBCKH External Slave Mode MCKI Input Timing Frequency 256fs fCLK 384fs fCLK 512fs fCLK 768fs fCLK 1024fs fCLK Pulse Width Low tCLKL Pulse Width High tCLKH LRCK Input Timing Frequency 256fs/384fs fs 512fs/768fs fs 1024fs fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Input Timing Period tBCK Pulse Width Low tBCKL Pulse Width High tBCKH External Master Mode MCKI Input Timing Frequency 256fs fCLK 384fs fCLK 512fs fCLK 768fs fCLK 1024fs fCLK Pulse Width Low tCLKL Pulse Width High tCLKH LRCK Output Timing Frequency fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Output Timing Period BCKO bit = “0” tBCK BCKO bit = “1” tBCK Duty Cycle dBCK MS0963-E-00 min typ max Units 8 tBCK−60 45 - 48 1/fs − tBCK 55 kHz ns % 1/(64fs) 130 130 - 1/(32fs) - ns ns ns 8 tBCK−60 45 - 48 1/fs − tBCK 55 kHz ns % 0.4 x tBCK 0.4 x tBCK 1/(32fs) 1/(64fs) - - ns ns ns ns 2.048 3.072 4.096 6.144 8.192 0.4/fCLK 0.4/fCLK - 12.288 18.432 13.312 19.968 13.312 - MHz MHz MHz MHz MHz ns ns 8 8 8 tBCK−60 45 - 48 26 13 1/fs − tBCK 55 kHz kHz kHz ns % 312.5 130 130 - - ns ns ns 2.048 3.072 4.096 6.144 8.192 0.4/fCLK 0.4/fCLK - 12.288 18.432 13.312 19.968 13.312 - MHz MHz MHz MHz MHz ns ns 8 - tBCK 50 48 - kHz ns % - 1/(32fs) 1/(64fs) 50 - ns ns % 2008/05 - 27 - [AK4675] Parameter Symbol Audio Interface Timing (DSP Mode) Master Mode tDBF LRCK “↑” to BICK “↑” (Note 62) tDBF LRCK “↑” to BICK “↓” (Note 63) tBSD BICK “↑” to SDTO (BCKP bit = “0”) tBSD BICK “↓” to SDTO (BCKP bit = “1”) SDTI Hold Time tSDH SDTI Setup Time tSDS Slave Mode tLRB LRCK “↑” to BICK “↑” (Note 62) tLRB LRCK “↑” to BICK “↓” (Note 63) tBLR BCLK “↑” to LRCK “↑” (Note 62) tBLR BICK “↓” to LRCK “↑” (Note 63) tBSD BICK “↑” to SDTO (BCKP bit = “0”) tBSD BICK “↓” to SDTO (BCKP bit = “1”) SDTI Hold Time tSDH SDTI Setup Time tSDS Audio Interface Timing (Right/Left justified & I2S) Master Mode tMBLR BICK “↓” to LRCK Edge (Note 64) tLRD LRCK Edge to SDTO (MSB) (Except I2S mode) tBSD BICK “↓” to SDTO SDTI Hold Time tSDH SDTI Setup Time tSDS Slave Mode tLRB LRCK Edge to BICK “↑” (Note 64) tBLR BICK “↑” to LRCK Edge (Note 64) tLRD LRCK Edge to SDTO (MSB) (Except I2S mode) tBSD BICK “↓” to SDTO SDTI Hold Time tSDH SDTI Setup Time tSDS min typ max Units 0.5 x tBCK − 40 0.5 x tBCK − 40 −70 −70 50 50 0.5 x tBCK 0.5 x tBCK - 0.5 x tBCK + 40 0.5 x tBCK + 40 70 70 - ns ns ns ns ns ns 0.4 x tBCK 0.4 x tBCK 0.4 x tBCK 0.4 x tBCK 50 50 - 80 80 - ns ns ns ns ns ns ns ns −40 −70 - 40 70 ns ns −70 50 50 - 70 - ns ns ns 50 50 - - 80 ns ns ns 50 50 - 80 - ns ns ns Note 62. MSBS, BCKP bits = “00” or “11”. Note 63. MSBS, BCKP bits = “01” or “10”. Note 64. BICK rising edge must not occur at the same time as LRCK edge. MS0963-E-00 2008/05 - 28 - [AK4675] Parameter Symbol min PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Slave Mode): SYNCA Timing Frequency fs2 Serial Interface Timing at Short/long Frame Sync BICKA Frequency fBCK2 128 BICKA Period tBCK2 488 BICKA Pulse Width Low tBCKL2 200 Pulse Width High tBCKH2 200 tSYB2 50 SYNCA Edge to BICKA “↑” (Note 65) tSYB2 50 SYNCA Edge to BICKA “↓” (Note 66) tBSY2 50 BICKA “↑” to SYNCA Edge (Note 65) tBSY2 50 BICKA “↓” to SYNCA Edge (Note 66) SYNCA to SDTOA (MSB) (Except Short Frame) tSYD2 tBSD2 BICKA “↑” to SDTOA (BCKPA bit = “0”) tBSD2 BICKA “↓” to SDTOA (BCKPA bit = “1”) SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDS2 50 SYNCA Pulse Width Low tSYL2 0.8 x tBCK2 Pulse Width High tSYH2 0.8 x tBCK2 Serial Interface Timing at MSB justified and I2S BICKA Frequency fBCK2 256 BICKA Period tBCK2 488 BICKA Pulse Width Low tBCKL2 200 Pulse Width High tBCKH2 200 tSYB2 50 SYNCA Edge to BICKA “↑” tBSY2 50 BICKA “↑” to SYNCA Edge SYNCA to SDTOA (MSB) (Except I2S mode) tSYD2 tBSD2 BICKA “↓” to SDTOA SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDH2 50 SYNCA Duty Cycle dSYC2 45 typ max Units 8 - kHz - 2048 80 80 80 - kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 50 2048 80 80 55 kHz ns ns ns ns ns ns ns ns ns % Note 65. MSBSA, BCKPA bits = “00” or “11”. Note 66. MSBSA, BCKPA bits = “01” or “10”. MS0963-E-00 2008/05 - 29 - [AK4675] Parameter Symbol min PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Master Mode): SYNCA Timing Frequency fs2 BICKA Timing Period (BCKO2 bit = “0”) tBCK2 (BCKO2 bit = “1”) tBCK2 Duty Cycle dBCK2 Serial Interface Timing at Short/long Frame Sync 0.5 x tBCK2 − 40 tSYB2 SYNCA Edge to BICKA “↑” (Note 65) 0.5 x tBCK2 − 40 tSYB2 SYNCA Edge to BICKA “↓” (Note 66) tBSD2 BICKA “↑” to SDTOA (BCKPA bit = “0”) −70 tBSD2 BICKA “↓” to SDTOA (BCKPA bit = “1”) −70 SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDS2 50 SYNCA Pulse Width High tSYH2 Serial Interface Timing at MSB justified and I2S tBSY2 BICKA “↓” to SYNCA Edge −40 SYNCA to SDTOA (MSB) (Except I2S mode) tSYD2 −70 tBSD2 BICKA “↓” to SDTOA −70 SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDH2 50 SYNCA Duty Cycle dSYC2 - typ max Units 8 - kHz 1/(16fs2) 1/(32fs2) 50 - kHz kHz % 0.5 x tBCK2 0.5 x tBCK2 + 40 0.5 x tBCK2 0.5 x tBCK2 + 40 tBCK2 70 70 - ns ns ns ns ns ns ns 50 40 70 70 - ns ns ns ns ns % Note 65. MSBSA, BCKPA bits = “00” or “11”. Note 66. MSBSA, BCKPA bits = “01” or “10”. MS0963-E-00 2008/05 - 30 - [AK4675] Parameter Symbol min PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Slave Mode): SYNCB Timing Frequency fs2 Serial Interface Timing at Short/long Frame Sync BICKB Frequency fBCK3 128 BICKB Period tBCK3 488 BICKB Pulse Width Low tBCKL3 200 Pulse Width High tBCKH3 200 tSYB3 50 SYNCB Edge to BICKB “↑” (Note 67) tSYB3 50 SYNCB Edge to BICKB “↓” (Note 68) tBSY3 50 BICKB “↑” to SYNCB Edge (Note 67) tBSY3 50 BICKB “↓” to SYNCB Edge (Note 68) SYNCB to SDTOB (MSB) (Except Short Frame) tSYD3 tBSD3 BICKB “↑” to SDTOB (BCKPB bit = “0”) tBSD3 BICKB “↓” to SDTOB (BCKPB bit = “1”) SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDS3 50 SYNCB Pulse Width Low tSYL3 0.8 x tBCK2 Pulse Width High tSYH3 0.8 x tBCK2 Serial Interface Timing at MSB justified and I2S BICKB Frequency fBCK3 256 BICKB Period tBCK3 488 BICKB Pulse Width Low tBCKL3 200 Pulse Width High tBCKH3 200 tSYB3 50 SYNCB Edge to BICKB “↑” tBSY3 50 BICKB “↑” to SYNCB Edge SYNCB to SDTOB (MSB) (Except I2S mode) tSYD3 tBSD3 BICKB “↓” to SDTOB SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDH3 50 SYNCB Duty Cycle dSYC3 45 typ max Units 8 - kHz - 2048 80 80 80 - kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 50 2048 80 80 55 kHz ns ns ns ns ns ns ns ns ns % Note 67. MSBSB, BCKPB bits = “00” or “11”. Note 68. MSBSB, BCKPB bits = “01” or “10”. MS0963-E-00 2008/05 - 31 - [AK4675] Parameter Symbol min PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Master Mode): SYNCB Timing Frequency fs2 BICKB Timing Period (BCKO2 bit = “0”) tBCK2 (BCKO2 bit = “1”) tBCK2 Duty Cycle dBCK2 Serial Interface Timing at Short/long Frame Sync 0.5 x tBCK2 − 40 tSYB3 SYNCB Edge to BICKB “↑” (Note 67) 0.5 x tBCK2 − 40 tSYB3 SYNCB Edge to BICKB “↓” (Note 68) tBSD3 BICKB “↑” to SDTOB (BCKPB bit = “0”) −70 tBSD3 BICKB “↓” to SDTOB (BCKPB bit = “1”) −70 SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDS3 50 SYNCB Pulse Width High tSYH3 Serial Interface Timing at MSB justified and I2S tBSY3 BICKB “↓” to SYNCB Edge −40 SYNCB to SDTOB (MSB) (Except I2S mode) tSYD3 −70 tBSD3 BICKB “↓” to SDTOB −70 SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDH3 50 SYNCB Duty Cycle dSYC3 - typ max Units 8 - kHz 1/(16fs2) 1/(32fs2) 50 - kHz kHz % 0.5 x tBCK2 0.5 x tBCK2 + 40 0.5 x tBCK2 0.5 x tBCK2 + 40 tBCK2 70 70 - ns ns ns ns ns ns ns 50 40 70 70 - ns ns ns ns ns % Note 67. MSBSB, BCKPB bits = “00” or “11”. Note 68. MSBSB, BCKPB bits = “01” or “10”. MS0963-E-00 2008/05 - 32 - [AK4675] Parameter Symbol min typ max Units 2 Control Interface Timing (I C Bus mode): (Note 69) SCL Clock Frequency (Note 70) fSCL 30 400 kHz Bus Free Time Between Transmissions tBUF 1.3 μs Start Condition Hold Time (prior to first clock pulse) tHD:STA 0.6 μs Clock Low Time tLOW 1.3 μs Clock High Time tHIGH 0.6 μs Setup Time for Repeated Start Condition tSU:STA 0.6 μs SDA Hold Time from SCL Falling (Note 71) tHD:DAT 0 μs SDA Setup Time from SCL Rising tSU:DAT 0.1 μs Rise Time of Both SDA and SCL Lines tR 0.3 μs Fall Time of Both SDA and SCL Lines tF 0.3 μs Setup Time for Stop Condition tSU:STO 0.6 μs Capacitive Load on Bus Cb 400 pF Pulse Width of Spike Noise Suppressed by Input Filter tSP 0 50 ns Power-down & Reset Timing PDN Pulse Width (Note 72) tPD 150 ns tPDV 1059 1/fs PMADL or PMADR “↑” to SDTO valid (Note 73) tPDV2 21 1/fs2 PMSRA “↑” to SDTOA valid (Note 74) tPDV3 135 1/fs PMSRB “↑” to SDTO valid (Note 75) Note 69. I2C is a registered trademark of Philips Semiconductors. Note 70. In case that SAR ADC data is read out via I2C bus, SCL should be input corresponding 2 byte data including ACK (Figure 110). Note 71. Data must be held long enough to bridge the 300ns-transition time of SCL. Note 72. CODEC & SRC blocks of the AK4675 can be reset by bringing PDN pin = “L” to “H” only upon power up Note 73. This is the count of LRCK “↑” from the PMADL or PMADR bit = “1” when PMSRB bit = “0”. Note 74. The signal path is SDTI → SRC-A → SDTOA and PLLBT is locked. Note 75. The signal path is SDTIA → SRC-B → SDTO. MS0963-E-00 2008/05 - 33 - [AK4675] SWITCHING CHARACTERISTICS (HP/SPK-Amp) (Ta= 25°C; AVDDA=PVDDA=2.6 ∼ 3.6V; SVDDA=2.6 ∼ 5.5V; TVDDA=1.6 ∼ 3.6V) Parameter Symbol min typ max MCKIA Input Timing (OSCN bit = “1”) Frequency fCLK 2.048 3.072 Pulse Width Low fCLKL 0.4/fCLK Pulse Width High fCLKH 0.4/fCLK Power-down & Reset Timing PDNA Pulse Width (Note 76) tPD 150 Note 76. HP/SPK-Amp blocks can be reset by power up of the AK4675 when the PDNA pin = “L”. MS0963-E-00 Units MHz ns ns ns 2008/05 - 34 - [AK4675] ■ Timing Diagram (CODEC, SRC) 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs 50%DVDD LRCK tLRCKH tLRCKL Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 tBCK 50%DVDD BICK tBCKH tBCKL dBCK = tBCKH / tBCK x 100 tBCKL / tBCK x 100 1/fMCK 50%DVDD MCKO tMCKL dMCK = tMCKL x fMCK x 100 Figure 4. Clock Timing (PLL/EXT Master mode) Note 77. MCKO is not available at EXT Master mode. tLRCKH LRCK 50%DVDD tBCK tDBF dBCK BICK (BCKP = "0") 50%DVDD BICK (BCKP = "1") 50%DVDD tBSD SDTO MSB tSDS 50%DVDD tSDH VIH1 SDTI VIL1 Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “0”) MS0963-E-00 2008/05 - 35 - [AK4675] tLRCKH LRCK 50%DVDD tBCK tDBF dBCK BICK (BCKP = "1") 50%DVDD BICK (BCKP = "0") 50%DVDD tBSD SDTO 50%DVDD MSB tSDS tSDH VIH1 SDTI VIL1 Figure 6. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “1”) 50%DVDD LRCK tBLR tBCKL BICK 50%DVDD tLRD tBSD SDTO 50%DVDD tSDS tSDH VIH SDTI VIL Figure 7. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode) MS0963-E-00 2008/05 - 36 - [AK4675] 1/fs VIH1 LRCK VIL1 tLRCKH tBLR tBCK VIH1 BICK (BCKP = "0") VIL1 tBCKH tBCKL VIH1 BICK (BCKP = "1") VIL1 Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “0”) 1/fs VIH1 LRCK VIL1 tLRCKH tBLR tBCK VIH1 BICK (BCKP = "1") VIL1 tBCKH tBCKL VIH1 BICK (BCKP = "0") VIL1 Figure 9. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “1”) MS0963-E-00 2008/05 - 37 - [AK4675] 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs VIH1 LRCK VIL1 tLRCKH tLRCKL tBCK Duty = tLRCKH x fs x 100 = tLRCKL x fs x 100 VIH1 BICK VIL1 tBCKH tBCKL fMCK 50%DVDD MCKO tMCKL dMCK = tMCKL x fMCK x 100 Figure 10. Clock Timing (PLL Slave mode; PLL Reference Clock = MCKI pin, Except DSP mode) tLRCKH VIH1 LRCK VIL1 tLRB VIH1 BICK VIL1 (BCKP = "0") VIH1 BICK (BCKP = "1") VIL1 tBSD SDTO MSB tSDS 50%DVDD tSDH VIH1 SDTI MSB VIL1 Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = “0”) MS0963-E-00 2008/05 - 38 - [AK4675] tLRCKH VIH1 LRCK VIL1 tLRB VIH1 BICK VIL1 (BCKP = "1") VIH1 BICK (BCKP = "0") VIL1 tBSD SDTO 50%DVDD MSB tSDS tSDH VIH1 SDTI MSB VIL1 Figure 12. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS = “1”) 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs VIH1 LRCK VIL1 tLRCKH tLRCKL Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 tBCK VIH1 BICK VIL1 tBCKH tBCKL Figure 13. Clock Timing (EXT Slave mode) MS0963-E-00 2008/05 - 39 - [AK4675] VIH1 LRCK VIL1 tBLR tLRB VIH1 BICK VIL1 tBSD tLRD SDTO 50%DVDD MSB tSDH tSDS VIH1 SDTI VIL1 Figure 14. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode) 1/fs2 VIH2 SYNCA VIL2 tSYH2 tSYL2 dSYC2 = tSYL2 x fs2 x 100 tBC K2 VIH 2 VIL2 BIC KA tBC KH 2 tBC KL2 dBC K2 = tBC KL2 / tBC K2 x 100 Figure 15. Clock Timing of PCM I/F A (SYNCA, BICKA) MS0963-E-00 2008/05 - 40 - [AK4675] VIH2 SYNCA VIL2 tBSY2 tSYB2 VIH2 BICKA VIL2 (BCKPA = “0”) VIH2 BICKA VIL2 (BCKPA = “1”) tSYD2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 16. PCM I/F A Timing at short and long frame sync (SYNCA, BICKA, SDTOA, SDTIA) VIH2 SYNCA VIL2 tBSY2 tSYB2 VIH2 BICKA VIL2 (BCKPA = “1”) VIH2 BICKA (BCKPA = “0”) VIL2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 2 Figure 17. PCM I/F B Timing at MSB justified and I S (SYNCA, BICKA, SDTOA, SDTIA) MS0963-E-00 2008/05 - 41 - [AK4675] VIH2 SYNCA VIL2 tBSY2 tSYB2 VIH2 BICKA VIL2 tSYD2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 18. PCM I/F A Timing at MSB justified and I2S (Slave mode) 1/fs2 50%TVDD2 SYNCA tSYH2 tSYL2 dSYC2 = tSYL2 x fs2 x 100 tBC K2 = 1/fBC K2 50% T VD D 2 BIC KA tBC KH 2 tBC KL2 dBC K2 = tBC KL2 / tBC K2 x 100 Figure 19. Clock Timing of PCM I/F A (Master mode) MS0963-E-00 2008/05 - 42 - [AK4675] SYNCA 50%TVDD2 tSYB2 BICKA (BCKPA = “0”) 50%TVDD2 BICKA 50%TVDD2 (BCKPA = “1”) tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 20. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “0”) SYNCA 50%TVDD2 tSYB2 50%TVDD2 BICKA (BCKPA = “1”) 50%TVDD2 BICKA (BCKPA = “0”) tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 21. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “1”) MS0963-E-00 2008/05 - 43 - [AK4675] 50%TVDD2 SYNCA tMBSY2 50%TVDD2 BICKA tSYD2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 22. PCM I/F A Timing at MSB justified and I2S (Master mode) 1/fs2 VIH3 SYNCB VIL3 tSYH3 tSYL3 dSYC3 = tSYH3 x fs2 x 100 tSYL3 x fs2 x 100 tBC K3 = 1/fBC K3 VIH 3 VIL3 BIC KB tBC KH 3 tBC KL3 Figure 23. Clock Timing of PCM I/F B (Slave mode) MS0963-E-00 2008/05 - 44 - [AK4675] VIH3 SYNCB VIL3 tBSY3 tSYB3 VIH3 BICKB VIL3 (BCKPB = “0”) VIH3 BICKB VIL3 (BCKPB = “1”) tSYD3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 24. PCM I/F B Timing at short and long frame sync (Slave mode; MSBSB = “0”) VIH3 SYNCB VIL3 tBSY3 tSYB3 VIH3 BICKB VIL3 (BCKPB = “1”) VIH3 BICKB (BCKPB = “0”) VIL3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 2 Figure 25. PCM I/F B Timing at MSB justified and I S (Slave mode; MSBSB = “1”) MS0963-E-00 2008/05 - 45 - [AK4675] VIH3 SYNCB VIL3 tBSY3 tSYB3 VIH3 BICKB VIL3 tSYD3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 26. PCM I/F B Timing at MSB justified and I2S (Slave mode) 1/fs2 50%TVDD3 SYNCB tSYH3 tSYL3 dSYC3 = tSYL3 x fs2 x 100 tBC K3 = 1/fBC K3 50% T VD D 3 BIC KB tBC KH 3 tBC KL3 dBC K3 = tBC KL3 / tBC K3 x 100 Figure 27. Clock Timing of PCM I/F B (Master mode) MS0963-E-00 2008/05 - 46 - [AK4675] SYNCB 50%TVDD3 tSYB3 50%TVDD3 BICKB (BCKPB = “0”) 50%TVDD3 BICKB (BCKPB = “1”) tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 28. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “0”) SYNCB 50%TVDD3 tSYB3 50%TVDD3 BICKB (BCKPB = “1”) 50%TVDD3 BICKB (BCKPB = “0”) tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 29. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “1”) MS0963-E-00 2008/05 - 47 - [AK4675] 50%TVDD3 SYNCB tMBSY3 50%TVDD3 BICKB tSYD3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 30. PCM I/F B Timing at MSB justified and I2S (Master mode) VIH1 SDA VIL1 tBUF tLOW tHIGH tR tF tSP VIH1 SCL VIL1 tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA Start tSU:STO Stop Figure 31. I2C Bus Mode Timing MS0963-E-00 2008/05 - 48 - [AK4675] PMADL bit or PMADR bit tPDV SDTO 50%DVDD Figure 32. Power Down & Reset Timing 1 tPD PDN VIL1 Figure 33. Power Down & Reset Timing 2 PMSRA bit tPDV2 SDTOA 50%TVDD2 Figure 34. Power Down & Reset Timing 3 PMSRB bit tPDV3 SDTO 50%DVDD Figure 35. Power Down & Reset Timing 4 MS0963-E-00 2008/05 - 49 - [AK4675] ■ Timing Diagram (HP/SPK-Amp) 1/fCLK VIH4 MCKIA VIL4 tCLKH tCLKL Figure 36. MCKIA Input Timing tPD PDNA VIL4 Figure 37. Power-down & Reset Timing MS0963-E-00 2008/05 - 50 - [AK4675] OPERATION OVERVIEW ■ System Clock (Audio I/F) There are the following five clock modes to interface with external devices. (Table 1 and Table 2.) Mode PMPLL bit M/S bit PLL3-0 bits Figure PLL Master Mode (Note 78) 1 1 See Table 4 Figure 38 PLL Slave Mode 1 Figure 39 1 0 See Table 4 (PLL Reference Clock: MCKI pin) PLL Slave Mode 2 Figure 40 1 0 See Table 4 Figure 41 (PLL Reference Clock: LRCK or BICK pin) EXT Slave Mode 0 0 x Figure 42 EXT Master Mode 0 1 x Figure 43 Note 78. If M/S bit = “1”, PMPLL bit = “0” and MCKO bit = “1” during the setting of PLL Master Mode, the invalid clocks are output from MCKO pin when MCKO bit is “1”. Table 1. Clock Mode Setting (x: Don’t care) Mode MCKO bit 0 PLL Master Mode 1 0 PLL Slave Mode (PLL Reference Clock: MCKI pin) 1 MCKO pin “L” Selected by PS1-0 bits “L” Selected by PS1-0 bits MCKI pin Selected by PLL3-0 bits Selected by PLL3-0 bits PLL Slave Mode (PLL Reference Clock: LRCK or BICK pin) 0 “L” GND EXT Slave Mode 0 “L” Selected by FS1-0 bits EXT Master Mode 0 “L” Selected by FS1-0 bits BICK pin Output (Selected by BCKO bit) LRCK pin Input (≥ 32fs) Input (1fs) Input (Selected by PLL3-0 bits) Input (≥ 32fs) Output (Selected by BCKO bit) Output (1fs) Input (1fs) Input (1fs) Output (1fs) Table 2. Clock pins state in Clock Mode ■ Master Mode/Slave Mode The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave mode. When the AK4675 is power-down mode (PDN pin = “L”) and exits reset state, the AK4675 is in slave mode. After exiting reset state, the AK4675 goes to master mode by changing M/S bit = “1”. When the AK4675 is in master mode, LRCK and BICK pins are a floating state until M/S bit becomes “1”. LRCK and BICK pins of the AK4675 should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the floating state. M/S bit Mode 0 Slave Mode 1 Master Mode Table 3. Select Master/Slave Mode MS0963-E-00 (default) 2008/05 - 51 - [AK4675] ■ PLL Mode (PMPLL bit = “1”) When PMPLL bit is “1”, an integrated analog phase locked loop (PLL) generates a clock that is selected by the PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 4, when the AK4675 is supplied stable clock after PLL is powered-up (PMPLL bit = “0” → “1”) or sampling frequency is changed. When AIN3 bit = “1”, the PLL is not available. 1) Setting of PLL Mode Mode PLL3 bit PLL2 bit PLL1 bit PLL0 bit PLL Reference Clock Input Pin Input Frequency 0 0 0 0 0 LRCK pin 1fs 2 0 0 1 0 BICK pin 32fs 3 0 0 1 1 BICK pin 64fs 4 5 6 7 8 12 13 14 15 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 Others Others R and C of VCOC pin C[F] R[Ω] 6.8k 220n 10k 4.7n 10k 10n 10k 4.7n 10k 10n 10k 4.7n 10k 4.7n 10k 10n 10k 10n 10k 4.7n 10k 10n 10k 10n 10k 220n 10k 220n MCKI pin 11.2896MHz MCKI pin 12.288MHz MCKI pin 12MHz MCKI pin 24MHz MCKI pin 19.2MHz MCKI pin 13.5MHz MCKI pin 27MHz MCKI pin 13MHz MCKI pin 26MHz N/A Table 4. Setting of PLL Mode (*fs: Sampling Frequency) PLL Lock Time (max) 160ms 2ms 4ms 2ms 4ms 40ms 40ms 40ms 40ms 40ms 40ms 40ms 60ms 60ms (default) 2) Setting of sampling frequency in PLL Mode When PLL reference clock input is MCKI pin, the sampling frequency is selected by FS3-0 bits as defined in Table 5. Mode FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency 0 0 0 0 0 8kHz 1 0 0 0 1 12kHz 2 0 0 1 0 16kHz 3 0 0 1 1 24kHz 5 0 1 0 1 11.025kHz 7 0 1 1 1 22.05kHz 10 1 0 1 0 32kHz 11 1 0 1 1 48kHz 15 1 1 1 1 44.1kHz (default) Others Others N/A Table 5. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = MCKI pin) MS0963-E-00 2008/05 - 52 - [AK4675] When PLL reference clock input is LRCK or BICK pin, the sampling frequency is selected by FS3-2 bits (Table 6). Mode FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency Range Don’t care Don’t care 0 0 0 8kHz ≤ fs ≤ 12kHz Don’t care Don’t care 1 0 1 12kHz < fs ≤ 24kHz Don’t care Don’t care Don’t care (default) 2 1 24kHz < fs ≤ 48kHz Others Others N/A Table 6. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = LRCK or BICK pin) ■ PLL Unlock State 1) PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) In this mode, the LRCK and BICK pins go to “L” and irregular frequency clock is output from the MCKO pins at MCKO bit is “1” before the PLL goes to lock state after PMPLL bit = “0” Æ “1”. If MCKO bit is “0”, the MCKO pin goes to “L”. (Table 7) After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to normal state after a period of 1/fs. When sampling frequency is changed, the BICK and LRCK pins do not output irregular frequency clocks but go to “L” by setting PMPLL bit to “0”. MCKO pin BICK pin MCKO bit = “0” MCKO bit = “1” After that PMPLL bit “0” Æ “1” “L” Output Invalid “L” Output PLL Unlock (except above case) “L” Output Invalid Invalid PLL Lock “L” Output See Table 9 See Table 10 Table 7. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) PLL State LRCK pin “L” Output Invalid 1fs Output 2) PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”) In this mode, an invalid clock is output from the MCKO pin before the PLL goes to lock state after PMPLL bit = “0” Æ “1”. After that, the clock selected by Table 9 is output from the MCKO pin when PLL is locked. ADC and DAC output invalid data when the PLL is unlocked. For DAC, the output signal should be muted by writing “0” to DACL, DACR, DACH and DACS bits. MCKO pin MCKO bit = “0” MCKO bit = “1” After that PMPLL bit “0” Æ “1” “L” Output Invalid PLL Unlock “L” Output Invalid PLL Lock “L” Output Output Table 8. Clock Operation at PLL Slave Mode (PMPLL bit = “0”, M/S bit = “0”) PLL State MS0963-E-00 2008/05 - 53 - [AK4675] ■ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz or 27MHz) is input to the MCKI pin, the MCKO, BICK and LRCK clocks are generated by an internal PLL circuit. The MCKO output frequency is selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit. The BICK output frequency is selected between 32fs or 64fs, by BCKO bit (Table 10). 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz, 27MHz DSP or μP AK4675 MCKI MCKO BICK LRCK 256fs/128fs/64fs/32fs 32fs, 64fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 38. PLL Master Mode Mode PS1 bit PS0 bit MCKO pin 0 0 0 256fs (default) 1 0 1 128fs 2 1 0 64fs 3 1 1 32fs Table 9. MCKO Frequency (PLL mode, MCKO bit = “1”) BCKO bit BICK Output Frequency 0 32fs (default) 1 64fs Table 10. BICK Output Frequency at Master Mode MS0963-E-00 2008/05 - 54 - [AK4675] ■ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”) A reference clock of PLL is selected among the input clocks to the MCKI, BICK or LRCK pin. The required clock to the AK4675 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 4). a) PLL reference clock: MCKI pin The BICK and LRCK inputs should be synchronized with MCKO output. The phase between MCKO and LRCK dose not matter. The MCKO pin outputs the frequency selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit. Sampling frequency can be selected by FS3-0 bits (Table 5). In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this case, BICK and LRCK can be stopped. 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz, 27MHz AK4675 DSP or μP MCKI MCKO BICK LRCK 256fs/128fs/64fs/32fs ≥ 32fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 39. PLL Slave Mode 1 (PLL Reference Clock: MCKI pin) MS0963-E-00 2008/05 - 55 - [AK4675] b) PLL reference clock: BICK or LRCK pin Sampling frequency corresponds to 8kHz to 48kHz by changing FS3-0 bits. (Table 6) AK4675 DSP or μP MCKO MCKI BICK LRCK 32fs or 64fs 1fs BCLK LRCK SDTO SDTI SDTI SDTO Figure 40. PLL Slave Mode 2 (PLL Reference Clock: BICK pin) AK4675 DSP or μP MCKO MCKI BICK LRCK ≥ 32fs 1fs BCLK LRCK SDTO SDTI SDTI SDTO Figure 41. PLL Slave Mode 2 (PLL Reference Clock: LRCK pin) MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4675 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”). MS0963-E-00 2008/05 - 56 - [AK4675] ■ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) When PMPLL bit is “0”, the AK4675 becomes EXT mode. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate are MCKI (256fs, 384fs, 512fs, 768fs or 1024fs), LRCK (fs) and BICK (≥32fs). The master clock (MCKI) should be synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is selected by FS1-0 bits (Table 11). In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this case, BICK and LRCK can be stopped. Mode 0 1 4 5 6 7 Others MCKI Input Sampling Frequency Frequency Range x 0 0 0 256fs 8kHz ∼ 48kHz x 0 0 1 1024fs 8kHz ∼ 13kHz x 1 0 0 384fs 8kHz ∼ 48kHz x 1 0 1 768fs 8kHz ∼ 26kHz x 1 1 0 512fs 8kHz ∼ 26kHz x 1 1 1 256fs (default) 8kHz ∼ 48kHz Others N/A N/A (N/A: Not available, x: Don’t care) Table 11. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) FS3 bit FS2 bit FS1 bit FS0 bit The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 12. S/N (fs=8kHz, 20kHzLPF + A-weighted) 256fs 83dB 512fs 93dB 1024fs 93dB Table 12. Relationship between MCKI and S/N of LOUT1/ROUT1 pins MCKI The external clocks (MCKI, BICK and LRCK) should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “1” or PMDAR bit = “1”). If these clocks are not provided, the AK4675 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If the external clocks are not present, the ADC and DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”). AK4675 DSP or μP MCKO MCKI BICK LRCK 256fs, 384fs, 512fs, 768fs or 1024fs ≥ 32fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 42. EXT Slave Mode MS0963-E-00 2008/05 - 57 - [AK4675] ■ EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) The AK4675 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 384fs, 512fs, 768fs or 1024fs). The input frequency of MCKI is selected by FS2-0 bits (Table 13). Mode 0 1 4 5 6 7 Others MCKI Input Sampling Frequency Frequency Range x 0 0 0 256fs 8kHz ∼ 48kHz x 0 0 1 1024fs 8kHz ∼ 13kHz x 1 0 0 384fs 8kHz ∼ 48kHz x 1 0 1 768fs 8kHz ∼ 26kHz x 1 1 0 512fs 8kHz ∼ 26kHz x 1 1 1 256fs (default) 8kHz ∼ 48kHz Others N/A N/A (N/A: Not available, x: Don’t care) Table 13. MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) FS3 bit FS2 bit FS1 bit FS0 bit The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output through the LOUT/ROUT pins at fs=8kHz is shown in Table 14. S/N (fs=8kHz, 20kHzLPF + A-weighted) 256fs 83dB 512fs 93dB 1024fs 93dB Table 14. Relationship between MCKI and S/N of LOUT1/ROUT1 pins MCKI MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “0” or PMDAR bit = “1”). If MCKI is not provided, the AK4675 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”). AK4675 DSP or μP MCKO MCKI BICK LRCK 256fs, 384fs, 512fs, 768fs or 1024fs 32fs or 64fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 43. EXT Master Mode BCKO bit BICK Output Frequency 0 32fs (default) 1 64fs Table 15. BICK Output Frequency at Master Mode MS0963-E-00 2008/05 - 58 - [AK4675] ■ System Reset The PDNA pin must keep “L” until all power supply pins are supplied, and must be set to “H”. After exiting reset (PDNA pin: “L” Æ “H”), all blocks of HP/SPK-Amp blocks (Input Volume, VCOMA, Oscillator, Mixer, Headphone-Amp, Speaker-Amp and charge pump circuit) switch to the power-down state. The contents of the control register are maintained until this reset by the PDNA pin. Upon power-up, CODEC & SRC blocks of the AK4675 must be reset by bringing the PDN pin = “L”. This ensures that all internal registers of CODEC & SRC blocks reset to their initial values. The ADC enters initialization cycle when the PMADL or PMADR bit is changed from “0” to “1” if PMDAL and PMDAR bits are “0”. The initialization cycle time is 1059/fs=24ms@fs=44.1kHz. During initialization cycle, the ADC digital data outputs of both channels are forced to a 2’s complement, “0”. The ADC output reflects the analog input signal after the initialization cycle is complete. When PMDAL or PMDAR is “1”, the ADC does not require an initialization cycle. MS0963-E-00 2008/05 - 59 - [AK4675] ■ Audio Interface Format Four types of data formats are available and are selected by setting the DIF1-0 bits (Table 16). In all modes, the serial data is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. LRCK and BICK are output from the AK4675 in master mode, but must be input to the AK4675 in slave mode. Mode 0 1 2 3 DIF1 bit 0 0 1 1 DIF0 bit 0 1 0 1 SDTO (ADC) SDTI (DAC) DSP Mode DSP Mode MSB justified LSB justified MSB justified MSB justified I2S compatible I2S compatible Table 16. Audio Interface Format BICK ≥ 32fs ≥ 32fs ≥ 32fs ≥ 32fs Figure Table 17 Figure 48 Figure 49 Figure 50 (default) In modes 1-3, the SDTO is clocked out on the falling edge (“↓”) of BICK and the SDTI is latched on the rising edge (“↑”). In Modes 0 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 17). DIF1 0 DIF0 MSBS BCKP 0 0 0 1 1 0 1 1 0 Audio Interface Format MSB of SDTO is output by the rising edge (“↑”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the falling edge (“↓”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by the falling edge (“↓”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the rising edge (“↑”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by next rising edge (“↑”) of the falling edge (“↓”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the falling edge (“↓”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by next falling edge (“↓”) of the rising edge (“↑”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the rising edge (“↑”) of the BICK just after the output timing of SDTO’s MSB. Table 17. Audio Interface Format in Mode 0 Figure Figure 44 (default) Figure 45 Figure 46 Figure 47 If 16-bit data that ADC outputs is converted to 8-bit data by removing LSB 8-bit, “−1” at 16bit data is converted to “−1” at 8-bit data. And when the DAC playbacks this 8-bit data, “−1” at 8-bit data will be converted to “−256” at 16-bit data and this is a large offset. This offset can be removed by adding the offset of “128” to 16-bit data before converting to 8-bit data. MS0963-E-00 2008/05 - 60 - [AK4675] LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 27 26 29 30 31 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 46 34 47 48 49 50 26 27 26 62 63 30 31 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 2 1 0 15 14 1 0 2 1 0 Rch Lch SDTI(i) 2 15 14 15 14 1/fs 15:MSB, 0:LSB Figure 44. Mode 0 Timing (BCKP = “0”, MSBS = “0”) LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 29 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 62 63 BICK(64fs) Lch SDTO(o) 15 14 Rch 2 1 0 2 1 0 15 14 2 1 0 2 1 0 Rch Lch SDTI(i) 15 14 15 14 1/fs 15:MSB, 0:LSB Figure 45. Mode 0 Timing (BCKP = “1”, MSBS = “0”) MS0963-E-00 2008/05 - 61 - [AK4675] LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 27 26 29 30 31 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 46 34 47 48 49 50 26 27 26 62 63 30 31 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 15 14 Lch SDTI(i) 2 1 0 2 1 0 Rch 15 14 2 1 0 15 14 1/fs 15:MSB, 0:LSB Figure 46. Mode 0 Timing (BCKP = “0”, MSBS = “1”) LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 29 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 62 63 BICK(64fs) Lch SDTO(o) 15 14 Rch 2 1 0 Lch SDTI(i) 15 14 15 14 2 1 0 2 1 0 Rch 2 1 0 15 14 1/fs 15:MSB, 0:LSB Figure 47. Mode 0 Timing (BCKP = “1”, MSBS = “1”) MS0963-E-00 2008/05 - 62 - [AK4675] LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 SDTI(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 0 1 2 3 15 16 17 18 31 0 1 2 3 15 16 17 18 31 0 1 BICK(64fs) SDTO(o) SDTI(i) 1 0 15 14 13 15 14 13 15 14 Don't Care 1 0 1 0 Don't Care 15 15 14 2 1 0 15:MSB, 0:LSB Lch Data Rch Data Figure 48. Mode 1 Timing LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 SDTI(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 0 1 2 3 15 16 17 18 31 0 1 2 3 15 16 17 18 31 0 1 BICK(64fs) SDTO(o) 15 14 13 1 0 SDTI(i) 15 14 13 1 0 Don't Care 15 14 13 1 0 15 14 13 1 0 15 Don't Care 15 15:MSB, 0:LSB Lch Data Rch Data Figure 49. Mode 2 Timing MS0963-E-00 2008/05 - 63 - [AK4675] LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 0 15 14 8 7 6 5 4 3 2 1 0 15 14 8 7 6 5 4 3 2 1 0 SDTI(i) 0 15 14 8 7 6 5 4 3 2 1 0 15 14 8 7 6 5 4 3 2 1 0 0 1 2 3 15 16 17 18 31 0 1 2 3 15 16 17 18 31 0 1 BICK(64fs) SDTO(o) 15 14 2 1 0 SDTI(i) 15 14 2 1 0 Don't Care 15 14 2 1 0 15 14 2 1 0 Don't Care 15:MSB, 0:LSB Lch Data Rch Data Figure 50. Mode 3 Timing MS0963-E-00 2008/05 - 64 - [AK4675] ■ MIC/LINE Input Selector The AK4675 has input selector. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “0”, INL1-0 and INR1-0 bits select LIN1/LIN2/LIN3/LIN4 and RIN1/RIN2/RIN3/RIN4, respectively. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins become IN1+/−, IN2+/−, IN3+/− and IN4+/− pins, respectively. In this case, full-differential input is available (Figure 52). MDIF1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 MDIF2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 MDIF3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 MDIF4 INL1 INL0 INR1 INR0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 Others Table 18. MIC-Amp Input Signal MS0963-E-00 Lch LIN1 LIN1 LIN1 LIN1 LIN2 LIN2 LIN2 LIN2 LIN3 LIN3 LIN3 LIN3 LIN4 LIN4 LIN4 LIN4 LIN1 LIN2 LIN3 IN3+/− IN3+/− IN3+/− IN3+/− LIN1 LIN3 LIN4 IN3+/− IN1+/− IN1+/− IN1+/− IN1+/− IN1+/− Rch RIN1 RIN2 RIN3 RIN4 RIN1 RIN2 RIN3 RIN4 RIN1 RIN2 RIN3 RIN4 RIN1 RIN2 RIN3 RIN4 IN4+/− IN4+/− IN4+/− RIN1 RIN2 RIN4 IN4+/− IN2+/− IN2+/− IN2+/− IN2+/− RIN2 RIN3 RIN4 IN4+/− IN2+/− (default) N/A 2008/05 - 65 - [AK4675] AK4675 INL1-0 bits LIN1/IN1+ pin ADC Lch RIN1/IN1− pin MDIF1 bit MIC-Amp Lch MDIF3 bit INR1-0 bits LIN2/IN2+ pin ADC Rch RIN2/IN2− pin MDIF2 bit MIC-Amp Rch MDIF4 bit LIN3/IN3+ pin RIN3/IN3− pin LIN4/IN4+ pin PMLOOPR bit PMLOOPL bit PMAINR4 bit PMAINL4 bit PMAINR3 bit PMAINL3 bit PMAINR2 bit PMAINL2 bit PMAINR1 bit PMAINL1 bit RIN4/IN4− pin Lineout Figure 51. Mic/Line Input Selector AK4675 MPWR pin 1k MIC-Amp IN1+ pin IN1− pin 1k Figure 52. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”) AK4675 MIC-Amp IN1+ pin IN1− pin Figure 53. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”) MS0963-E-00 2008/05 - 66 - [AK4675] ■ MIC Gain Amplifier The AK4675 has a gain amplifier for microphone input. The gain of MIC-Amp Lch and Rch is independently selected by the MGNL3-0 and MGNR3-0 bits (Table 19). The typical input impedance is 42kΩ(typ)@MGNL/R0 bits = “0” or 30kΩ(typ)@MGNL/R0 bits = “1”. Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MGNL3 MGNR3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 MGNL2 MGNR2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 MGNL1 MGNL0 Input Gain MGNR1 MGNR0 0 0 N/A 0 1 −12dB 1 0 −9dB 1 1 −6dB 0 0 −3dB 0 1 0dB 1 0 +3dB 1 1 +6dB 0 0 +9dB 0 1 +12dB 1 0 +15dB 1 1 +18dB 0 0 +21dB 0 1 +24dB 1 0 +27dB 1 1 +30dB Table 19. Mic Input Gain MS0963-E-00 Input Resistance N/A 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ (default) 2008/05 - 67 - [AK4675] ■ MIC Power When PMMP bit = “1”, the MPWR pin supplies power for the microphone. This output voltage is typically 0.8 x AVDD and the load resistance is minimum 0.5kΩ. In case of using two sets of stereo mic, the load resistance is minimum 2kΩ for each channel. Any capacitor must not be connected directly to the MPWR pin (Figure 54). PMMP bit MPWR pin 0 Hi-Z 1 Output Table 20. MIC Power (default) MIC Power ≥ 2kΩ ≥ 2kΩ ≥ 2kΩ ≥ 2kΩ MPWR pin Microphone LIN1 pin Microphone RIN1 pin Microphone LIN2 pin Microphone RIN2 pin Figure 54. MIC Block Circuit MS0963-E-00 2008/05 - 68 - [AK4675] ■ MIC Detection The AK4675 has a detect function of microphone inputs. The followings show the example of external microphone detection sequence: (1) PMMP bit should be set to “1” after CPU detects the jack insertion of microphone or headphone. (2) The MPWR pin drives external microphone. (3) The GPO2 pin (at GPOM2 bit = “1”) and DTMIC bit are set as Table 21. In case of Headset (with Mic), the input voltage of the MDT pin is higher than 0.075 x AVDD because of the relationship between the bias resistance at the MPWR pin (typ. 2.2kΩ) and the microphone impedance. In case of Headphone (No Mic), the input voltage of the MDT pin is 0V because the pin of headphone jack is connected to the MDT pin is assigned as ground. Input Level of MDT pin ≥ 0.075 x AVDD < 0.050 x AVDD GPO2 pin DTMIC bit H 1 L 0 Table 21. Microphone Detection Result MPWR Result Mic (Headset) No Mic (Headphone) PMMP bit AK4675 LIN1 LIN2 Headset G M R MDT L DTMIC bit typ. 500k or Headphone G R 0.075 x AVDD L Figure 55. Microphone Power Supply and Mic Detection MS0963-E-00 2008/05 - 69 - [AK4675] ■ Digital Block Digital block is composed as Figure 56. Each block can be powered-down by power management bit (PMADL, PMADR, PMDAL, PMDAR, PMSRA, PMSRB and PMPCM bits). When blocks from HPF to MIX are powered-down, both MIX and SVOLA blocks should not be selected by SDOL/R bits and PFMXL/R bits. PMADL or PMADR HPF A/D HPFAD PFSEL PFSEL=0 PMADL or PMADR PFSEL=1 PMDAL or PMDAR or PMSRA HPF HPF LPF LPF Stereo Separation 5-band Notch FIL3, EQ0, GN1-0 EQ1-5 ALC ALC, IVL/R MIX ADM SDOL/R1-0 SDOD SDTO Lch SDTO Rch SVAL/R2-0 SVOLA DAM, MIXD D/A PMDAL or PMDAR OVL/R EQ SRMXL/R1-0 M DATT 5-band I SMUTE EQ X PMDAL or PMDAR or PMSRA S E L SDTI Lch SDTI Rch SDIM1-0 PFMXL/R1-0 SRA1-0, MIXD PMPCM PMSRA SDOA SRC-A SDOAD SDTOA SVOLB SVB2-0 PMSRB SRC-B BVMX1-0 DATT-B SDTIA BVL7-0 SBMX1-0 DATT-C CVL7-0 BIV2-0 BIVOL SDOBD SDTOB SDTIB Figure 56. Path Select of Digital Block MS0963-E-00 2008/05 - 70 - [AK4675] (1) (2) (3) (4) (5) ADC: Include the Digital Filter (LPF) for ADC as shown in “FILTER CHRACTERISTICS”. DAC: Include the Digital Filter (LPF) for DAC as shown in “FILTER CHRACTERISTICS”. HPF: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See “Digital Programmable Filter”.) LPF: Low Pass Filter (See “Digital Programmable Filter”.) Stereo Separation: Stereo Separation Emphasis Filter & Gain Comparison. (See “Digital Programmable Filter”.) Gain Comparison is composed with EQ0 and Gain blocks. This block adjusts the frequency response after Stereo Separation Emphasis. (6) 5-Band Notch: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter”.) (7) ALC: Input Digital Volume with ALC function. (See “Input Digital Volume” and “ALC Operation”.) (8) SVOLA: Side Tone Volume at Internal MIC/SPK or External Headset Phone Call. (See “Side Tone Volume (SVOLA)”.) (9) 5-Band EQ: Equalizer for playback path. (See “5-band Equalizer”.) (10) DATT: Digital Volume for playback path. (See “Digital Output Volume”.) (11) SMUTE: Soft mute. (See “Soft Mute”.) (12) DATT-B: Digital Volume for Recording of Received Voice. (See “Digital Volume for Recording of Received Voice”) (13) DATT-C: Digital Volume of Received Voice. (See “Digital Volume of Received Voice”) (14) SVOLA: Side Tone Volume at B/T Headset Phone Call. (See “Side Tone Volume for B/T Phone Call”.) Mode Recording Mode PMADL 1 1 0 1 1 0 0 Recording & Playback Mode Playback Mode ADC PMADR PMDAL PMDAR 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 Table 22. Recode/Playback Mode 2nd Order 1st Order HPF LPF Stereo Separation Gain Compensation PFSEL 0 0 0 0 0 0 1 Figure Figure 57 Figure 58 Figure 59 5 Band Notch ALC (Volume) Figure 57. Path at Recording Mode ADC DAC 2nd Order 1st Order HPF LPF DEM SMUTE DATT Stereo Separation Gain Compensation 5 Band Notch ALC (Volume) 5 Band EQ Figure 58. Path at Recording & Playback Mode ADC DAC 1st Order “0” Data HPF DEM SMUTE DATT 5 Band EQ ALC (Volume) 5 Band EQ Gain Compensation Stereo Separation 1st Order 1st Order LPF HPF Figure 59. Path at Playback Mode MS0963-E-00 2008/05 - 71 - [AK4675] ■ Digital Programmable Filter (1) High Pass Filter (HPF) Normally, this HPF is used for a Wind-Noise Reduction Filter. This is composed with 2 steps of 1st order HPF. The coefficient of both HPF is the same and set by F1A13-0 bits and F1B13-0 bits. HPFAD bit controls ON/OFF of the 1st step HPF and HPF bit controls ON/OFF of the 2nd step HPF. When the HPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when HPFAD=HPF bits = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 79) HPF: F1A[13:0] bits =A, F1B[13:0] bits =B (MSB=F1A13, F1B13; LSB=F1A0, F1B0) 1 − 1 / tan (πfc/fs) 1 / tan (πfc/fs) A= , B= 1 + 1 / tan (πfc/fs) 1 + 1 / tan (πfc/fs) Transfer function 1 − z −1 H(z) = A 1 + Bz −1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) (2) Low Pass Filter (LPF) This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when LPF bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 79) LPF: F2A[13:0] bits =A, F2B[13:0] bits =B (MSB=F2A13, F1B13; LSB=F2A0, F2B0) 1 − 1 / tan (πfc/fs) 1 A= , 1 + 1 / tan (πfc/fs) B= 1 + 1 / tan (πfc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 The cut-off frequency should be set as below. fc/fs ≥ 0.05 (fc min = 2205Hz at 44.1kHz) MS0963-E-00 2008/05 - 72 - [AK4675] (3) Stereo Separation Emphasis Filter (FIL3) FIL3 is used to emphasize the stereo separation of stereo mic recording data or playback data. F3A13-0 and F3B13-0 bits set the filter coefficient of FIL3. FIL3 becomes High Pass Filter (HPF) at F3AS bit = “0”, and Low Pass Filter (LPF) at F3AS bit = “1”. FIL3 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when FIL3 bit = “0” or PMADL = PMADR = PMDAL = PMDAR bits = “0”. 1) When FIL3 is set to “HPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB ≥ K ≥ −10dB) Register setting (Note 79) FIL3: F3AS bit = “0”, F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB=F3A0, F3B0) A = 10K/20 x 1 − 1 / tan (πfc/fs) 1 / tan (πfc/fs) , B= 1 + 1 / tan (πfc/fs) 1 + 1 / tan (πfc/fs) Transfer function 1 − z −1 H(z) = A 1 + Bz −1 2) When FIL3 is set to “LPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB ≥ K ≥ −10dB) Register setting (Note 79) FIL3: F3AS bit = “1”, F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB= F3A0, F3B0) 1 − 1 / tan (πfc/fs) 1 A = 10K/20 x , 1 + 1 / tan (πfc/fs) B= 1 + 1 / tan (πfc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 MS0963-E-00 2008/05 - 73 - [AK4675] (4) Gain Compensation (EQ0) Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation Emphasis Filter. Gain Compensation is composed with Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A15-0, E0B13-0 and E0C15-0 bits set the coefficient of EQ0. GN1-0 bits set the gain (Table 23). EQ0 bit controls ON/OFF of EQ0. When EQ is OFF and the gain is 0dB, the audio data passes this block by 0dB gain. The coefficient should be set when EQ0 bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fc1: Pole frequency fc2: Zero-point frequency K: Filter gain [dB] (Maximum +12dB) Register setting (Note 79) E0A[15:0] bits =A, E0B[13:0] bits =B, E0C[15:0] bits =C (MSB=E0A15, E0B13, E0C15; LSB=E0A0, E0B0, E0C0) A = 10K/20 x 1 + 1 / tan (πfc2/fs) 1 + 1 / tan (πfc1/fs) , B= 1 − 1 / tan (πfc1/fs) , C =10K/20 x 1 + 1 / tan (πfc1/fs) 1 − 1 / tan (πfc2/fs) 1 + 1 / tan (πfc1/fs) Transfer function A + Cz −1 H(z) = 1 + Bz −1 Gain[dB] K fc1 fc2 Frequency Figure 60. EQ0 Frequency Response GN1 GN0 Gain 0 0 0dB (default) 0 1 +12dB 1 x +24dB Table 23. Gain select of gain block (x: Don’t care) MS0963-E-00 2008/05 - 74 - [AK4675] (5) 5-band Notch This block can be used as Equalizer or Notch Filter. 5-band Equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) is ON/OFF independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When Equalizer is OFF, the audio data passes this block by 0dB gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. E4A15-0, E4B15-0 and E4C15-0 bits set the coefficient of EQ4. E5A15-0, E5B15-0 and E5C15-0 bits set the coefficient of EQ5. The EQx (x=1∼5) coefficient should be set when EQx bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fo1 ~ fo5: Center frequency fb1 ~ fb5: Band width where the gain is 3dB different from center frequency K1 ~ K5 : Gain (−1 ≤ Kn ≤ 3) Register setting (Note 79) EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1 EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2 EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3 EQ4: E4A[15:0] bits =A4, E4B[15:0] bits =B4, E4C[15:0] bits =C4 EQ5: E5A[15:0] bits =A5, E5B[15:0] bits =B5, E5C[15:0] bits =C5 (MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15, E4C15, E5A15, E5B15, E5C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0, E4C0, E5A0, E5B0, E5C0) An = Kn x tan (πfbn/fs) 2 , Bn = cos(2π fon/fs) x 1 + tan (πfbn/fs) 1 + tan (πfbn/fs) , Cn = 1 − tan (πfbn/fs) 1 + tan (πfbn/fs) (n = 1, 2, 3, 4, 5) Transfer function H(z) = 1 + h1(z) + h2(z) + h3(z) + h4(z) + h5(z) 1 − z −2 hn (z) = An 1− Bnz −1− Cnz −2 (n = 1, 2, 3, 4, 5) The center frequency should be set as below. fon / fs < 0.497 Note 79. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)] X = (Real number of filter coefficient calculated by the equations above) x 213 X should be rounded to integer, and then should be translated to binary code (2’s complement). MSB of each filter coefficient setting register is sine bit. MS0963-E-00 2008/05 - 75 - [AK4675] ■ ALC Operation The ALC (Automatic Level Control) is done by ALC block when ALC bit is “1”. ALC circuit operates at playback path for Playback mode and operates at recording path for Recording mode as shown in Table 22. 1. ALC Limiter Operation During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 24), the IVL and IVR values (same value) are attenuated automatically by the amount defined by the ALC limiter ATT step (Table 25). When ZELMN bit = “0” (zero cross detection is enabled), the IVL and IVR values are changed by ALC limiter operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing timeout periods of both ALC limiter and recovery operation (Table 26). IVL and IVR values are attenuated 1 step immediately (period: 1/fs) by ALC limiter operation when output level is over FS (Digital Full Scale). When output level is not over FS, the IVL and IVR values are changed at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. When ZELMN bit = “1” (zero cross detection is disabled), IVL and IVR values are immediately (period: 1/fs) changed by ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting of LMAT1-0 bits. The attenuate operation is executed continuously until the input signal level becomes ALC limiter detection level (Table 24) or less. After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when the input signal level exceeds LMTH1-0 bits. LMTH1 0 0 1 1 LMTH0 0 1 0 1 ALC Limier Detection Level ALC Recovery Waiting Counter Reset Level ALC Output ≥ −2.5dBFS −2.5dBFS > ALC Output ≥ −4.1dBFS ALC Output ≥ −4.1dBFS −4.1dBFS > ALC Output ≥ −6.0dBFS ALC Output ≥ −6.0dBFS −6.0dBFS > ALC Output ≥ −8.5dBFS ALC Output ≥ −8.5dBFS −8.5dBFS > ALC Output ≥ −12dBFS Table 24. ALC Limiter Detection Level / Recovery Counter Reset Level LMAT1 LMAT0 0 0 1 1 0 1 0 1 ZTM1 ZTM0 0 0 1 1 0 1 0 1 ALC Limiter ATT Step ALC Output ALC Output ALC Output ≥ LMTH ≥ FS ≥ FS + 6dB 1 1 1 2 2 2 2 4 4 1 2 4 Table 25. ALC Limiter ATT Step (x: Don’t care) ALC Output ≥ FS + 12dB 1 2 8 8 Zero Crossing Timeout Period 8kHz 16kHz 44.1kHz 128/fs 16ms 8ms 2.9ms 256/fs 32ms 16ms 5.8ms 512/fs 64ms 32ms 11.6ms 1024/fs 128ms 64ms 23.2ms Table 26. ALC Zero Crossing Timeout Period MS0963-E-00 (default) (default) (default) 2008/05 - 76 - [AK4675] 2. ALC Recovery Operation ALC recovery operation waits for the WTM2-0 bits (Table 27) to be set after completing ALC limiter operation. If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 24) during the wait time, ALC recovery operation is executed. The IVL and IVR values are automatically incremented by RGAIN1-0 bits (Table 28) up to the set reference level (Table 29) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 26). Then the IVL and IVR are set to the same value for both channels. ALC recovery operation is executed at a period set by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, ALC recovery operation waits until WTM2-0 period and the next recovery operation is executed. If ZTM1-0 is longer than WTM2-0 and no zero crossing occurs, the ALC recovery operation is executed at a period set by ZTM1-0 bits. For example, when the current IVL and IVR values are 30H and RGAIN1-0 bits are set to “01”, IVL and IVR values are changed to 32H by the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the IVL and IVR values exceed the reference level (REF7-0 bits), the IVL and IVR values are not increased. When “ALC recovery waiting counter reset level (LMTH1-0) ≤ Output Signal < ALC limiter detection level (LMTH1-0)” during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When “ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”, the waiting timer of ALC recovery operation starts. The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation becomes faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone instantaneously, the quality of small level in the large noise can be improved by this fast recovery operation. The speed of fast recovery operation is set by RFST1-0 bits (Table 30). WTM2 WTM1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 ALC Recovery Operation Waiting Period 8kHz 16kHz 44.1kHz 0 128/fs 16ms 8ms 2.9ms 1 256/fs 32ms 16ms 5.8ms 0 512/fs 64ms 32ms 11.6ms 1 1024/fs 128ms 64ms 23.2ms 0 2048/fs 256ms 128ms 46.4ms 1 4096/fs 512ms 256ms 92.9ms 0 8192/fs 1024ms 512ms 185.8ms 1 16384/fs 2048ms 1024ms 371.5ms Table 27. ALC Recovery Operation Waiting Period WTM0 RGAIN1 0 0 1 1 RGAIN0 GAIN STEP 0 1 step 0.375dB 1 2 step 0.750dB 0 3 step 1.125dB 1 4 step 1.500dB Table 28. ALC Recovery GAIN Step MS0963-E-00 (default) (default) 2008/05 - 77 - [AK4675] REF7-0 bits GAIN (dB) Step F1H +36.0 F0H +35.625 EFH +35.25 : : E1H +30.0 (default) 0.375dB : : 92H +0.375 91H 0.0 90H −0.375 : : 2H −53.625 1H −54.0 0H MUTE Table 29. Reference Level at ALC Recovery Operation RFST1 bit RFST0 bit Recovery Speed 0 0 4 times (default) 0 1 8 times 1 0 16times 1 1 N/A Table 30. Fast Recovery Speed Setting (N/A: Not available) MS0963-E-00 2008/05 - 78 - [AK4675] 3. Example of ALC Operation Table 31 and Table 32 show the examples of the ALC setting for mic recording and playback, respectively. Register Name Comment LMTH1-0 ZELMN Limiter detection Level Limiter zero crossing detection Zero crossing timeout period * ZTM1-0 bits should be equal to or shorter than WTM2-0 bits. Recovery waiting period Maximum gain at recovery operation ZTM1-0 WTM2-0 REF7-0 IVL7-0, IVR7-0 LMAT1-0 RGAIN1-0 RFST1-0 ALC Gain of IVOL Data 01 0 fs=8kHz Operation −4.1dBFS Enable Data 01 0 fs=44.1kHz Operation −4.1dBFS Enable 01 32ms 11 23.2ms 001 E1H 32ms +30dB 100 E1H 46.4ms +30dB E1H +30dB E1H +30dB 00 00 00 1 1 step 1 step 4 times Enable Limiter ATT step 00 1 step Recovery GAIN step 00 1 step Fast Recovery Speed 00 4 times ALC enable 1 Enable Table 31. Example of the ALC setting (Recording Path) fs=8kHz Operation −4.1dBFS Enable 32ms fs=44.1kHz Operation −4.1dBFS Enable 23.2ms Register Name Comment LMTH1-0 ZELMN ZTM1-0 Limiter detection Level Limiter zero crossing detection Zero crossing timeout period Recovery waiting period *WTM2-0 bits should be the same data as ZTM1-0 bits Maximum gain at recovery operation 001 32ms 100 46.4ms A1H +6dB A1H +6dB Gain of IVOL 91H 0dB 91H 0dB 00 00 00 1 1 step 1 step 4 times Enable WTM2-0 REF7-0 IVL7-0, IVR7-0 LMAT1-0 RGAIN1-0 RFST1-0 ALC Data 01 0 01 Limiter ATT step 00 1 step Recovery GAIN step 00 1 step Fast Recovery Speed 00 4 times ALC enable 1 Enable Table 32. Example of the ALC setting (Playback Path) MS0963-E-00 Data 01 0 11 2008/05 - 79 - [AK4675] The following registers should not be changed during ALC operation. These bits should be changed after ALC operation is finished by ALC bit = “0”. Each bit of LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN and RFST1-0. Example: Limiter = Zero crossing Enable Recovery Cycle = 32ms@8kHz Zero Crossing Timeout Period = 32ms@8kHz Limiter and Recovery Step = 1 Fast Recovery Speed = 4 step Gain of IVOL = +30dB Maximum Gain = +30.0dB Limiter Detection Level = −4.1dBFS ALC bit = “1” Manual Mode WR (IVL7-0) (1) Addr=12H, Data=E1H WR (IVR7-0) (2) Addr=13H, Data=E1H WR (REF7-0) * The value of IVOL should be (3) Addr=14H, Data=E1H the same or smaller than REF’s WR (ZTM1-0, WTM2-0, RFST1-0) (4) Addr=16H, Data=05H WR (LMTH1-0, RGAIN1-0, LMAT1-0, ZELMN) (5) Addr=17H, Data=01H WR (ALC = “1”) (6) Addr=18H, Data=03H ALC Operation Note : WR : Write Figure 61. Registers set-up sequence at ALC operation MS0963-E-00 2008/05 - 80 - [AK4675] ■ Input Digital Volume (Manual Mode) The input digital volume becomes a manual mode when ALC bit is “0”. This mode is used in the case shown below. 1. 2. 3. After exiting reset state, set-up the registers for the ALC operation (ZTM1-0, LMTH1-0 and etc) When the registers for the ALC operation (Limiter period, Recovery period and etc) are changed. For example, in the case that the change of the sampling frequency. When IVOL is used as a manual volume. IVL7-0 and IVR7-0 bits set the gain of the volume control (Table 33). When IVOLC bit is “0”, IVL7-0 and IVR7-0 bits control Lch and Rch volume values independently. When IVOLC bit is “1”, IVL7-0 bits controls both channels. The IVOL value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTM1-0 bits. If IVL7-0 or IVR7-0 bits are written during PMADL=PMADR bits = “0”, IVOL operation starts with the written values at the end of the ADC initialization cycle after PMADL or PMADR bit is changed to “1”. IVL7-0 bits IVR7-0 bits F1H F0H EFH : 92H 91H 90H : 03H 02H 01H 00H GAIN (dB) Step +36.0 +35.625 +35.25 : +0.375 0.375dB 0.0 −0.375 : −53.25 −53.625 −54 MUTE Table 33. Input Digital Volume Setting (default) ■ Side Tone Volume (SVOLA) The AK4675 has the channel independent side tone volume (5 levels, 6dB step). The volume can be set by the SVAL/R2-0 bits. The volume is included at mixing path from ALC to 5-band EQ. The output data of ALC is changed from 0 to –24dB. SVAL/R2-0 Gain 0H 0dB (default) 1H −6dB 2H −12dB 3H −18dB 4H −24dB Others N/A Table 34. Side Tone Volume A Code Table (N/A: Not available) MS0963-E-00 2008/05 - 81 - [AK4675] ■ 5-Band Equalizer The AK4675 has 5-Band Equalizer before DAC of Stereo CODEC. The center frequencies and cut/boost amount are the followings. • Center frequency: 100Hz, 250Hz, 1kHz, 3.5kHz, 10kHz (Note 80, Note 81, Note 82) • Cut/Boost amount: –10.5dB ∼ +12dB, 1.5dB step Note 80: These are the frequencies when the sampling frequency is 44.1kHz. These frequencies are proportional to the sampling frequency. Note 81: 100Hz is not center frequency but the frequency component lower than 100Hz is controlled. Note 82: 10kHz is not center frequency but the frequency component higher than 10kHz is controlled. EQ bit controls ON/OFF of this Equalizer and these Boost amount are set by EQA3-0, EQB3-0, EQC3-0, EQD3-0 and EQE3-0 bits, respectively, as shown in Table 35. EQA3-0: EQB3-0: EQC3-0: EQD3-0: EQE3-0: Select the boost level of 100Hz Select the boost level of 250Hz Select the boost level of 1kHz Select the boost level of 3.5kHz Select the boost level of 10kHz EQx3-0 Boost amount 0H +12.0dB 1H +10.5dB 2H +9.0dB 3H +7.5dB : : 8H 0dB (default) : : DH −7.5dB EH −9.0dB FH −10.5dB Table 35. Boost amount of 5-Band Equalizer MS0963-E-00 2008/05 - 82 - [AK4675] ■ Digital Output Volume The AK4675 has a digital output volume (256 levels, 0.5dB step, Mute). The volume can be set by the OVL7-0 and OVR7-0 bits. The volume is included in front of a DAC block. The input data of DAC is changed from +12 to –115dB or MUTE. When the OVOLC bit = “1”, the OVL7-0 bits control both Lch and Rch attenuation levels. When the OVOLC bit = “0”, the OVL7-0 bits control Lch level and OVR7-0 bits control Rch level. This volume has a soft transition function. The OVTM bit sets the transition time between set values of OVL/R7-0 bits as either 1061/fs or 256/fs (Table 37). When OVTM bit = “0”, a soft transition between the set values occurs (1062 levels). It takes 1061/fs (=24ms@fs=44.1kHz) from 00H (+12dB) to FFH (MUTE). OVL/R7-0 00H 01H 02H : 18H : FDH FEH FFH Gain Step +12.0dB +11.5dB +11.0dB : 0.5dB 0dB : −114.5dB −115.0dB MUTE (−∞) Table 36. Digital Volume Code Table (default) Transition time between DVL/R7-0 bits = 00H and FFH Setting fs=8kHz fs=44.1kHz 1061/fs 133ms 24ms 256/fs 32ms 6ms Table 37. Transition Time Setting of Digital Output Volume OVTM bit 0 1 MS0963-E-00 (default) 2008/05 - 83 - [AK4675] ■ Soft Mute Soft mute operation is performed in the digital domain. When the SMUTE bit goes to “1”, the output signal is attenuated by −∞ (“0”) during the cycle set by the OVTM bit. When the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the value set by the OVL/R7-0 bits during the cycle set of the OVTM bit. If the soft mute is cancelled within the cycle set by the OVTM bit after starting the operation, the attenuation is discontinued and returned to the value set by the OVL/R7-0 bits. The soft mute is effective for changing the signal source without stopping the signal transmission (Figure 62). S M U T E bit O VTM bit O VL/R 7-0 bits O VTM bit (1) (3) A ttenuation -∞ GD (2) GD A nalog O utput Figure 62. Soft Mute Function (1) The output signal is attenuated until −∞ (“0”) by the cycle set by the OVTM bit. (2) Analog output corresponding to digital input has group delay (GD). (3) If the soft mute is cancelled within the cycle set by the OVTM bit, the attenuation is discounted and returned to the value set by the OVL/R7-0 bits. MS0963-E-00 2008/05 - 84 - [AK4675] ■ Digital Volume Control for Recording of Received Voice (DATT-B) The AK4675 has a digital output volume control (DATT-B: 256 levels, 0.5dB step, Mute) for recording of received voice. The volume can be set by the BVL7-0 bits. The volume is included in front of an SRC-B block. The input data of SRC-B is changed from +12 to –115dB or MUTE. This volume has a soft transition function. The transition time between set values of BVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE). BVL7-0 00H 01H 02H : 18H : FDH FEH FFH Gain Step +12.0dB +11.5dB +11.0dB : 0.5dB 0dB : −114.5dB −115.0dB MUTE (−∞) Table 38. Digital Volume B Code Table (default) ■ Digital Volume Control for Received Voice (DATT-C) The AK4675 has a digital output volume control (DATT-C: 256 levels, 0.5dB step, Mute) for received voice. The volume can be set by the CVL7-0 bits. The volume is included in front of SDTOB output. The input data of SRC-C is changed from +12 to –115dB or MUTE. This volume has a soft transition function. The transition time between set values of CVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE). CVL7-0 00H 01H 02H : 18H : FDH FEH FFH Gain Step +12.0dB +11.5dB +11.0dB : 0.5dB 0dB : −114.5dB −115.0dB MUTE (−∞) Table 39. Digital Volume C Code Table (default) ■ Side Tone Volume Control for B/T Phone Call (SVOLB) The AK4675 has a side tone volume control (5 levels, 6dB step) for B/T phone call. The volume can be set by the SVL2-0 bits. The volume is included at mixing path from SRC-A to DATT-C. The output data of SRC-A is changed from 0 to –24dB. SVB2-0 Gain 0H 0dB (default) 1H −6dB 2H −12dB 3H −18dB 4H −24dB Others N/A Table 40. Side Tone Volume B Code Table (N/A: Not available) MS0963-E-00 2008/05 - 85 - [AK4675] ■ Digital Volume Control for B/T MIC Input (BIVOL) The AK4675 has a digital volume control (5 levels, 6dB step) for B/T mic input. The volume can be set by the BIV2-0 bits. The volume is included at SDTIB input. The input data is changed from 0 to –24dB. BIV2-0 Gain 0H 0dB (default) 1H −6dB 2H −12dB 3H −18dB 4H −24dB Others N/A Table 41. B/T Mic Volume Code Table (N/A: Not available) ■ Path & Mixing Setting of Digital Block (Figure 56.) PMADL and PMADR bits set both ADC power management and output data selection. In case of mono operation, the same data is output to both channel slots. PMADL 0 0 1 1 PMADR ADC Lch data ADC Rch data 0 All “0” All “0” 1 Rch Input Signal Rch Input Signal 0 Lch Input Signal Lch Input Signal 1 Lch Input Signal Rch Input Signal Table 42. ADC Mono/Stereo Select (default) PFSEL bit select the input data of programmable filter. PFSEL Programmable Filter Input 0 ADC Output (selected by Table 42.) (default) 1 SDTI Input (selected by Table 48) Table 43. Programmable Filter Input Signal Select When ADM bit is “1”, ALC output data is output to both channels of SDTO and SVOLA as (L+R)/2, respectively. ADM Lch Rch 0 L R (default) 1 (L+R)/2 (L+R)/2 Table 44. ALC Output Mono Mixing MS0963-E-00 2008/05 - 86 - [AK4675] SDOL1-0 and SDOR1-0 bits set the data mixing for each channel of SDTO from the data selected by Table 44 and SRC-B output data. SDOL1 0 0 1 1 SDOL0 SDTO Lch 0 Lch Signal selected by Table 44 1 SRC-B 0 (Lch Signal selected by Table 44) + (SRC-B) 1 N/A Table 45. SDTO Lch Output Mixing (N/A: Not available) SDOR1 0 0 1 1 SDOR0 SDTO Rch 0 Rch Signal selected by Table 44 1 SRC-B 0 (Rch Signal selected by Table 44) + (SRC-B) 1 N/A Table 46. SDTO Rch Output Mixing (N/A: Not available) (default) (default) When SDOD bit is “1”, SDTO output data can be disabled (fixed to “L”). Input data of SVOLA is not disabled. SDOD 0 1 SDTO Enable (Output) (default) Disable (“L”) Table 47. SDTO Disable SDIM1-0 bits select stereo or mono of SDTI input data. In case of mono mode, the same data is input to both channels. SDIM1 SDIM0 Lch Rch 0 0 L R (default) 0 1 L L 1 0 R R 1 1 N/A Table 48. SDTI Stereo/Mono Select (N/A: Not available) PFMXL1-0 and PFMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 48 and SVOLA output data. PFMXL1 0 0 1 1 PFMXL0 5-band EQ Lch Input 0 Lch Signal selected by Table 48 1 SVOLA Lch 0 (Lch Signal selected by Table 48) + (SVOLA Lch) 1 N/A Table 49. 5-band EQ Lch Input Mixing 1 (N/A: Not available) PFMXR1 0 0 1 1 PFMXR0 5-band EQ Rch Input 0 Rch Signal selected by Table 48 1 SVOLA Rch 0 (Rch Signal selected by Table 48) + (SVOLA Rch) 1 N/A Table 50. 5-band EQ Rch Input Mixing 1 (N/A: Not available) MS0963-E-00 (default) (default) 2008/05 - 87 - [AK4675] SRMXL1-0 and SRMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 49/Table 50 and SVOLA output data. SRMXL1 SRMXL0 5-band EQ Lch Input 0 0 Signal selected by Table 49 (default) 0 1 SRC-B 1 0 (Signal selected by Table 49) + (SRC-B) 1 1 N/A Table 51. 5-band EQ Lch Input Mixing 2 (N/A: Not available) SRMXR1 SRMXR0 5-band EQ Rch Input 0 0 Signal selected by Table 50 (default) 0 1 SRC-B 1 0 (Signal selected by Table 50) + (SRC-B) 1 1 N/A Table 52. 5-band EQ Rch Input Mixing 2 (N/A: Not available) DAM and MIXD bits set the data mixing for DAC input. DAM 0 1 1 MIXD Lch Rch x L R (default) 0 L+R L+R 1 (L+R)/2 (L+R)/2 Table 53. DAC Mono Mixing (x: Don’t care) SRA1-0 and MIXD bits set the data mixing for SRC-A input. SRA1 SRA0 MIXD SRC-A 0 0 x L (default) 0 1 x R 1 0 0 L+R 1 0 1 (L+R)/2 1 1 x N/A Table 54. SRC-A Input Mixing (x: Don’t care, N/A: Not available) SDOA bit selects the output data of SDTOA. SDOA 0 1 SDTOA SRC-A (default) SDTIB Table 55. SDTOA Output Select When SDOAD bit is “1”, SDTOA output data can be disabled (fixed to “L”). Input data of SVOLB is not disabled. SDOAD SDTOA 0 Enable (Output) (default) 1 Disable (“L”) Table 56. SDTOA Disable MS0963-E-00 2008/05 - 88 - [AK4675] SBMX1-0 bits set the data mixing from SDTIA input and SVOLB output. The mixed data is output to SDTOB via DATT-C. SBMX1 0 0 1 1 SBMX0 DATT-C Input 0 SDTIA (default) 1 SVOLB 0 (SDTIA) + (SVOLB) 1 N/A Table 57. SDTOB Mixing (N/A: Not available) When SDOBD bit is “1”, SDTOB output data can be disabled (fixed to “L”). SDOBD SDTOB 0 Enable (Output) (default) 1 Disable (“L”) Table 58. SDTOB Disable BVMX1-0 bits set the data mixing for SRC-B from SDTIA input (DATT-B output) and SDTIB input (BIVOL output). BVMX1 BVMX0 SRC-B Input 0 0 SDTIA (default) 0 1 SDTIB 1 0 (SDTIA) + (SDTIB) 1 1 N/A Table 59. SRC-B Input Mixing (N/A: Not available) MS0963-E-00 2008/05 - 89 - [AK4675] ■ Analog Mixing: Single-ended Input (LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins) AK4675 supports analog mixing function from each line input to each line output (Figure 63). When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR bits = “1”, the input resistance of LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins becomes 25kΩ (typ) at MGNL/R0 bits = “0” and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively. L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63, Table 64). AK4675 INL4-0 bits LIN1/IN1+ pin ADC Lch RIN1/IN1− pin MDIF1 bit MIC-Amp Lch MDIF3 bit INR4-0 bits LIN2/IN2+ pin ADC Rch RIN2/IN2− pin MDIF2 bit MIC-Amp Rch MDIF4 bit LIN3/IN3+ pin RIN3/IN3− pin LIN4/IN4+ pin Figure 63, 64, 66, 67 LOUT1 pin Figure 68, 69 ROUT1 pin LOUT2S pin ROUT2S pin PMLOOPR bit PMLOOPL bit PMAINR4 bit PMAINL4 bit PMAINR3 bit PMAINL3 bit PMAINR2 bit PMAINL2 bit PMAINL1 bit PMAINR1 bit RIN4/IN4− pin Figure 72, 73, 75, 76 LOUT3 pin ROUT3 pin Figure 63. Analog Mixing Circuit MS0963-E-00 2008/05 - 90 - [AK4675] L1G1 bit L1G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 60. LIN1/RIN1 (or IN1+/−) Mixing Gain (typ) (N/A: Not available) L2G1 bit L2G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 61. LIN2/RIN2 (or IN2+/−) Mixing Gain (typ) (N/A: Not available) L3G1 bit L3G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 62. LIN3/RIN3 (or IN3+/−) Mixing Gain (typ) (N/A: Not available) L4G1 bit L4G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 63. LIN4/RIN4 (or IN4+/−) Mixing Gain (typ) (N/A: Not available) LPG1 bit LPG0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 64. MIC-Amp Mixing Gain (typ) (N/A: Not available) ■ Analog Mixing: Full-differential Input (IN1+/IN1−/IN2+/IN2−/IN3+/IN3−/IN4+/IN4− pins) When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins become IN1+/−, IN2+/−, IN3+/− and IN4+/− pins, respectively, and analog mixing is available. When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR bits = “1”, the input resistance of IN1+/−, IN2+/−, IN3+/− and IN4+/− pins becomes 25kΩ (typ) at MGNL/R0 bits = “0” and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively. L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63, Table 64). MS0963-E-00 2008/05 - 91 - [AK4675] ■ Stereo Line Output (LOUT1/ROUT1 pins) When DACL and DACR bits are “1”, Lch/Rch signal of DAC is output from the LOUT1/ROUT1 pins which is single-ended. When DACL and DACR bits are “0”, output signal is muted and LOUT1/ROUT1 pins output VCOM voltage. The load impedance is 10kΩ (min.). When the PMLO1=PMRO1=LOPS1 bits = “0”, LOUT1/ROUT1 enters power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS1 bit is “1”, LOUT1/ROUT1 enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1 bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 64. Rise/Fall time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO1=PMRO1 bits = “1” and LOPS1 bit = “0”, LOUT1/ROUT1 is in normal operation. L1VL2-0 bits control the volume of LOUT1/ROUT1. When LOM bit = “1”, DAC output signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal. When LOOPM bit = “1”, the MIC-Amp signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal. LOPS1 0 1 LOPS1 0 1 PMLO1 Mode LOUT1 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 65. Stereo Line Output Mode Select (LOUT1) PMRO1 Mode ROUT1 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 66. Stereo Line Output Mode Select (ROUT1) (default) (default) L1VL2-0 Attenuation 6H +6dB 5H 0dB (default) 4H −6dB 3H −12dB 2H −18dB 1H −24dB 0H MUTE Table 67. Stereo Line Output Volume Setting LOUT1 ROUT1 1μF 220Ω 20kΩ Figure 64. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit) MS0963-E-00 2008/05 - 92 - [AK4675] <Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)> (2 ) (5 ) P M L O 1 b it P M R O 1 b it (1 ) (3 ) (4 ) (6 ) L O P S 1 b it L O U T 1 p in R O U T 1 p in N o r m a l O u tp u t ≥ 300 m s ≥ 300 m s Figure 65. Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS1 bit = “1”. Stereo line output enters the power-save mode. (2) Set PMLO1=PMRO1 bits = “1”. Stereo line output exits the power-down mode. LOUT1 and ROUT1 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (3) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins rise up. Stereo line output exits the power-save mode. Stereo line output is enabled. (4) Set LOPS1 bit = “1”. Stereo line output enters power-save mode. (5) Set PMLO1=PMRO1 bits = “0”. Stereo line output enters power-down mode. LOUT1 and ROUT1 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (6) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins fall down. Stereo line output exits the power-save mode. MS0963-E-00 2008/05 - 93 - [AK4675] <Analog Mixing Circuit for LOUT1/ROUT1> DACL, DACR, LOM, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL, LOOPR and LOOPM bits control each path switch. LINL1 bit LIN1 pin +6/0/−6dB LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LIN4 pin +6/0/−6dB LINL2 bit LINL3 bit LINL4 bit M LOOPL bit +6/0/−6dB I X LOUT1 pin L1VL2-0 bits LOOPR bit x LOOPM bit MIC-Amp Lch DACL bit DATT Stereo DAC Lch 0dB DACR bit x LOM bit RINR1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB RIN4 pin +6/0/−6dB RINR2 bit RINR3 bit RINR4 bit M LOOPL bit x LOOPM bit I X ROUT1 pin L1VL2-0 bits LOOPR bit +6/0/−6dB DACL bit x LOM bit MIC-Amp Rch DACR bit DATT Stereo DAC Rch 0dB Figure 66. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0963-E-00 2008/05 - 94 - [AK4675] LINL1 bit +6/0/−6dB IN1+/− pins LINL2 bit LINL3 bit +6/0/−6dB IN3+/− pins LINL4 bit M LOOPL bit +6/0/−6dB I X LOUT1 pin L1VL2-0 bits LOOPR bit x LOOPM bit MIC-Amp Lch DACL bit DATT Stereo DAC Lch 0dB DACR bit x LOM bit RINL1 bit RINR2 bit +6/0/−6dB IN2+/− pins RINR3 bit RINR4 bit M +6/0/−6dB IN4+/− pins LOOPL bit x LOOPM bit I X ROUT1 pin L1VL2-0 bits LOOPR bit +6/0/−6dB DACL bit x LOM bit MIC-Amp Rch DACR bit DATT Stereo DAC Rch 0dB Figure 67. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0963-E-00 2008/05 - 95 - [AK4675] ■ Receiver-Amp (RCP/RCN pins) When RCV bit = “1”, LOUT1/ROUT1 pins become RCP/RCN pins, respectively. Lch/Rch signal of DAC or LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the RCP/RCN pins which is BTL as (L+R) signal. The load impedance is 32Ω (min). When the PMLO1 = PMRO1 bits = “0”, the mono receiver output enters power-down mode and the output is Hi-Z. When the PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “1”, mono receiver output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1 bit = “0”. When PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “0”, mono receiver output enters in normal operation. L1VL3-0 bits control the volume of mono receiver output. L1VL2-0 Attenuation 6H +12dB 5H +6dB (default) 4H 0dB 3H −6dB 2H −12dB 1H −18dB 0H MUTE Table 68. Mono Receiver Output Volume Setting PMLO1/RO1 0 1 LOPS1 x 1 0 Mode RCP RCN Power-down Hi-Z Hi-Z Power-save Hi-Z VCOM Normal Operation Normal Operation Normal Operation Table 69. Receiver-Amp Mode Setting (x: Don’t care) (default) PMLO1 bit PMRO1 bit LOPS1 bit RCP pin RCN pin Hi-Z Hi-Z Hi-Z VCOM VCOM >1ms >0 Hi-Z Figure 68. Power-up/Power-down Timing for Receiver-Amp MS0963-E-00 2008/05 - 96 - [AK4675] <Analog Mixing Circuit for Receiver Output> DACL, DACR, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL and LOOPR bits control each path switch. When MDIF1/2/3/4 bits = “1”, RINR1/2/3/4 bits should be “0”. LINL1 bit LIN1 pin +6/0/−6dB LINL2 bit LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LINL3 bit LINL4 bit LIN4 pin +6/0/−6dB LOOPL bit +6/0/−6dB MIC-Amp Lch RINR1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB M RINR2 bit I X RCP/RCN pins L1VL2-0 bits RINR3 bit RINR4 bit RIN4 pin +6/0/−6dB LOOPR bit +6/0/−6dB MIC-Amp Rch DATT Stereo DAC Lch DACL bit 0dB DACR bit DATT Stereo DAC Rch 0dB Figure 69. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0963-E-00 2008/05 - 97 - [AK4675] LINL1 bit +6/0/−6dB IN1+/− pins LINL2 bit +6/0/−6dB IN2+/− pins LINL3 bit IN3+/− pins +6/0/−6dB IN4+/− pins +6/0/−6dB LINL4 bit LOOPL bit RCP/RCN pins +6/0/−6dB MIC-Amp Lch L1VL2-0 bits LOOPR bit M +6/0/−6dB I MIC-Amp Rch DACL bit DATT Stereo DAC Lch 0dB DATT Stereo DAC Rch 0dB X DACR bit Figure 70. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) ■ Stereo Line Output 2 (LOUT2S/ROUT2S pins) Power supply voltage for the LOUT2S/ROUT2S is supplied from the AVDD pin and centered on the 0.5 x AVDD (typ) voltage. The load resistance is 25kΩ (min). When LOM2 bit = “1”, DAC output signal is output to LOUT2S and ROUT2S pins as (L+R) mono signal. When LOOPM2 bit = “1”, the MIC-Amp signal is output to LOUT2S and ROUT2S pins as (L+R) mono signal. When PMLO2S and PMRO2S bits are “0”, the LOUT2S/ROUT2S is powered-down, and the outputs (LOUT2S and ROUT2S pins) go to “L” (VSS1). MS0963-E-00 2008/05 - 98 - [AK4675] <Analog Mixing Circuit for LOUT2S/ROUT2S> DACHL, DACHR, LOM2, LINH1, RINH1, LINH2, RINH2, LINH3, RINH3, LINH4, RINH4, LOOPHL, LOOPHR and LOOPM2 bits control each path switch. LINH1 bit LIN1 pin +6/0/−6dB LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LIN4 pin +6/0/−6dB LINH2 bit LINH3 bit LINH4 bit M LOOPHL bit +6/0/−6dB I LOUT2S pin X LOOPHR bit x LOOPM2 bit MIC-Amp Lch DACHL bit Stereo DAC Lch DATT 0dB DACHR bit x LOM2 bit RINH1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB RINH2 bit RINH3 bit RINH4 bit RIN4 pin M +6/0/−6dB LOOPHL bit x LOOPM2 bit I ROUT2S pin X LOOPHR bit +6/0/−6dB DACHL bit x LOM2 bit MIC-Amp Rch DACHR bit Stereo DAC Rch DATT 0dB Figure 71. LOUT2S/ROUT2S Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0963-E-00 2008/05 - 99 - [AK4675] LINH1 bit +6/0/−6dB IN1+/− pins LINH2 bit LINH3 bit +6/0/−6dB IN3+/− pins LINH4 bit M LOOPHL bit +6/0/−6dB I LOUT2S pin X LOOPHR bit x LOOPM2 bit MIC-Amp Lch DACHL bit Stereo DAC Lch DATT 0dB DACHR bit x LOM2 bit RINH1 bit RINH2 bit +6/0/−6dB IN2+/− pins RINH3 bit RINH4 bit M +6/0/−6dB IN4+/− pins LOOPHL bit x LOOPM2 bit I ROUT2S pin X LOOPHR bit +6/0/−6dB DACHL bit x LOM2 bit MIC-Amp Rch DACHR bit Stereo DAC Rch DATT 0dB Figure 72. LOUT2S/ROUT2S Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0963-E-00 2008/05 - 100 - [AK4675] ■ Stereo Line Output 3 (LOUT3/ROUT3 pins) When DACSL and DACSR bits are “1”, Lch/Rch signal of DAC is output from the LOUT3/ROUT3 pins which is single-ended. When DACSL and DACSR bits are “0”, output signal is muted and LOUT3/ROUT3 pins output VCOM voltage. The load impedance is 10kΩ (min.). When the PMLO3=PMRO3=LOPS3 bits = “0”, LOUT3/ROUT3 enters power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS3 bit is “1”, LOUT3/ROUT3 enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO3 and PMRO3 bits at LOPS3 bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 64. Rise/Fall time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO3=PMRO3 bits = “1” and LOPS3 bit = “0”, LOUT3/ROUT3 is in normal operation. L3VL3-0 bits control the volume of LOUT3/ROUT3. When LOM3 bit = “1”, DAC output signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal. When LOOPM3 bit = “1”, the MIC-Amp signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal. LOPS3 0 1 LOPS3 0 1 PMLO3 Mode LOUT3 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 70. Stereo Line Output Mode Select (LOUT3) PMRO3 Mode ROUT3 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 71. Stereo Line Output Mode Select (ROUT3) (default) (default) L3VL1 L3VL0 Attenuation 1 1 +3dB 1 0 0dB (default) 0 1 −3dB 0 0 −6dB Table 72. Stereo Line Output Volume Setting LOUT3 ROUT3 1μF 220Ω 20kΩ Figure 73. External Circuit for Stereo Line Output (when using Pop Noise Reduction Circuit) MS0963-E-00 2008/05 - 101 - [AK4675] <Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)> (2 ) (5 ) P M L O 3 b it P M R O 3 b it (1 ) (3 ) (4 ) (6 ) L O P S 3 b it L O U T 3 , R O U T 3 p in s N o r m a l O u tp u t ≥ 300 m s ≥ 300 m s Figure 74. Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS3 bit = “1”. Stereo line output enters the power-save mode. (2) Set PMLO3=PMRO3 bits = “1”. Stereo line output exits the power-down mode. LOUT3 and ROUT3 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (3) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins rise up. Stereo line output exits the power-save mode. Stereo line output is enabled. (4) Set LOPS3 bit = “1”. Stereo line output enters power-save mode. (5) Set PMLO3=PMRO3 bits = “0”. Stereo line output enters power-down mode. LOUT3 and ROUT3 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (6) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins fall down. Stereo line output exits the power-save mode. MS0963-E-00 2008/05 - 102 - [AK4675] <Analog Mixing Circuit for LOUT3/ROUT3> DACSL, DACSR, LOM3, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL, LOOPSR and LOM3 bits control each path switch. The summing gain for each path is 0dB (typ). LINS1 bit LIN1 pin +6/0/−6dB LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LIN4 pin +6/0/−6dB LINS2 bit LINS3 bit LINS4 bit M LOOPSL bit +6/0/−6dB I X LOUT3 pin L3VL1-0 bits LOOPSR bit x LOOPM3 bit MIC-Amp Lch DACSL bit DATT Stereo DAC Lch 0dB DACSR bit x LOM3 bit RINS1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB RIN4 pin +6/0/−6dB RINS2 bit RINS3 bit RINS4 bit M LOOPSL bit x LOOPM3 bit I X ROUT3 pin L3VL1-0 bits LOOPSR bit +6/0/−6dB DACSL bit x LOM3 bit MIC-Amp Rch DACSR bit DATT Stereo DAC Rch 0dB Figure 75. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0963-E-00 2008/05 - 103 - [AK4675] LINS1 bit +6/0/−6dB IN1+/− pins LINS2 bit LINS3 bit +6/0/−6dB IN3+/− pins LINS4 bit M LOOPSL bit +6/0/−6dB I X LOUT3 pin L3VL1-0 bits LOOPSR bit x LOOPM3 bit MIC-Amp Lch DACSL bit DATT Stereo DAC Lch 0dB DACSR bit x LOM3 bit RINS1 bit RINS2 bit +6/0/−6dB IN2+/− pins RINS3 bit RINS4 bit M +6/0/−6dB IN4+/− pins LOOPSL bit x LOOPM3 bit I X ROUT3 pin L3VL1-0 bits LOOPSR bit +6/0/−6dB DACSL bit x LOM3 bit MIC-Amp Rch DACSR bit DATT Stereo DAC Rch 0dB Figure 76. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0963-E-00 2008/05 - 104 - [AK4675] ■ Full-differential Mono Line Output (LOP/LON pins) When LODIF bit = “1”, LOUT3/ROUT3 pins become LOP/LON pins, respectively. Lch/Rch signal of DAC or LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the LOP/LON pins which is full-differential as (L+R) signal. The load impedance is 10kΩ (min) for the LOP and LON pins, respectively. When the PMLO3 = PMRO3 bits = “0”, the mono line output enters power-down mode and the output is pulled-down to VSS1. When the PMLO3 = PMRO3 bits = “1” and LOPS3 bit = “1”, mono line output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO3 and PMRO3 bits at LOPS3 bit = “0”. When PMLO3 = PMRO3 bits = “1” and LOPS3 bit = “0”, mono line output enters in normal operation. L3VL1-0 bits set the volume of mono line output. L3VL1-0 Attenuation 3H +9dB 2H +6dB (default) 1H +3dB 0H 0dB Table 73. Mono Line Output Gain Setting LOPS3 PMLO3/RO3 Mode LOP/LON pins 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 74. Mono Line Output Mode Setting (x: Don’t care) 0 1 (default) <Full-differential Mono Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)> (2 ) (5 ) P M L O 3 b it P M R O 3 b it (1 ) (3 ) (4 ) (6 ) L O P S 3 b it L O P , L O N p in s N o r m a l O u tp u t ≥ 300 m s ≥ 300 m s Figure 77. Mono Line Output 3 Control Sequence (when using Pop Noise Reduction Circuit) (1) Set LOPS3 bit = “1”. Mono line output enters the power-save mode. (2) Set PMLO3 = PMRO3 bits = “1”. Mono line output exits the power-down mode. The LOP and LON pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (3) Set LOPS3 bit = “0” after LOP and LON pins rise up. Mono line output exits the power-save mode. Mono line output is enabled. (4) Set LOPS3 bit = “1”. Mono line output enters power-save mode. (5) Set PMLO3 = PMRO3 bits = “0”. Mono line output enters power-down mode. The LOP and LON pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (6) Set LOPS3 bit = “0” after LOP and LON pins fall down. Mono line output exits the power-save mode. MS0963-E-00 2008/05 - 105 - [AK4675] <Analog Mixing Circuit for Mono Line Output> DACSL, DACSR, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL and LOOPSR bits control each path switch. The summing gain for each path is 0dB (typ). When MDIF1/2/3/4 bits = “1”, RINS1/2/3/4 bits should be “0”. LINS1 bit LIN1 pin +6/0/−6dB LINS2 bit LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LINS3 bit LINS4 bit LIN4 pin +6/0/−6dB LOOPSL bit +6/0/−6dB MIC-Amp Lch RINS1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB M RINS2 bit I X LOP/LON pins L3VL1-0 bits RINS3 bit RIN3 pin +6/0/−6dB RINS4 bit RIN4 pin +6/0/−6dB LOOPSR bit +6/0/−6dB MIC-Amp Rch DATT Stereo DAC Lch DACSL bit 0dB DACSR bit DATT Stereo DAC Rch 0dB Figure 78. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0963-E-00 2008/05 - 106 - [AK4675] LINS1 bit IN1+/− pins +6/0/−6dB LINS2 bit IN2+/− pins +6/0/−6dB LINS3 bit IN3+/− pins +6/0/−6dB IN4+/− pins +6/0/−6dB LINS4 bit LOOPSL bit LOP/LON pins +6/0/−6dB MIC-Amp Lch L3VL1-0 bits LOOPSR bit M +6/0/−6dB I MIC-Amp Rch DACSL bit DATT Stereo DAC Lch 0dB DATT Stereo DAC Rch 0dB X DACSR bit Figure 79. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0963-E-00 2008/05 - 107 - [AK4675] ■ Headphone Volume (LIN1A/RIN1A pins) The AK4675 has the mixing circuits for headphone amplifier. The each mixing circuit can be controlled independently. When all input paths are OFF, the mixing circuit outputs VCOMA voltage. The volume of each input pin can be controlled independently. The input volume range is from +10 dB to –20dB by 2dB step. When the input volume is changed, pop noise may occur. The input volume has power management mode that is common to the left and right channels. The power-up/down of input volume can be controlled by PMV1 bit. The power-up time of the input volume is 16.4ms (typ.) and 26.3ms(max) at OSCN bit = “0”. when OSCN bit = “1”, power-up time depends on both the MSEL bit setting and the MCKIA frequency (Table 75). During power-up time, the input volume block outputs VCOMA voltage regardless of the input signal. AC coupling capacitor of 0.22μF or less should be connected at the LIN1A/RIN1A pins to reduce pop noise at the power-up of the input volume block. MSEL bit 0 MCKIA Freq Power-Up Time 2.048MHz 16ms (32768/MCKIA) 2.8224MHz 17.1ms (49152/MCKIA) 1 3.072MHz 16ms (49152/MCKIA) Table 75. Input Volume Power-Up Time (OSCN bit = “1”) L1V3-0 bits GAIN (dB) Step R1V3-0 bits FH +10 EH +8 : CH +4 BH +2 AH 0 2dB 9H −2 8H −4 : : 2H −16 1H −18 0H −20 Table 76. Input Volume Setting HPLL1bit LIN1A VOL(L1V3-0 bits) HPLR1 bit (default) PREL Mixing & To Lch Headphone-Amp Selector HPRL1 bit Mixing HPRR1 bit RIN1A VOL(R1V3-0 bits) & To Rch Headphone-Amp Selector Figure 80. Input Selector & Volume MS0963-E-00 2008/05 - 108 - [AK4675] ■ Headphone-Amp (HPL/HPR pins) Power supply voltage for headphone amplifiers is applied from PVDDA and PVEE pins. The PVEE pin outputs the negative voltage generated by the internal charge pump circuit. The headphone amplifier is single-ended outputs and centered on 0V (VSS3A). Therefore, the capacitor for AC-coupling can be removed. The minimum load resistance is 16Ω. When the input signal level is 0.7Vrms, the output voltage is 0.69Vrms (= 30mW @ 16Ω) at HPGA4-0 bits = 0dB and HPG bit = 0dB. HPGA3-0 and HPG bits control the output level of headphone-amp. HPGA4-0 bits can control from +12dB to –50dB by 2dB step and HPG bit can control 0dB or +6dB. The volume is common to L/R channels. When the volume is changed, pop noise may occur. HPGA4-0 bits GAIN (dB) Step 1FH +12 1EH +10 : 1AH +2 19H 0 18H −2 2dB 17H −4 16H −6 : : 2H −46 1H −48 0H −50 Table 77. Headphone-Amp Volume Setting Input (default) Input Volume Mixing & Selector HP Volume HP-Amp (-1.94dB @ Vol =0dB) (0dB) (HPGA=0dB) (+1.94dB) Figure 81. Headphone-Amp Path Level Diagram MS0963-E-00 2008/05 - 109 - [AK4675] The headphone output is enabled when HPMTN bit is “1” and muted when HPMTN bit is “0”. PTS1-0 bits set the mute ON/OFF time when MOFF1 bit is “0”. When MOFF1 bit is “1”, the ON/OFF is switched immediately. When PMHPL and PMHPR bits are “0”, the headphone-amps are powered-down completely. At that time, the HPL and HPR pins go to VSS3 voltage via the internal pulled-down resistor. The pulled-down resistor is 20Ω (typ) at HPZ bit = “0”, 25kΩ(typ) at HPZ bit = “1”. The power-up/down time is 16.4ms (typ.) and 26.3ms (max.)when MOFF0 bit is “0”. When MOFF1 bit is “1”, the power up/down is switched immediately. PMCP/PMVCM x x 1 1 PMHPL/R HPMTN HPZ Mode HPL/R pins 0 x 0 Power-down & Mute Pull-down by 20Ω (typ) (default) 0 x 1 Power-down Pull-down by 25kΩ (typ) 1 0 0 Mute VSS3A 1 1 0 Normal Operation Normal Operation Table 78. Headphone Amplifier Mode Setting (x: Don’t’ care) <Wired OR with External Headphone-Amp> In case of OSCN bit = “0”, when PMVCMA=PMCP=PMOSC bits are “1” (charge pump circuit is powered-up), the AK4675 HP-Amp can be connected to the external single supply HP-Amp by “wired OR”. In case of OSCN bit = “1”, when PMVCMA=PMCP=HPZ bits are “1” (charge pump circuit is powered-up), the AK4675 HP-Amp can be connected to the external single supply HP-Amp by “wired OR”. The external HP-Amp can output the signal up to ±PVDDA [Vpp] after the charge pump circuit is powered-up. HPL pin AK4675 Headphone HPR pin Another HP-Amp Figure 82. Wired OR with External HP-Amp MS0963-E-00 2008/05 - 110 - [AK4675] ■ Charge Pump Circuit The charge pump operates by the output of a regulator which uses PVDDA voltage. The negative power supply (PVEE) for headphone amplifiers is generated from internal charge pump circuit. The internal charge pump circuit generates negative voltage from PVDDA voltage. The generated voltage (PVEE) is used to headphone amplifiers. When PMCP bit is set to “1”, the charge pump circuit is powered-up. PMVCMA and PMOSC bits must be set to “1”. PMOSC and PMVCM bits should be set to “1” when OSCN bit is “0”. PMVCM bit should be set to “1” and PMOSC bit set to “0” when OSCN bit is “1”. The power-up time of charge pump circuit is typically 6.2ms and maximum 10ms at OSCN bit = “0”. when OSCN bit = “1”, the power-up time is shown in Table 79. When PMHPL or PMHPR bit is set to “1”, the Headphone-Amp is powered-up after the charge pump circuit is powered-up. Figure 87 shows the power-up sequence. MSEL bit 0 MCKIA Freq Power-Up Time 2.048MHz 6m (12288/MCKIA) 2.8224MHz 6.5ms (18432/MCKIA) 1 3.072MHz 6ms (18432/MCKIA) Table 79. Charge Pump Circuit Power-Up Time (OSCN bit = “1”) ■ Transition Time PUT1-0 bits set the power-up/down time of headphone-amp and PTS1-0 bits set the mute ON/OFF time of headphone-amp. These operations are soft transition. MOFF bit set the Enable/Disable for the soft transition. The soft transition is disabled while these bits are “1”, and ON/OFF is switched immediately. As shown in Table 80, if the soft transition is enabled, the register value of same address must be changed by an interval more than transition time. The write operation is ignored if the same values are written as the previous write operation. PTS1-0 bits PTS1 PTS0 0 0 1 1 0 1 0 1 Address Register Name Enable / Disable 0DH HPMTN bit MOFF bit Table 80. Registers with Transition Time MUTE ON/OFF Time OSCN bit = “0” OSCN bit = “1” typ. max MSEL bit= “0” MSEL bit = “1” 16.4ms 26.3ms 32768/MCKIA 49152/MCKIA 32.8ms 51.5ms 65536/MCKIA 98304/MCKIA 65.6ms 105.0ms 131072/MCKIA 196608/MCKIA 131.2ms 210.0ms 262144/MCKIA 393216/MCKIA Table 81. Headphone-Amp Mute ON/OFF Transition Time MS0963-E-00 (default) 2008/05 - 111 - [AK4675] ■ Speaker-ALC Operation The ALC (Automatic Level Control) operation of speaker-amp output is executed by ALCA block when ALCA bit = “1”. When ALCA bit is “0”, the speaker volume depends on the setting value of SPGA5-0 bits. (1) ALC Limiter Operation During ALCA limiter operation, when either Lch or Rch exceeds the ALCA limiter detection level (LMTHA bit), the SPGA value (same value for Lch and Rch) is attenuated automatically by the ALCA limiter ATT step (LMATA1-0 bits). When ZELMNA bit is set to “0” (zero crossing detection is enabled), the SPGA value is changed by ALCA limiter operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTMA1-0 bits set the zero crossing timeout period of both ALCA limiter and recovery operation. When ZELMNA bit = “1” (zero crossing detection is disabled), SPGA value is immediately changed by ALCA limiter operation. The changing period is typ. 125μs and max. 200μs at OSCN bit = “0”, 256/MCKIA (=125μs @MCKIA=2.048MHz at OSCN bit = “1” & MSEL bit = “0”, 384/MCKIA (= 125μs @MCKI=3.072MHz) at OSCN bit = “1” & MSEL bit = “1”. Attenuation step is fixed to 1 step regardless of the setting of LMATA1-0 bits. The attenuate operation is executed continuously until the input signal level becomes ALCA limiter detection level or less. After completing the attenuation operation, unless ALCA bit is changed to “0”, the operation repeats when the input signal level exceeds LMTHA bit. LMTHA ALCA Limiter Detection ALCA Recovery Waiting Counter Reset Level Level 0 (default) ALCA Output ≥ −7.5dBV −7.5dBV > ALCA Output ≥ −9.5dBV 1 ALCA Output ≥ −11.5dBV −11.5dBV > ALCA Output ≥ −13.5dBV Note: ALCA limiter detection level and ALCA recovery waiting counter reset level do not depend on operation voltage. Table 82. ALCA Limiter Detection Level / Recovery Counter Reset Level (2.0Vpp = −3dBV) ZELMNA 0 1 ZTMA1 ZTMA0 0 0 1 1 0 1 0 1 LMATA1 LMATA0 ALCA Limiter ATT Step 0 0 1 step 0.5dB 0 1 2 step 1.0dB 1 0 4 step 2.0dB 1 1 8 step 4.0dB x x 1step 0.5dB Table 83. ALCA Limiter ATT Step (x: Don’t’ care) (default) Zero Crossing Timeout OSCN bit = “0” OSCN bit = “1” typ. max MSEL bit= “0” MSEL bit = “1” 16.4ms 26.3ms 32768/MCKIA 49152/MCKIA 32.8ms 51.5ms 65536/MCKIA 98304/MCKIA 65.6ms 105.0ms 131072/MCKIA 196608/MCKIA 131.2ms 210.0ms 262144/MCKIA 393216/MCKIA Table 84. ALCA Zero Crossing Timeout Period MS0963-E-00 (default) 2008/05 - 112 - [AK4675] (2) ALCA Recovery Operation ALCA recovery operation waits for the WTMA2-0 bits to be set after completing ALCA limiter operation. If the input signal does not exceed “ALCA recovery waiting counter reset level” during the wait time, ALCA recovery operation is executed. The SPGA value is automatically incremented by RGAINA1-0 bits up to the set reference level (REFA5-0 bits) with zero crossing detection which timeout period is set by ZTMA1-0 bits. Then the SPGA is set to the same value for both channels. ALCA recovery operation is executed at a period set by WTMA2-0 bits. When zero cross is detected at both channels during the wait period set by WTMA2-0 bits, ALCA recovery operation waits until WTMA2-0 period and the next recovery operation is executed. The setting period of WTMA2-0 bits should be same as ZTMA1-0 bits or longer period. When RGAINA1-0 bits are set to “10”, ALCA recovery operation is not executed though ALCA limiter operation is executed. During the ALCA recovery operation, when the ALCA output level exceeds ALCA limiter detection level (LMTHA bit), the ALCA limiter operation is done immediately. When “ALCA recovery waiting counter reset level ≤ ALCA Output Signal < ALCA limiter detection level (LMTHA1-0)” during the ALCA recovery operation, the waiting timer of ALCA recovery operation is reset. When “ALCA recovery waiting counter reset level > ALCA Output Signal”, the waiting timer of ALCA recovery operation starts. The ALCA operation corresponds to the impulse noise. When the impulse noise is input, the ALCA recovery operation becomes faster than a normal recovery operation. WTMA2 WTMA1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 Recovery Waiting Timer WTMA0 OSCN bit = “0” OSCN bit = “1” typ. max MSEL bit = “0” MSEL bit = “1” 0 16.4ms 26.3ms 32768/MCKIA 49152/MCKIA 1 32.8ms 51.5ms 65536/MCKIA 98304/MCKIA 0 65.6ms 105.0ms 131072/MCKIA 196608/MCKIA 1 131.2ms 210.0ms 262144/MCKIA 393216/MCKIA 0 262.4ms 419.9ms 524288/MCKIA 786432/MCKIA 1 524.8ms 839.7ms 1048576/MCKIA 1572864/MCKI A 0 1049.6ms 1679.4ms 2097152/MCKIA 3145728/MCKI A 1 2099.2ms 3358.8ms 4194304/MCKIA 6291456/MCKI A Table 85. ALCA Recovery Waiting Timer Period RGAINA1 0 0 1 1 RGAINA0 GAIN STEP 0 1 step 0.5dB 1 2 step 1.0dB 0 0 step 0dB 1 Reserved Table 86. ALCA Recovery GAIN Step MS0963-E-00 (default) (default) 2008/05 - 113 - [AK4675] REFA5-0 GAIN (dB) Step 3FH +19.5 3EH +19.0 3DH +18.5 3CH +18.0 (default) : : 19H +0.5 0.5dB 18H 0.0 17H −0.5 : : 02H −11.0 01H −11.5 00H −12.0 Table 87. Reference Level at ALCA Recovery Operation MS0963-E-00 2008/05 - 114 - [AK4675] (3) Example of ALCA Operation Table 88 shows the example of the ALCA setting. The ALCA starts from the value of SPGA5-0 bits. Register Name LMTHA ZELMNA WTMA2-0 REFA5-0 LMATA1-0 RGAINA1-0 ZTMA1-0 ALCA Comment Data Parameter Limiter detection Level 0 −7.5dBV Limiter Zero crossing Enable 0 Limiter Zero Crossing Enable Recovery waiting period 101 Typ. 524.8ms (@ OSCN bit = “0”) Maximum gain at recovery operation 3CH +18dB Limiter ATT Step 00 0.5dB Recovery GAIN Step 00 0.5dB Zero-crossing Timeout 01 Typ. 32.8ms (@ OSCN bit = “0”) ALCA Enable bit 1 Enable Table 88. Example of the ALCA setting The following registers must not be changed during ALCA operation. These bits should be changed after ALCA operation is finished by ALCA bit = “0”. - LMTHA, LMATA1-0, WTMA2-0, RGAINA1-0, REFA5-0, ZTMA1-0, ZELMNA bits Example: Limiter: Zero Crossing Enable Recovery Cycle = typ. 524.8ms (@ OSCN bit = “0”) Limiter and Recovery Step = 1 Maximum Gain = +18dB Limiter Detection Level = −7.5dBV ALCA=OFF ALCA bit = “1” WR (SPGA5-0) (1) Addr=0EH, Data=3CH WR (REFA5-0) (2) Addr=0FH, Data=3CH WR (ZTMA1-0, WTMA2-0) (3) Addr=10H, Data=0DH WR (ZELMNA, LMATA1-0, RGAINA1-0, LMTHA, ALCA=”1”) (4) Addr =11H, Data=40H ALCA Operation Note : WR : Write Figure 83. Registers set-up sequence at ALCA operation MS0963-E-00 2008/05 - 115 - [AK4675] ■ Speaker Volume (SPGA: Manual Mode) The speaker volume becomes manual mode when ALCA bit is “0”. This mode is used in the case shown below. 1. 2. 3. After exiting reset state, set-up the registers for ALCA operation (ZTMA1-0, LMTHA and etc). When the registers for ALCA operation (Limiter period, Recovery period and etc) are changed. For example; when the change of the sampling frequency. When SPGA is used as a manual volume. SPGA5-0 bits set the gain of the volume control. The SPGA value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTMA1-0 bits. In case of OSCN bit = “0”, the write operation to SPGA5-0 bits is prohibited during 1.6ms after PMSPL or PMSPR bit is set to “1”. In case of OSCN bit = “1”, the write operation to SPGA5-0 bits is prohibited during the power-up time of the speaker volume block (Table 91) after PMSPL or PMSPR bit is set to “1”. The speaker volume is powered-up as the default value (0dB) regardless of the setting of SPKG5-0 bits. SPGA5-0 3FH 3EH 3DH 3CH : 19H 18H 17H : 02H 01H 00H GAIN (dB) Step +19.5 +19.0 +18.5 +18.0 : +0.5 0.5dB 0.0 −0.5 : −11.0 −11.5 −12.0 Table 89. Speaker-Amp Volume Setting (default) When writing to the SPGA5-0 bits continuously, the control register should be written in an interval more than zero crossing timeout. ALCA bit ALCA Status Disable Enable SPGA5-0 bits Internal SPGA Disable 3CH(+18dB) 3CH(+18dB) 3CH(+18dB) --> 19H(+0.5dB) (1) 3CH(+18dB) (2) Figure 84. SPGA value during ALCA operation (1) ALCA operation starts from the SPGA value when ALCA bit is changed to “1”. (2) Writing to SPGA registers is ignored during ALCA operation. After ALCA is disabled, the SPGA changes to the last written data by twice period of zero crossing or timeout. When ALCA is enabled again, ALCA bit should be set to “1” in an interval more than zero crossing timeout period after ALCA bit = “0”. MS0963-E-00 2008/05 - 116 - [AK4675] ■ Class-D Speaker-Amp The output signal from ALC block is converted by PWM and is outputted from the SPP/SPN pins by BLT. The signal of ALC block is input from the SPIN pin. A 0.1uF capacitor should be connected between the LOUT3 (ROUT3) pin and the SPIN pin in order to cancel DC offset of Line Out circuit. LOUT3 (ROUT3) SPIN pin SPGA5-0bits 0.1μF typ.26kΩ - Line Out + ALCA AK4675 Figure 85. Example of normal connection for Speaker (fc = 66Hz @ -3dB) When the input signal level is 0.56Vrms, the speaker-amp outputs 0.6W. The internal default gain is +11.76dB. The SPK-Amp outputs 0.6W(/1ch) when 0.56Vrm mono signal is input at single-end mode and ALC = OFF (SPGA=0dB). When ALCA = ON (ALCA bit= “1”), ALCA outputs -7.5dBV ~ -9.5dBV if LMTHA bit = “0”, and outputs -11.5dBV ~ -13.5dBV if LMTHA bit = “1”. REFA5-0 bits set the reference level. The internal gain of the class-D speaker amplifier is fixed to +11.76dB. SPIN ALCA Class-D ALCA OFF: SPGA5-0bit (+11.76dB) ON: REF5-0bit Figure 86. Speaker-Amp Path Level Diagram MS0963-E-00 2008/05 - 117 - [AK4675] When PMSPL and PMSPR bits are set to “0”, the speaker block (ALC + Speaker-Amp) can be powered-down completely. In case of OSCN bit = “0”, the power-up/down time is 30ms (typ.) and 48ms (max.). In case of OSCN bit = “1”, the power-up/down time depends on MSEL bit setting and MCKIA frequency (Table 90). MSEL bit 0 MCKIA Freq Power-Up Time 2.048MHz 19.5ms (40000/MCKIA) 2.8224MHz 21.5ms (60000/MCKIA) 1 3.072MHz 19.5ms (60000/MCKIA) Table 90. Class D SPK-Amp Power-Up Time (OSC bit = “1”) In case of OSCN bit = “0”, the write operation to SPGA5-0 bits is prohibited during 1.6ms after PMSPL or PMSPR bit is set to “1”. In case of OSCN bit = “1”, the write operation to SPGA5-0 bits is prohibited during the power-up time of the speaker volume block (Table 91) after PMSPL or PMSPR bit is set to “1”. MSEL bit 0 MCKIA Freq Power-Up Time 2.048MHz 1ms (2048/MCKIA) 2.8224MHz 1.1ms (3072/MCKIA) 1 3.072MHz 1ms (3072/MCKIA) Table 91. Write Operation Prohibited Time of Speaker Volume after Power-up (OSCN bit = “1”) PMSP bits Speaker-Amp 0 Power-down & Hi-Z 1 Power-up & Output Table 92. Speaker-Amp Output State (default) ■ Thermal Shutdown Function When the internal device temperature rises up irregularly (e.g. output pins of speaker amplifier are shortened), the charge pump circuit, headphone amplifier and speaker amplifier are automatically powered-down and then THDET bit becomes “1”. The powered-down charge pump circuit, headphone amplifier and speaker amplifier do not return to normal operation unless HP/SPK-Amp blocks of the AK4675 are reset by the PDNA pin “L”. The device status can be monitored by THDET bit. ■ HP/SPK-Amp Operation Clock The AK4675 includes built-in clock oscillator for the internal operation of Class-D Speaker-Amp and Charge Pump circuit. The AK4675 supports both internal oscillator mode and external clock mode (MCKIA pin). MSEL bit selects the clock frequency for the MCKIA pin. OSCN bit Operation Clock 0 Internal OSC (default) 1 External Clock (MCKIA pin) Table 93. Internal Oscillator / External Clock select MSEL bit MCKIA Frequency 0 2.048MHz (default) 1 2.8224MHz or 3.072MHz Table 94. MCKIA Input Frequency Select MS0963-E-00 2008/05 - 118 - [AK4675] ■ HP/SPK-Amp Block Power-Up/Down Sequence 1) HP-Amp Power Supply (1) PDNA pin (2) PMVCMA bit PMOSC bit PMMHL/R bit MCKIA Input (3) PMCP bit Don’t care Don’t care (4) PVEE pin 0V 0V PVEE ≥ 0s (11) PMV1 bit Input Volume Output State (5) Hi-Z PMHPL/R bits Hi-Z VCOMA (6) HPMTN bit HPL/HPR pins 0V Normal MUTE (7) (8) MUTE (9) 0V (10) Figure 87. HP-Amp Power-up/down Sequence Example (1) PDNA pin should be changed from “L” to “H” after power up. “L” time of 150ns or more is needed to reset the AK4675. The PDNA pin must be held to “L” until all power supply pins are supplied. After that, the PDNA pin should be set to “H”. (2) PTS1-0, MOFF, HPGA4-0, OSCN, MSEL bits should be set during this period. (3) In case of OSCN bit = “0”, the external clock (MCKIA pin) is not needed. In case of OSCN bit = “1”, the external clock (MCKIA pin) is needed. (4) Power-up of Charge Pump, VCOMA and HP-Amp Mixer & Selector (and the internal clock oscillator in case of OSCN bit = “0”): PMCP = PMMHL = PMMHR = PMOSC = PMVCMA bits = “0” Æ “1” The PVEE pin becomes PVEE voltage within 10ms (max.) at OSCN bit = “1” or within the time in Table 79 at OSCN bit = “1”. (5) Power-up of input volume: PMV1 bit = “0” Æ “1” Input volume setting (L1V3-0, R1V3-0 bits) Input path setting (HPLL1, HPLR1, HPRR1, HPRL1 bits) Input volume block is powered-up within 26.3ms (max.) at OSCN bit = “0” or within the time in Table 75 at OSCN bit = “1”. Input path and volume can be set when input volume block is powered up. (6) If PMCP and PMHPL/R bits are set to “1” at the same time or PMHPL/R bits are set to “1” during the power-up time of the Charge Pump circuit, Headphone-Amp is powered-up after the Charge Pump circuit is powered-up. (7) Headphone-Amp power-up: PMHPL/R bits = “0” Æ “1” Headphone-Amp is in the mute state and outputs the DC offset. Headphone-Amp power-up time depends on the setting of OSCN bit. When OSCN bit = “0”, it is 26.3ms (max.) When OSCN bit = “1”, refer to Table 81. (8) Headphone-Amp mute release: HPMTN bit = “0” Æ “1” Headphone-Amp goes to the normal operation after the transition time. Headphone-Amp mute release time depends on the setting of PTS1-0 and MOFF1 bits. (9) Headphone-Amp mute: HPMTN bit = “1” Æ “0” MS0963-E-00 2008/05 - 119 - [AK4675] Headphone-Amp goes to mute state after the transition time set by PTS1-0 and MOFF1 bits. (10) Headphone-Amp power-down: PMHPL/R bits = “1” Æ “0” Headphone-Amp is powered-down immediately. (11) Power-down of Charge Pump, VCOMA and HP-Amp Mixer & Selector (and the internal clock oscillator in case of OSCN bit = “0”): PMCP = PMMHL = PMMHR = PMOSC = PMVCMA bits = “1” Æ “0” The PVEE pin goes 0V according to the time constant of the capacitor at the PVEE pin and the internal resistor. The internal resistor is typ. 17.5kΩ. Charge Pump circuit can be powered-up during this period. MS0963-E-00 2008/05 - 120 - [AK4675] 2) SPK-Amp (SPIN to SPP/SPN) Power Supply (1) PDNA pin (2) PMVCMA bit PMOSC bit Don’t care MCKIA Input Don’t care (3) (9)≥ 500us (4)≥ 0s PMSPK bit SPIN pin (5) (5) Hi-Z VCOMA Hi-Z (6) ≥ 1.6ms (6)≥ 1.6ms SPGA bits Default Hi-Z VCOMA Default xxH xxH Default ALCA bit (7) ALCA state Disable (7) Enable Enable Disable (10)VCOM(No signal) LOUT3/ROUT3 pins 0V Signal Output (10)VCOM(No signal) 0V (8) SPP/SPN pins 0V Disable Signal Output 0V Normal 0V (8) Normal 0V Figure 88. SPK-Amp Power-up/down Sequence Example (1) The PDNA pin should be changed from “L” to “H” after the power is supplied. “L” time of 150ns or more is needed to reset the AK4675. The PDNA pin must be held to “L” until all power supply pins are applied. After that, the PDNA pin should be set to “H”. (2) Power-up of VCOMA (and the internal clock oscillator in case of OSCN bit = “0”): PMVCMA= PMOSC bits = “0” Æ “1”. OSCN and MSEL bits should be set during this period. (3) In case of OSCN bit = “0”, the external clock (MCKIA pin) is not needed. In case of OSCN bit = “1”, the external clock (MCKIA pin) is needed. (4) Speaker-Amp power-up: PMSPK bit = “0”Æ “1” Stereo line output3 power-up: PMLO3/RO3 bits = “0”Æ “1”(LOPS3 bit = “0”) (5) The SPIN pin goes to “H” in 26.3ms (max) when OSCN bit = “0”, in the time shown in Table 75 when OSCN bit= “1”. (6) SPGA5-0 bits setting: When PMSP bits = “0”, SPGA5-0 bits are default value (0dB). The setting of SPKG5-0 and ALCA bits is enabled at 1.6ms or more after PMSP bits are set to “1” at OSCN bit = “0” or after the power-up time in Table 91 at OSCN bit = “1”. (7) ALCA setting: ALCA is enabled at 30ms (max.) in case of OSCN bit = “0”, at 36864/MCKIA (= 18ms @ MCKIA = 2.048MHz) in case of OSCN bit = “1” & MSEL bit = “0”, or 55296/MCKIA (= 18ms @ MCKIA = 3.072MHz) in case of OSCN bit = MSEL bit = “1”. Refer to “Example of ALCA Operation”. (8) Speaker-Amp goes to normal operation at 48ms (max.) after PMSPL/R bits is changed to “1” in case of OSCN bit = “0” or after the power-up time in Table 90 in case of OSCN bit = “1”. MS0963-E-00 2008/05 - 121 - [AK4675] (9) Once Speaker-Amp is powered-down, Speaker-Amp can be powered-up again at 500μs or more later in case of OSCN bit = “0”, at 1024/MCKIA (=500μs @ MCKI = 2.048MHz) or more later in case of OSCN bit = “1” & MSEL bit = “0”, 1536/MCKIA (=500μs @ MCKIA = 3.072MHz) or more later in case of OSCN bit = MSEL bit = “1”. (10) Signal input to the SPIN pin is prohibited when ALCA bit = “0”. The path selecting bits of the stereo line output3 (LOUT3/ROUT3 pins) must be set OFF(DACSL/R, LINS1, LINS2, LINS3, LINS4, RINS1, RINS2, RINS3, RINS4, LOOPSL/R bits = “0”). MS0963-E-00 2008/05 - 122 - [AK4675] ■ System Clock (PCM I/F) A reference clock of PLLBT is selected among the input clocks to the SYNCA, BICKA, SYNCB or BICKB pin. The required clock to PCM I/F is generated by an internal PLLBT circuit. PLLBT circuit is powered up by PMPCM bit. Input frequency is selected by PLLBT3-0 bits (Table 95). BCKO2 bit select the output clock frequency of the BICKA or BICKB pin (Table 96). The AK4675 does not support master mode for both PCM I/F A and B nor slave mode for both PCM I/F A and B. Whether PCM I/F A or B should be set as slave mode. When PMPCM bit is “0”, SYNCA, BICKA, SYNCB and BICKB pins are Hi-Z. Table 97 indicates the output data of the SDTOA and SDTOB pins in case of PMPCM bit = “0” and during lock time in Table 95, respectively. Table 98 indicates the output clock at master mode during lock time in Table 95. The AK4675 does not support master mode for both PCM I/F A and B nor slave mode for both PCM I/F A and B. When PMPCM bit is “0”, the SYNCA, BICKA, SYNCB and BICKB pins are Hi-Z. Mode PLLBT3 PLLBT2 PLLBT1 PLLBT0 Reference Clock Input Pin Frequency 0 0 0 0 0 SYNCA 1fs2 1 0 0 0 1 BICKA 16fs2 2 0 0 1 0 BICKA 32fs2 3 0 0 1 1 BICKA 64fs2 4 0 1 0 0 SYNCB 1fs2 5 0 1 0 1 BICKB 16fs2 6 0 1 1 0 BICKB 32fs2 7 0 1 1 1 BICKB 64fs2 11 1 0 1 1 BICKA 48fs2 15 1 1 1 1 BICKB 48fs2 Others N/A Note 83. Mode 1 is available at only FMTA1 bit = “0”. Note 84. Mode 5 is available at only FMTB1 bit = “0”. Table 95. PLLBT Reference Clock R, C at VCOCBT pin R C 6.8k 220n 10k 4.7n 10k 4.7n 10k 4.7n 6.8k 220n 10k 4.7n 10k 4.7n 10k 4.7n 10k 4.7n 10k 4.7n Lock Time (max) 260ms 40ms 40ms 40ms 260ms 40ms 40ms 40ms 40ms 40ms (default) BICKA/BICKB Output Frequency 0 16fs2 (default) 1 32fs2 Table 96. BICKA/B Output Frequency BCKO2 bit Mode 16bit Linear 8bit A-Law 8bit μ-Law After PMPCM bit = “0” → “1” & Before SYNCA/SYNCB Input L L L H L H Table 97. SDTOA, SDTOB pins Output Data PMPCM bit = “0” PMPCM bit = “1” During Lock time “0000H” “11010101b” “11111111b” Format SYNCA, SYNCB BICKA, BICKB 2 Except for I S L L I2S H L Table 98. Output Clock during Lock Time MS0963-E-00 2008/05 - 123 - [AK4675] a) PLLBT reference clock: SYNCA or BICKA pin The PLLBT circuit generates the required clock for PCM I/F from SYNCA or BICKA. Generated clocks are output via the SYNCB and BICKB pins. AK4675 Phone Module SYNCA BICKA 1fs2 ≥ 16fs2 SYNC BICK SDTOA SDTI SDTIA SDTO Bluetooth Module SYNCB BICKB 1fs2 16fs2 or 32fs2 SYNC BICK SDTOB SDTI SDTIB SDTO Figure 89. PCM I/F (PLLBT Reference Clock: SYNCA or BICKA pin) b) PLLBT reference clock: SYNCB or BICKB pin The PLLBT circuit generates the required clock for PCM I/F from SYNCB or BICKB. Generated clocks are output via the SYNCA and BICKA pins. AK4675 SYNCA BICKA Phone Module 1fs2 16fs2 or 32fs2 SYNC BICK SDTOA SDTI SDTIA SDTO Bluetooth Module SYNCB BICKB 1fs2 ≥ 16fs2 SYNC BICK SDTOB SDTI SDTIB SDTO Figure 90. PCM I/F (PLLBT Reference Clock: SYNCB or BICKB pin) PLLBT should always be powered-up (PMPCM bit = “1”) whenever SRC-A or SRC-B is in operation (PMSRA bit = “1” or PMSRB bit = “1”). If PLLBT is powered-down, the AK4675 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If PLLBT is powered-down, SRC-A and SRC-B should be in the power-down mode (PMSRA=PMSRB bits = “0”). MS0963-E-00 2008/05 - 124 - [AK4675] ■ PCM I/F Master Mode/Slave Mode The PLLBT2 bit selects either master or slave mode (Table 99). When either PCM I/F A or PCM I/F B is set in slave mode, the other is set in master mode. (For example, when PCM I/F B is set in slave mode, PCM I/F A is set in master mode.) When the AK4675 is power-down mode (PDN pin = “L”) or PMPCM bit = “0”, each clock pins (SYNCA, BICKA, SYNCB, BICKB) of PCM I/F become a Hi-Z (Table 100). PLLBT3-0 bits should be set when PMPCM bit = “0” to avoid shorting out of the slave mode clock pins and master mode clock output. After setting the PDN pin = “H”, the PCM I/F clock pins are the Hi-Z state until PMPCM bit becomes “1”. The PCM I/F clock pins of master mode should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the floating state. PLLBT2 bit 0 1 PCM I/F A Slave Mode Master Mode PDN pin L H SYNCA, BICKA pins PCM I/F B SYNCB, BICKB pins Input Master Mode Output Output Slave Mode Input Table 99. Select PCM I/F Master/Slave Mode PMPCM bit 0 1 (default) SYNCA, BICKA pin SYNCB, BICKB pin Hi-Z Hi-Z Hi-Z Hi-Z I/O Select by PLLBT2 bit I/O Select by PLLBT2 bit (Table 99) (Table 100) Table 100. PCM I/F Clock I/O State MS0963-E-00 2008/05 - 125 - [AK4675] ■ PCM I/F A & B Format The AK4675 supports dual PCM I/F (PCM I/F A & PCM I/F B) that supports 3 kind of I/F (16bit Linear, 8bit A-Law and 8bit μ-Law) independently (Table 101, Table 102). Mode 0 1 2 3 LAWA1 0 0 1 1 LAWA0 Format 0 16bit Linear 1 N/A 0 8bit A-Law 1 8bit μ-Law Table 101. PCM I/F A Mode Mode 0 1 2 3 LAWB1 0 0 1 1 LAWB0 Format 0 16bit Linear 1 N/A 0 8bit A-Law 1 8bit μ-Law Table 102. PCM I/F B Mode (default) (default) Four types of data formats are available and are selected by setting the FMTA1-0 and FMTB1-0 bits independently (Table 103, Table 104). In 16bit Linear mode, the serial data is MSB first, 2’s complement format. In 8bit A-Law and μ-Law Mode, the serial data is MSB first. PCM I/F formats can be used in both master and slave modes. SYNCA/B and BICKA/B are output from the AK4675 in master mode, but must be input to the AK4675 in slave mode. Mode 0 1 2 3 FMTA1 0 0 1 1 FMTA0 Format BICKA 0 Short Frame Sync ≥ 16fs2 1 Long Frame Sync ≥ 16fs2 0 MSB justified ≥ 32fs2 1 I2S ≥ 32fs2 Table 103. PCM I/F A Format Figure See Table 105 See Table 107 Figure 99 Figure 100 Mode 0 1 2 3 FMTB1 0 0 1 1 FMTB0 0 1 0 1 Figure See Table 106 See Table 108 Figure 99 Figure 100 Format BICKB Short Frame Sync ≥ 16fs2 Long Frame Sync ≥ 16fs2 MSB justified ≥ 32fs2 I2S ≥ 32fs2 Table 104. PCM I/F B Format (default) (default) In modes 2/ 3, the SDTOA/B is clocked out on the falling edge (“↓”) of BICKA/B and the SDTIA/B is latched on the rising edge (“↑”). In Modes 0 and 1, PCM I/F A timing is changed by BCKPA and MSBSA bits, and PCM I/F B timing is changed by BCKPB and MSBSB bits. When BCKPA bit = “0”, the SDTOA is clocked out on the rising edge (“↑”) of BICKA and the SDTIA is latched on the falling edge (“↓”). When BCKPA bit = “1”, the SDTOA is clocked out on the falling edge (“↓”) of BICKA and the SDTIA is latched on the rising edge (“↑”). MSBSA bit can shift the MSB position of SDTOA and SDTIA by half period of BICKA. When BCKPB bit = “0”, the SDTOB is clocked out on the rising edge (“↑”) of BICKB and the SDTIB is latched on the falling edge (“↓”). When BCKPB bit = “1”, the SDTOB is clocked out on the falling edge (“↓”) of BICKB and the SDTIB is latched on the rising edge (“↑”). MSBSB bit can shift the MSB position of SDTOB and SDTIB by half period of BICKB. MS0963-E-00 2008/05 - 126 - [AK4675] MSBSA BCKPA 0 0 0 1 1 0 1 1 MSBSB BCKPB 0 0 0 1 1 0 1 1 MSBSA BCKPA 0 0 0 1 1 0 1 1 MSBSB BCKPB 0 0 0 1 1 0 1 1 Data Interface Format MSB of SDTOA is output by the falling edge (“↓”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the falling edge (“↓”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“↑”) of the first BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the falling edge (“↓”) of the first BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. Table 105. PCM I/F A Format in Mode 0 Data Interface Format MSB of SDTOB is output by the falling edge (“↓”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the falling edge (“↓”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“↑”) of the first BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the falling edge (“↓”) of the first BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. Table 106. PCM I/F B Format in Mode 0 Data Interface Format MSB of SDTOA is output by the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“↑”) of the first BICKA after the falling edge (“↓”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the falling edge (“↓”) of the first BICKA after the falling edge (“↓”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. Table 107. PCM I/F A Format in Mode 1 Data Interface Format MSB of SDTOB is output by the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“↑”) of the first BICKB after the falling edge (“↓”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the falling edge (“↓”) of the first BICKB after the falling edge (“↓”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. Table 108. PCM I/F B Format in Mode 1 MS0963-E-00 Figure Figure 91 Figure 92 Figure 93 Figure 94 Figure Figure 91 Figure 92 Figure 93 Figure 94 Figure Figure 95 Figure 96 Figure 97 Figure 98 Figure Figure 95 Figure 96 Figure 97 Figure 98 2008/05 - 127 - [AK4675] 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D7 D6 Figure 91. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”) 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D7 D6 Figure 92. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”) 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D7 D6 Figure 93. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”) MS0963-E-00 2008/05 - 128 - [AK4675] 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D7 D6 Figure 94. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”) 1/fs2 SYNCA (Master) SYNCA (Slave) BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care Don’t Care D15 D14 D13 D7 D6 D5 D7 D6 D5 Figure 95. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”) 1/fs2 SYNCA (Master) SYNCA (Slave) BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care Don’t Care D15 D14 D13 D7 D6 D5 D7 D6 D5 Figure 96. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”) MS0963-E-00 2008/05 - 129 - [AK4675] 1/fs2 SYNCA (Master) SYNCA (Slave) BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care Don’t Care D15 D14 D13 D7 D6 D5 D7 D6 D5 Figure 97. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”) 1/fs2 SYNCA (Master) SYNCA (Slave) BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care Don’t Care D15 D14 D13 D7 D6 D5 D7 D6 D5 Figure 98. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”) MS0963-E-00 2008/05 - 130 - [AK4675] SYNCA BICKA (32fs2) SDTOA(o) SDTIA(i) BICKA (64fs2) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 0 1 2 3 15 16 17 18 SDTOA(o) 15 14 13 1 0 SDTIA(i) 15 14 13 1 0 9 10 11 12 13 14 15 0 1 15 Don't Care 31 0 1 2 3 Don't Care 15 16 17 18 15 31 0 1 15 Don't Care Don't Care 15 15:MSB, 0:LSB Figure 99. Timing of MSB justified SYNCA BICKA (32fs2) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 SDTOA(o) 15 14 8 7 6 5 4 3 2 1 0 SDTIA(i) 15 14 8 7 6 5 4 3 2 1 0 BICKA (64fs2) 0 1 2 3 15 16 17 18 SDTOA(o) 15 14 2 1 0 SDTIA(i) 15 14 2 1 0 31 0 1 2 3 Don't Care 9 10 11 12 13 14 15 0 1 Don't Care 15 16 17 18 31 0 1 Don't Care 15:MSB, 0:LSB Figure 100. Timing of I2S MS0963-E-00 2008/05 - 131 - [AK4675] ■ Phone Path MIC-Amp & ALC A/D HPF MIC HPF LPF Stereo Separation 5-band Notch ALC MIX SDTO Lch SDTO Rch Audio I/F SVOLA D/A M DATT 5-band I SMUTE EQ X S E L CPU SDTI Lch SDTI Rch Receiver Headphone Speaker SRC-A PCM I/F A SVOLB SRC-B TX SDTOA RX SDTIA DATT-B DATT-C BIVOL SDTOB SDTIB Baseband PCM I/F B B/T Phone Call TX Phone Call TX Recording Phone Call Side Tone Phone Call RX Phone Call RX Recording Figure 101. Internal MIC/SPK or External MIC/HP Call & Recording MS0963-E-00 2008/05 - 132 - [AK4675] MIC-Amp & ALC A/D HPF MIC HPF LPF Stereo Separation 5-band Notch ALC MIX SDTO Lch SDTO Rch Audio I/F SVOLA D/A M DATT 5-band I SMUTE EQ X S E L CPU SDTI Lch SDTI Rch Receiver Headphone Speaker SRC-A PCM I/F A SVOLB SRC-B TX SDTOA RX SDTIA DATT-B DATT-C BIVOL SDTOB SDTIB Baseband PCM I/F B B/T Phone Call TX Phone Call TX Recording Phone Call Side Tone Phone Call RX Phone Call RX Recording Figure 102. B/T Headset Phone Call & Recording MS0963-E-00 2008/05 - 133 - [AK4675] ■ General Purpose Output The AK4675 has General Purpose Output Pin (GPO) to control the external component. In case of GPOM1 bit = “0”, the GPO1 pin goes to “H” at GPOE1 bit = “1”. GPOE1 bit GPO1 pin 0 L (default) 1 H Table 109. General Purpose Output 1 Pin Control (GPOM1 bit = “0”) In the case of GPOM1 bit = “1”, the GPO1 pin goes to “H” if the input level of the channel selected by A0 bit (SAIN1 or SAIN2 pin) is higher than the reference voltage that is input the SAIN3 pin. In the case of GPOM1 bit = “1”, the reference voltage input to the SAIN3 pin should be lower than 0.5 x AVDD. SAIN1/2 pin GPO1 pin < SAIN3 pin L (default) H ≥ SAIN3 pin Table 110. General Purpose Output 1 Pin Control (GPOM1 bit = “1”) In the case of GPOM2 bit = “0”, the GPO2 pin goes to “H” at GPOE2 bit = “0”. GPOE2 bit GPO2 pin 0 L (default) 1 H Table 111. General Purpose Output 2 Pin Control (GPOM2 bit = “0”) In the case of GPOM2 bit = “1”, the GPO2 pin outputs the mic detection result. (Table 21.) Input Level of MDT pin ≥ 0.075 x AVDD < 0.050 x AVDD GPO2 pin DTMIC bit H 1 L 0 Table 21. Microphone Detection Result MS0963-E-00 External microphone Mic (Headset) No Mic (Headphone) 2008/05 - 134 - [AK4675] ■ SAR 10bit ADC The AK4675 incorporates a 10-bit successive approximation resistor A/D converter for DC measurement. The A/D converter output is a straight binary format as shown in Table 112: Input Voltage (AVDD−1.5LSB) ~ AVDD (AVDD−2.5LSB) ~ (AVDD−1.5LSB) : 0.5LSB ~ 1.5LSB 0 ~ 0.5LSB Table 112. Output Code Output Code 3FFH 3FEH : 001H 000H When PMSAD bit is set to “1”, 10bit ADC is powered-up. When the control register is read, A/D conversion is executed and data is output. 10bit ADC supports 3 kinds of analog input. A1-0 bits select the measurement modes. Mode 0 1 2 3 A1 A0 Input Channel 0 0 SAIN1 0 1 SAIN2 1 0 SAIN3 1 1 N/A Table 113. SAR ADC Measurement Mode (default) <SAR ADC Execute Sequence (in case that the interrupt function is enabled.)> (1) Select the measurement mode by A1-0 bits and set PMSAD bit = “1” to power-up SAR ADC. (2) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output. (3) Additionally read Addr=5CH then LSB 2bit data is output. <SAR ADC Execute Sequence (in case that the interrupt function is disabled.)> (1) GPOM1 bit should be set to “1”. The GPO1 pin can be used as the interrupt output pin. (2) Select the measurement mode by A0 bit. (3) The GPO1 pin goes to “H” when the input DC voltage of the SAIN1 or SAIN2 pin (selected by A0 bit) is higher than the input voltage of the SAIN3 pin. (4) After CPU detects the GPO1 pin = “H”, set GPOM1 bit = “0” and PMSAD bit = “1” to power-up SAR ADC. (5) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output. (6) Additionally read Addr=5CH then LSB 2bit data is output. MS0963-E-00 2008/05 - 135 - [AK4675] ■ ATT Circuit for Battery Monitor When BATCPU bit = “1”, the input voltage for the VBATIN pin is divided by the internal resistors R1 (7.5k) and R2 (2.5k). The VBATO pin outputs the internally divided voltage. When BATCPU bit = “0”, the VBATO pin goes to Hi-Z. This block can operate even if PMVCMA=PMOSC bits = “0”. AK4675 VBATIN pin VBATO pin R1=7.5K R2=2.5K BATCPU bit Figure 103. ATT circuit for Battery Monitor ■ Serial Control Interface (1) I2C Bus Control Mode The AK4675 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage. (1)-1. WRITE Operations Figure 104 shows the data transfer sequence for I2C-bus mode. All commands are preceded by START condition. HIGH to LOW transition on the SDA line while SCL is HIGH indicates START condition (Figure 111). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). Addresses for CODEC and HP/SPK-Amp are fixed (Figure 105). If the slave address matches that of the AK4675, the AK4675 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 112). R/W bit value of “1” indicates that the read operation is to be executed. “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4675. The format is MSB first, and the most significant 1-bit is fixed to “0” (Figure 106). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 107). The AK4675 generates an acknowledge after each byte has been received. Data transfer is always terminated by a STOP condition generated by the master. LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 111). MS0963-E-00 2008/05 - 136 - [AK4675] The AK4675 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4675 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. In case of CODEC & SRC blocks, if the address exceeds 5AH prior to generating stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. In case of HP/SPK-Amp blocks, if the address exceeds 12H prior to generating stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 113) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) Data(n) A C K A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 104. Data Transfer Sequence at the I2C-Bus Mode CODEC 0 0 1 0 0 1 0 R/W AMP 0 0 1 0 0 1 1 R/W Figure 105. The First Byte 0 A6 A5 A4 A3 A2 A1 A0 D1 D0 Figure 106. The Second Byte D7 D6 D5 D4 D3 D2 Figure 107. Byte Structure after The Second Byte MS0963-E-00 2008/05 - 137 - [AK4675] (2)-2. READ Operations Set the R/W bit = “1” for the READ operation of the AK4675. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 7-bit address counter is incremented by one, and the next data is automatically taken into the next address. In case of CODEC & SRC blocks, if the address exceeds 5AH prior to generating stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. In case of HP/SPK-Amp blocks, if the address exceeds 12H prior to generating stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. The AK4675 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ. (2)-2-1. CURRENT ADDRESS READ (except for 10bit SAR ADC Data) The AK4675 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) were to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit set to “1”, the AK4675 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but instead generates stop condition, the AK4675 ceases transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) Data(n+2) MA AC SK T E R A C K MA AC SK T E R Data(n+x) MA AC SK T E R P MA AC SK T E R MN AA SC T EK R Figure 108. CURRENT ADDRESS READ (2)-2-2. RANDOM ADDRESS READ The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit set to “1”, the master must first perform “dummy” write operation. The master issues start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit set to “1”. The AK4675 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but instead generates a stop condition, the AK4675 ceases transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Slave S Address Sub Address(n) A C K S T O P R/W="1" Data(n) A C K Data(n+1) Data(n+x) MA AC S T K E R MA AC S K T E R A C K P MN A A S T C E K R MA AC S T K E R Figure 109. RANDOM ADDRESS READ When SAR ADC data is read, register data of Addr=5BH should be read by RANDOM ADDRESS READ, then stop condition should be input. S T A R T SDA S T A R T R/W="0" Slave S Address Slave S Address Sub Address(5BH) A C K S T O P R/W="1" A C K Data(D9-2) A C K Data(D1-0) MA AC SK T E R P MN AA SC T EK R Figure 110. RANDOM ADDRESS READ of SAR ADC Data MS0963-E-00 2008/05 - 138 - [AK4675] SDA SCL S P start condition stop condition Figure 111. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 112. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 113. Bit Transfer on the I2C-Bus MS0963-E-00 2008/05 - 139 - [AK4675] ■ Register Map (CODEC & SRC Blocks) Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH Register Name AD/DA Power Management PLL Mode Select 0 PLL Mode Select 1 Format Select MIC Signal Select MIC Amp Gain Mixing Power Management 0 Mixing Power Management 1 Output Volume Control LOUT1 Signal Select ROUT1 Signal Select LOUT2S Signal Select ROUT2S Signal Select LOUT3 Signal Select ROUT3 Signal Select LOUT1 Power Management LOUT2S Power Management LOUT3 Power Management Lch Input Volume Control Rch Input Volume Control ALC Reference Select Digital Mixing Control ALC Timer Select ALC Mode Control Mode Control 1 Mode Control 2 Lch Output Volume Control Rch Output Volume Control Side Tone A Control Digital Filter Select FIL3 Co-efficient 0 FIL3 Co-efficient 1 FIL3 Co-efficient 2 FIL3 Co-efficient 3 EQ Co-efficient 0 EQ Co-efficient 1 EQ Co-efficient 2 EQ Co-efficient 3 EQ Co-efficient 4 EQ Co-efficient 5 FIL1 Co-efficient 0 FIL1 Co-efficient 1 FIL1 Co-efficient 2 FIL1 Co-efficient 3 LPF Co-efficient 0 LPF Co-efficient 1 LPF Co-efficient 2 LPF Co-efficient 3 D7 PMDAR FS3 BTCLK 0 MDIF4 D6 PMDAL FS2 LP 0 MDIF3 D5 PMADR FS1 BCKO 0 MDIF2 D4 PMADL FS0 PS1 SDOD MDIF1 MGNR3 MGNR2 MGNR1 MGNR0 MGNL3 MGNL2 MGNL1 MGNL0 0 0 0 0 0 DTMIC PMLOOPR PMLOOPL PMAINR4 PMAINL4 PMAINR3 PMAINL3 PMAINR2 PMAINL2 PMAINR1 PMAINL1 1 L1G1 L2G1 L3G1 L4G1 LPG1 0 0 0 L3VL1 IVL7 IVR7 REF7 0 L1G0 L2G0 L3G0 L4G0 LPG0 0 0 1 LOOPL LOOPR 1 LINL4 RINR4 LINH4 RINH4 LINS4 RINS4 LOOPM IVL4 IVR4 REF4 0 LINL3 RINR3 LINH3 RINH3 LINS3 RINS3 LOM LOM2 LOM3 IVL3 IVR3 REF3 L1VL2 LINL2 RINR2 LINH2 RINH2 LINS2 RINS2 LOPS1 0 LOPS3 IVL2 IVR2 REF2 L1VL1 LINL1 RINR1 LINH1 RINH1 LINS1 RINS1 PMRO1 0 PMRO3 IVL1 IVR1 REF1 L1VL0 DACL DACR DACHL DACHR DACSL DACSR PMLO1 0 PMLO3 IVL0 IVR0 REF0 LOOPHL LOOPHR LOOPSL LOOPSR RCV D2 PMMICL PLL3 PS0 MSBS INR1 PLL2 MCKO BCKP INR0 D1 PMMP PLL1 M/S DIF1 INL1 D0 PMVCM PLL0 PMPLL DIF0 INL0 PMRO2S PMLO2S L3VL0 IVL6 IVR6 REF6 LODIF IVL5 IVR5 REF5 SRMXR1 SRMXR0 SRMXL1 SRMXL0 PFMXR1 PFMXR0 PFMXL1 PFMXL0 0 0 DAM SRA1 OVL7 OVR7 0 GN1 F3A7 F3AS F3B7 0 E0A7 E0A15 E0B7 0 E0C7 E0C15 F1A7 0 F1B7 0 F2A7 0 F2B7 0 RFST1 ZELMN MIXD SRA0 OVL6 OVR6 0 GN0 F3A6 0 F3B6 0 E0A6 E0A14 E0B6 0 E0C6 E0C14 F1A6 0 F1B6 0 F2A6 0 F2B6 0 RFST0 LMAT1 SDIM1 BIV2 OVL5 OVR5 SVAR2 LPF F3A5 F3A13 F3B5 F3B13 E0A5 E0A13 E0B5 E0B13 E0C5 E0C13 F1A5 F1A13 F1B5 F1B13 F2A5 F2A13 F2B5 F2B13 WTM2 LMAT0 SDIM0 BIV1 OVL4 OVR4 SVAR1 HPF F3A4 F3A12 F3B4 F3B12 E0A4 E0A12 E0B4 E0B12 E0C4 E0C12 F1A4 F1A12 F1B4 F1B12 F2A4 F2A12 F2B4 F2B12 WTM1 RGAIN1 EQ BIV0 OVL3 OVR3 SVAR0 EQ0 F3A3 F3A11 F3B3 F3B11 E0A3 E0A11 E0B3 E0B11 E0C3 E0C11 F1A3 F1A11 F1B3 F1B11 F2A3 F2A11 F2B3 F2B11 WTM0 RGAIN0 ADM SMUTE OVL2 OVR2 SVAL2 FIL3 F3A2 F3A10 F3B2 F3B10 E0A2 E0A10 E0B2 E0B10 E0C2 E0C10 F1A2 F1A10 F1B2 F1B10 F2A2 F2A10 F2B2 F2B10 ZTM1 LMTH1 IVOLC OVTM OVL1 OVR1 SVAL1 HPFAD F3A1 F3A9 F3B1 F3B9 E0A1 E0A9 E0B1 E0B9 E0C1 E0C9 F1A1 F1A9 F1B1 F1B9 F2A1 F2A9 F2B1 F2B9 ZTM0 LMTH0 ALC OVOLC OVL0 OVR0 SVAL0 PFSEL F3A0 F3A8 F3B0 F3B8 E0A0 E0A8 E0B0 E0B8 E0C0 E0C8 F1A0 F1A8 F1B0 F1B8 F2A0 F2A8 F2B0 F2B8 MS0963-E-00 LOOPM2 LOOPM3 D3 PMMICR 2008/05 - 140 - [AK4675] Addr 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH Register Name Digital Filter Select 2 Reserved E1 Co-efficient 0 E1 Co-efficient 1 E1 Co-efficient 2 E1 Co-efficient 3 E1 Co-efficient 4 E1 Co-efficient 5 E2 Co-efficient 0 E2 Co-efficient 1 E2 Co-efficient 2 E2 Co-efficient 3 E2 Co-efficient 4 E2 Co-efficient 5 E3 Co-efficient 0 E3 Co-efficient 1 E3 Co-efficient 2 E3 Co-efficient 3 E3 Co-efficient 4 E3 Co-efficient 5 E4 Co-efficient 0 E4 Co-efficient 1 E4 Co-efficient 2 E4 Co-efficient 3 E4 Co-efficient 4 E4 Co-efficient 5 E5 Co-efficient 0 E5 Co-efficient 1 E5 Co-efficient 2 E5 Co-efficient 3 E5 Co-efficient 4 E5 Co-efficient 5 EQ Control 250Hz/100Hz EQ Control 3.5kHz/1kHz EQ Control 10kHz PCM I/F Control 0 PCM I/F Control 1 PCM I/F Control 2 Digital Volume B Control Digital Volume C Control Side Tone Volume Control Digital Mixing Control SAR ADC Control D7 0 0 E1A7 E1A15 E1B7 E1B15 E1C7 E1C15 E2A7 E2A15 E2B7 E2B15 E2C7 E2C15 E3A7 E3A15 E3B7 E3B15 E3C7 E3C15 E4A7 E4A15 E4B7 E4B15 E4C7 E4C15 E5A7 E5A15 E5B7 E5B15 E5C7 E5C15 EQB3 EQD3 0 GPOM2 SDOAD SDOBD BVL7 CVL7 0 SDOR1 0 D6 0 0 E1A6 E1A14 E1B6 E1B14 E1C6 E1C14 E2A6 E2A14 E2B6 E2B14 E2C6 E2C14 E3A6 E3A14 E3B6 E3B14 E3C6 E3C14 E4A6 E4A14 E4B6 E4B14 E4C6 E4C14 E5A6 E5A14 E5B6 E5B14 E5C6 E5C14 EQB2 EQD2 0 GPOE2 BCKO2 PLLBT3 BVL6 CVL6 0 SDOR0 0 D5 0 0 E1A5 E1A13 E1B5 E1B13 E1C5 E1C13 E2A5 E2A13 E2B5 E2B13 E2C5 E2C13 E3A5 E3A13 E3B5 E3B13 E3C5 E3C13 E4A5 E4A13 E4B5 E4B13 E4C5 E4C13 E5A5 E5A13 E5B5 E5B13 E5C5 E5C13 EQB1 EQD1 0 PLLBT2 MSBSA MSBSB BVL5 CVL5 0 SDOL1 0 D4 EQ5 0 E1A4 E1A12 E1B4 E1B12 E1C4 E1C12 E2A4 E2A12 E2B4 E2B12 E2C4 E2C12 E3A4 E3A12 E3B4 E3B12 E3C4 E3C12 E4A4 E4A12 E4B4 E4B12 E4C4 E4C12 E5A4 E5A12 E5B4 E5B12 E5C4 E5C12 EQB0 EQD0 0 PLLBT1 BCKPA BCKPB BVL4 CVL4 0 SDOL0 GPOM1 D3 EQ4 0 E1A3 E1A11 E1B3 E1B11 E1C3 E1C11 E2A3 E2A11 E2B3 E2B11 E2C3 E2C11 E3A3 E3A11 E3B3 E3B11 E3C3 E3C11 E4A3 E4A11 E4B3 E4B11 E4C3 E4C11 E5A3 E5A11 E5B3 E5B11 E5C3 E5C11 EQA3 EQC3 EQE3 PLLBT0 LAWA1 LAWB1 BVL3 CVL3 SDOA BVMX1 GPOE1 D2 EQ3 0 E1A2 E1A10 E1B2 E1B10 E1C2 E1C10 E2A2 E2A10 E2B2 E2B10 E2C2 E2C10 E3A2 E3A10 E3B2 E3B10 E3C2 E3C10 E4A2 E4A10 E4B2 E4B10 E4C2 E4C10 E5A2 E5A10 E5B2 E5B10 E5C2 E5C10 EQA2 EQC2 EQE2 PMPCM LAWA0 LAWB0 BVL2 CVL2 SVB2 BVMX0 A1 D1 EQ2 0 E1A1 E1A9 E1B1 E1B9 E1C1 E1C9 E2A1 E2A9 E2B1 E2B9 E2C1 E2C9 E3A1 E3A9 E3B1 E3B9 E3C1 E3C9 E4A1 E4A9 E4B1 E4B9 E4C1 E4C9 E5A1 E5A9 E5B1 E5B9 E5C1 E5C9 EQA1 EQC1 EQE1 PMSRB FMTA1 FMTB1 BVL1 CVL1 SVB1 SBMX1 A0 D0 EQ1 0 E1A0 E1A8 E1B0 E1B8 E1C0 E1C8 E2A0 E2A8 E2B0 E2B8 E2C0 E2C8 E3A0 E3A8 E3B0 E3B8 E3C0 E3C8 E4A0 E4A8 E4B0 E4B8 E4C0 E4C8 E5A0 E5A8 E5B0 E5B8 E5C0 E5C8 EQA0 EQC0 EQE0 PMSRA FMTA0 FMTB0 BVL0 CVL0 SVB0 SBMX0 PMSAD Note 85. PDN pin = “L” resets the registers of CODEC & SRC blocks to their default values. Note 86. The bits defined as 0 must contain a “0” value. Note 87. Addresses 1EH to 2FH and 32H to 4FH cannot be read. MS0963-E-00 2008/05 - 141 - [AK4675] ■ Register Definitions (CODEC & SRC Blocks) Addr 00H Register Name AD/DA Power Management R/W Default D7 PMDAR R/W 0 D6 PMDAL R/W 0 D5 PMADR R/W 0 D4 PMADL R/W 0 D3 D2 PMMICR PMMICL R/W 0 R/W 0 D1 PMMP R/W 0 D0 PMVCM R/W 0 PMVCM: VCOM Power Management 0: Power down (default) 1: Power up When any blocks are powered-up, the PMVCM bit must be set to “1”. PMVCM bit can be set to “0” only when all power management bits are “0”. PMMP: MPWR pin Power Management 0: Power down: Hi-Z (default) 1: Power up PMMICL: MIC-Amp Lch Power Management 0: Power down (default) 1: Power up PMMICR: MIC-Amp Rch Power Management 0: Power down (default) 1: Power up PMADL: ADC Lch Power Management 0: Power down (default) 1: Power up When the PMADL or PMADR bit is changed from “0” to “1”, the initialization cycle (1059/fs=24ms @44.1kHz) starts. After initializing, digital data of the ADC is output. PMADR: ADC Rch Power Management 0: Power down (default) 1: Power up PMDAL: DAC Lch Power Management 0: Power down (default) 1: Power up PMDAR: DAC Rch Power Management 0: Power down (default) 1: Power up Each block can be powered-down respectively by writing “0” in each bit of this address. When the PDN pin is “L”, all blocks of CODEC & SRC are powered-down regardless of setting of this address. In this case, register of CODEC & SRC is initialized to the default value. When all power management bits are “0”, all blocks of CODEC & SRC are powered-down. The register values of CODEC & SRC remain unchanged. Power supply current is 20μA(typ) in this case. For fully shut down (typ. 1μA), PDN pin should be “L”. When neither ADC nor DAC are used, external clocks may not be present. When ADC or DAC is used, external clocks must always be present. MS0963-E-00 2008/05 - 142 - [AK4675] Addr 01H Register Name PLL Mode Select 0 R/W Default D7 FS3 R/W 1 D6 FS2 R/W 1 D5 FS1 R/W 1 D4 FS0 R/W 1 D3 PLL3 R/W 0 D2 PLL2 R/W 1 D1 PLL1 R/W 1 D0 PLL0 R/W 0 PLL3-0: PLL Reference Clock Select (Table 4) Default: “0110”(MCKI pin, 12MHz) FS3-0: Sampling Frequency Select (See Table 5 and Table 6) and MCKI Frequency Select (Table 11) FS3-0 bits select sampling frequency at PLL mode and MCKI frequency at EXT mode. Addr 02H Register Name PLL Mode Select 1 R/W Default D7 BTCLK R/W 0 D6 LP R/W 0 D5 BCKO R/W 0 D4 PS1 R/W 0 D3 PS0 R/W 0 D2 MCKO R/W 0 D1 M/S R/W 0 D0 PMPLL R/W 0 PMPLL: PLL Power Management 0: EXT Mode and Power Down (default) 1: PLL Mode and Power up M/S: Master / Slave Mode Select 0: Slave Mode (default) 1: Master Mode MCKO: Master Clock Output Enable 0: Disable: MCKO pin = “L” (default) 1: Enable: Output frequency is selected by PS1-0 bits. PS1-0: MCKO Output Frequency Select (Table 9) Default: “00”(256fs) BCKO: BICK Output Frequency Select at Master Mode (Table 10) LP: Low Power Mode 0: Normal Mode (default) 1: Low Power Mode: available at fs=22.05kHz or less. BTCLK: Clock Mode of Audio CODEC 0: Synchronized to Audio I/F (default) 1: Synchronized to PCM I/F BTCLK bit is enabled at only PMPLL bit = “0”. When BTCLK bit is “1”, Audio CODEC and the digital block (Figure 56) operate by the clock generated by PLLBT. MS0963-E-00 2008/05 - 143 - [AK4675] Addr 03H Register Name Format Select R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 SDOD R/W 0 D3 MSBS R/W 0 D2 BCKP R/W 0 D1 DIF1 R/W 1 D0 DIF0 R/W 0 DIF1-0: Audio Interface Format (Table 16) Default: “10” (Left jutified) BCKP: BICK Polarity at DSP Mode (Table 17) “0”: SDTO is output by the rising edge (“↑”) of BICK and SDTI is latched by the falling edge (“↓”). (default) “1”: SDTO is output by the falling edge (“↓”) of BICK and SDTI is latched by the rising edge (“↑”). MSBS: LRCK Phase at DSP Mode (Table 17) “0”: The rising edge (“↑”) of LRCK is half clock of BICK before the channel change. (default) “1”: The rising edge (“↑”) of LRCK is one clock of BICK before the channel change. SDOD: SDTO Disable (Table 47) “0”: Enable (default) “1”: Disable (“L”) Addr 04H Register Name MIC Signal Select R/W Default D7 MDIF4 R/W 0 D6 MDIF3 R/W 0 D5 MDIF2 R/W 0 D4 MDIF1 R/W 0 D3 INR1 R/W 0 D2 INR0 R/W 0 D1 INL1 R/W 0 D0 INL0 R/W 0 INL1-0: MIC-Amp Lch Input Source Select (Table 18) Default: “00” (LIN1) INR1-0: MIC-Amp Rch Input Source Select (Table 18) Default: “00” (RIN1) MDIF1: Line1 Input Type Select 0: Single-ended input (LIN1/RIN1 pins: default) 1: Full-differential input (IN1+/IN1− pins) MDIF2: Line2 Input Type Select 0: Single-ended input (LIN2/RIN2 pins: default) 1: Full-differential input (IN2+/IN2− pins) MDIF3: Line3 Input Type Select 0: Single-ended input (LIN3/RIN3 pins: default) 1: Full-differential input (IN3+/IN3− pins) MDIF4: Line4 Input Type Select 0: Single-ended input (LIN4/RIN4 pins: default) 1: Full-differential input (IN4+/IN4− pins) MS0963-E-00 2008/05 - 144 - [AK4675] Addr 05H Register Name MIC Amp Gain R/W Default D7 D6 D5 D4 D3 D2 D1 D0 MGNR3 MGNR2 MGNR1 MGNR0 MGNL3 MGNL2 MGNL1 MGNL0 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 DTMIC RD 0 MGNL3-0: MIC-Amp Lch Gain Control (Table 19) Default: “0101” (0dB) MGNR3-0: MIC-Amp Rch Gain Control (Table 19) Default: “0101” (0dB) Addr 06H Register Name Mixing Power Management 0 R/W Default D7 0 RD 0 D6 0 RD 0 D1 D0 PMLOOPR PMLOOPL R/W 0 R/W 0 PMLOOPL: MIC-Amp Lch Mixing Circuit Power Management 0: Power down (default) 1: Power up PMLOOPR: MIC-Amp Rch Mixing Circuit Power Management 0: Power down (default) 1: Power up DTMIC: Microphone Detection Result (Read Only: Table 21) 0: Microphone is not detected. (default) 1: Microphone is detected. MS0963-E-00 2008/05 - 145 - [AK4675] Addr 07H Register Name Mixing Power Management 1 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 PMAINR4 PMAINL4 PMAINR3 PMAINL3 PMAINR2 PMAINL2 PMAINR1 PMAINL1 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D5 1 RD 1 D4 1 RD 1 D3 0 RD 0 PMAINL1: LIN1 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR1: RIN1 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINL2: LIN2 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR2: RIN2 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINL3: LIN3 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR3: RIN3 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINL4: LIN4 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR4: RIN4 Mixing Circuit Power Management 0: Power down (default) 1: Power up Addr 08H Register Name Output Volume Control R/W Default D7 1 RD 1 D6 0 RD 0 D2 L1VL2 R/W 1 D1 L1VL1 R/W 0 D0 L1VL0 R/W 1 L1VL3-0: LOUT1/ROUT1 Output Volume Control (Table 67) Default: “5H” (0dB) MS0963-E-00 2008/05 - 146 - [AK4675] Addr 09H Register Name LOUT1 Signal Select R/W Default D7 L1G1 R/W 0 D6 L1G0 R/W 0 D5 LOOPL R/W 0 D4 LINL4 R/W 0 D3 LINL3 R/W 0 D2 LINL2 R/W 0 D1 LINL1 R/W 0 D0 DACL R/W 0 DACL: Switch Control from DAC Lch to LOUT1 0: OFF (default) 1: ON When PMLO1 bit is “1”, DACL bit is enabled. When PMLO1 bit is “0”, the LOUT1 pin goes to VSS1. LINL1: Switch Control from LIN1 to LOUT1 0: OFF (default) 1: ON LINL2: Switch Control from LIN2 to LOUT1 0: OFF (default) 1: ON LINL3: Switch Control from LIN3 to LOUT1 0: OFF (default) 1: ON LINL4: Switch Control from LIN4 to LOUT1 0: OFF (default) 1: ON LOOPL: Switch Control from MIC-Amp Lch to LOUT1 0: OFF (default) 1: ON L1G1-0: LIN1/RIN1 Mixing Gain Control (Table 60) Default: “00” (0dB) MS0963-E-00 2008/05 - 147 - [AK4675] Addr 0AH Register Name ROUT1 Signal Select R/W Default D7 L2G1 R/W 0 D6 L2G0 R/W 0 D5 LOOPR R/W 0 D4 RINR4 R/W 0 D3 RINR3 R/W 0 D2 RINR2 R/W 0 D1 RINR1 R/W 0 D0 DACR R/W 0 DACR: Switch Control from DAC Rch to ROUT1 0: OFF (default) 1: ON When PMRO1 bit is “1”, DACR bit is enabled. When PMRO1 bit is “0”, the ROUT1 pin goes to VSS1. RINR1: Switch Control from RIN1 to ROUT1 0: OFF (default) 1: ON RINR2: Switch Control from RIN2 to ROUT1 0: OFF (default) 1: ON RINR3: Switch Control from RIN3 to ROUT1 0: OFF (default) 1: ON RINR4: Switch Control from RIN4 to ROUT1 0: OFF (default) 1: ON LOOPR: Switch Control from MIC-Amp Rch to ROUT1 0: OFF (default) 1: ON L2G1-0: LIN2/RIN2 Mixing Gain Control (Table 61) Default: “00” (0dB) MS0963-E-00 2008/05 - 148 - [AK4675] Addr 0BH Register Name LOUT2S Signal Select R/W Default D7 L3G1 R/W 0 D6 L3G0 R/W 0 D5 LOOPHL R/W 0 D4 LINH4 R/W 0 D3 LINH3 R/W 0 D2 LINH2 R/W 0 D1 LINH1 R/W 0 D0 DACHL R/W 0 DACHL: Switch Control from DAC Lch to LOUT2S 0: OFF (default) 1: ON LINH1: Switch Control from LIN1 to LOUT2S 0: OFF (default) 1: ON LINH2: Switch Control from LIN2 to LOUT2S 0: OFF (default) 1: ON LINH3: Switch Control from LIN3 to LOUT2S 0: OFF (default) 1: ON LINH4: Switch Control from LIN4 to LOUT2S 0: OFF (default) 1: ON LOOPHL: Switch Control from MIC-Amp Lch to LOUT2S 0: OFF (default) 1: ON L3G1-0: LIN3/RIN3 Mixing Gain Control (Table 62) Default: “00” (0dB) MS0963-E-00 2008/05 - 149 - [AK4675] Addr 0CH Register Name ROUT2S Signal Select R/W Default D7 L4G1 R/W 0 D6 L4G0 R/W 0 D5 LOOPHR R/W 0 D4 RINH4 R/W 0 D3 RINH3 R/W 0 D2 RINH2 R/W 0 D1 RINH1 R/W 0 D0 DACHR R/W 0 DACHR: Switch Control from DAC Rch to ROUT2S 0: OFF (default) 1: ON RINH1: Switch Control from RIN1 to ROUT2S 0: OFF (default) 1: ON RINH2: Switch Control from RIN2 to ROUT2S 0: OFF (default) 1: ON RINH3: Switch Control from RIN3 to ROUT2S 0: OFF (default) 1: ON RINH4: Switch Control from RIN4 to ROUT2S 0: OFF (default) 1: ON LOOPHR: Switch Control from MIC-Amp Rch to ROUT2S 0: OFF (default) 1: ON L4G1-0: LIN4/RIN4 Mixing Gain Control (Table 63) Default: “00” (0dB) MS0963-E-00 2008/05 - 150 - [AK4675] Addr 0DH Register Name LOUT3 Signal Select R/W Default D7 LPG1 R/W 0 D6 LPG0 R/W 0 D5 LOOPSL R/W 0 D4 LINS4 R/W 0 D3 LINS3 R/W 0 D2 LINS2 R/W 0 D1 LINS1 R/W 0 D0 DACSL R/W 0 DACSL: Switch Control from DAC Lch to LOUT3 0: OFF (default) 1: ON When PMLO3 bit is “1”, DACSL bit is enabled. When PMLO3 bit is “0”, the LOUT3 pin goes to VSS1. LINS1: Switch Control from LIN1 to LOUT3 0: OFF (default) 1: ON LINS2: Switch Control from LIN2 to LOUT3 0: OFF (default) 1: ON LINS3: Switch Control from LIN3 to LOUT3 0: OFF (default) 1: ON LINS4: Switch Control from LIN4 to LOUT3 0: OFF (default) 1: ON LOOPSL: Switch Control from MIC-Amp Lch to LOUT3 0: OFF (default) 1: ON LPG1-0: MIC-Amp Mixing Gain Control (Table 64) Default: “00” (0dB) MS0963-E-00 2008/05 - 151 - [AK4675] Addr 0EH Register Name ROUT3 Signal Select R/W Default D7 0 RD 0 D6 0 RD 0 D5 LOOPSR R/W 0 D4 RINS4 R/W 0 D3 RINS3 R/W 0 D2 RINS2 R/W 0 D1 RINS1 R/W 0 D0 DACSR R/W 0 DACSR: Switch Control from DAC Rch to ROUT3 0: OFF (default) 1: ON When PMRO3 bit is “1”, DACR bit is enabled. When PMRO3 bit is “0”, the ROUT3 pin goes to VSS1. RINS1: Switch Control from RIN1 to ROUT3 0: OFF (default) 1: ON RINS2: Switch Control from RIN2 to ROUT3 0: OFF (default) 1: ON RINS3: Switch Control from RIN3 to ROUT3 0: OFF (default) 1: ON RINS4: Switch Control from RIN4 to ROUT3 0: OFF (default) 1: ON LOOPSR: Switch Control from MIC-Amp Rch to ROUT3 0: OFF (default) 1: ON MS0963-E-00 2008/05 - 152 - [AK4675] Addr 0FH Register Name LOUT1 Power Management R/W Default D7 0 RD 0 D6 0 RD 0 D5 RCV R/W 0 D4 LOOPM R/W 0 D3 LOM R/W 0 D2 LOPS1 R/W 0 D1 PMRO1 R/W 0 D0 PMLO1 R/W 0 PMLO1: LOUT1 Power Management 0: Power down (default) 1: Power up PMRO1: ROUT1 Power Management 0: Power down (default) 1: Power up LOPS1: LOUT1/ROUT1 Power Save Mode 0: Normal Operation (default) 1: Power Save Mode LOM: Mono Mixing from DAC to LOUT1/ROUT1 0: Stereo Mixing (default) 1: Mono Mixing LOOPM: Mono Mixing from MIC-Amp to LOUT1/ROUT1 0: Stereo Mixing (default) 1: Mono Mixing RCV: Receiver Select 0: Stereo Line Output (LOUT1/ROUT1 pins) (default) 1: Mono Receiver Output (RCP/RCN pins) MS0963-E-00 2008/05 - 153 - [AK4675] Addr 10H Register Name LOUT2S Power Management R/W Default D7 0 RD 0 D6 D5 D4 PMRO2S PMLO2S LOOPM2 R/W 0 R/W 0 R/W 0 D3 LOM2 R/W 0 D2 0 RD 0 D1 0 RD 0 D0 0 RD 0 LOM2: Mono Mixing from DAC to LOUT2S/ROUT2S 0: Stereo Mixing (default) 1: Mono Mixing LOOPM2: Mono Mixing from MIC-Amp to LOUT2S/ROUT2S 0: Stereo Mixing (default) 1: Mono Mixing PMLO2S: LOUT2S MIX-Amp Power Management 0: Power down (default) 1: Power up PMRO2S: ROUT2S MIX-Amp Power Management 0: Power down (default) 1: Power up MS0963-E-00 2008/05 - 154 - [AK4675] Addr 11H Register Name LOUT3 Power Management R/W Default D7 L3VL1 R/W 1 D6 L3VL0 R/W 0 D5 D4 LODIF LOOPM3 R/W 0 R/W 0 D3 LOM3 R/W 0 D2 LOPS3 R/W 0 D1 PMRO3 R/W 0 D0 PMLO3 R/W 0 PMLO3: LOUT3 Power Management 0: Power down (default) 1: Power up PMRO3: ROUT3 Power Management 0: Power down (default) 1: Power up LOPS3: LOUT3/ROUT3 Power Save Mode 0: Normal Operation (default) 1: Power Save Mode LOM3: Mono Mixing from DAC to LOUT3/ROUT3 0: Stereo Mixing (default) 1: Mono Mixing LOOPM3: Mono Mixing from MIC-Amp to LOUT3/ROUT3 0: Stereo Mixing (default) 1: Mono Mixing LODIF: Lineout Select 0: Single-ended Stereo Line Output (LOUT3/ROUT3 pins) (default) 1: Full-differential Mono Line Output (LOP/LON pins) L3VL1-0: LOUT3/ROUT3 Output Gain Control (Table 72) Default: “10” (0dB) MS0963-E-00 2008/05 - 155 - [AK4675] Addr 12H 13H Register Name Lch Input Volume Control Rch Input Volume Control R/W Default D7 IVL7 IVR7 R/W 1 D6 IVL6 IVR6 R/W 0 D5 IVL5 IVR5 R/W 0 D4 IVL4 IVR4 R/W 1 D3 IVL3 IVR3 R/W 0 D2 IVL2 IVR2 R/W 0 D1 IVL1 IVR1 R/W 0 D0 IVL0 IVR0 R/W 1 D3 REF3 R/W 0 D2 REF2 R/W 0 D1 REF1 R/W 0 D0 REF0 R/W 1 IVL7-0, IVR7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 33) Default: “91H” (0dB) Addr 14H Register Name ALC Reference Select R/W Default D7 REF7 R/W 1 D6 REF6 R/W 1 D5 REF5 R/W 1 D4 REF4 R/W 0 REF7-0: Reference Value at ALC Recovery Operation; 0.375dB step, 242 Level (Table 29) Default: “E1H” (+30.0dB) Addr 15H Register Name Digital Mixing Control R/W Default D7 D6 D5 D4 D3 D2 D1 D0 SRMXR1 SRMXR0 SRMXL1 SRMXL0 PFMXR1 PFMXR0 PFMXL1 PFMXL0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D4 WTM2 R/W 0 D3 WTM1 R/W 0 D2 WTM0 R/W 0 D1 ZTM1 R/W 0 D0 ZTM0 R/W 0 PFMXL1-0: 5-band EQ Lch Input Mixing 1 (Table 49.) Default: “00” (SDTI) PFMXR 1-0: 5-band EQ Rch Input Mixing 1 (Table 50.) Default: “00” (SDTI) SRMXL1-0: 5-band EQ Lch Input Mixing 2 (Table 51.) Default: “00” (SDTI) SRMXR 1-0: 5-band EQ Rch Input Mixing 2 (Table 52.) Default: “00” (SDTI) Addr 16H Register Name ALC Timer Select R/W Default D7 0 RD 0 D6 RFST1 R/W 0 D5 RFST0 R/W 0 ZTM1-0: ALC Limiter/Recovery Operation Zero Crossing Timeout Period (Table 26) Gain is changed by micro computer writing or ALC limiter operation at the zero crossing point or at the zero crossing timeout. Default value is “00” (128/fs) WTM2-0: ALC Recovery Waiting Period (Table 27) A period of recovery operation when any limiter operation does not occur during the ALC1 operation; Default is “000” (128/fs). RFST1-0: ALC First recovery Speed (Table 30) Default: “00”(4times) MS0963-E-00 2008/05 - 156 - [AK4675] Addr 17H Register Name ALC Mode Control R/W Default D7 0 RD 0 D6 ZELMN R/W 0 D5 LMAT1 R/W 0 D4 LMAT0 R/W 0 D3 RGAIN1 R/W 0 D2 RGAIN0 R/W 0 D1 LMTH1 R/W 0 D0 LMTH0 R/W 0 D2 ADM R/W 0 D1 IVOLC R/W 1 D0 ALC R/W 0 LMTH1-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 24) Default: “00” RGAIN1-0: ALC Recovery GAIN Step (Table 28) Default: “00” LMAT1-0: ALC Limiter ATT Step (Table 25) Default: “00” ZELMN: Zero Crossing Detection Enable at ALC Limiter Operation 0: Enable (default) 1: Disable Addr 18H Register Name Mode Control 1 R/W Default D7 DAM R/W 0 D6 MIXD R/W 0 D5 SDIM1 R/W 0 D4 SDIM0 R/W 0 D3 EQ R/W 0 ALC: ALC Enable 0: ALC Disable (default) 1: ALC Enable IVOLC: Input Digital Volume Control Mode Select 0: Independent 1: Dependent (default) When IVOLC bit = “1”, IVL7-0 bits control both Lch and Rch volume level, while register values of IVL7-0 bits are not written to IVR7-0 bits. When IVOLC bit = “0”, IVL7-0 bits control Lch level and IVR7-0 bits control Rch level, respectively. ADM: Mono Recording (Table 44) 0: Stereo (default) 1: Mono: (L+R)/2 EQ: Select 5-Band Equalizer 0: OFF (default) 1: ON SDIM1-0: SDTI Input Signal Select (Table 48) Default: “00” (L=Lch, R=Rch) MIXD: DAC and SRC-A Mono Mixing (Table 53 and Table 54.) 0: L+R (default) 1: (L+R)/2 DAM: DAC Mono Mixing (Table 53) 0: Stereo (default) 1: Mono: (L+R) or (L+R)/2 is selected by MIXD bit. MS0963-E-00 2008/05 - 157 - [AK4675] Addr 19H Register Name Mode Control 2 R/W Default D7 SRA1 R/W 0 D6 SRA0 R/W 0 D5 BIV2 R/W 0 D4 BIV1 R/W 0 D3 BIV0 R/W 0 D2 SMUTE R/W 0 D1 OVTM R/W 0 D0 OVOLC R/W 1 OVOLC: Output Digital Volume Control Mode Select 0: Independent 1: Dependent (default) When OVOLC bit = “1”, OVL7-0 bits control both Lch and Rch volume level, while register values of OVL7-0 bits are not written to OVR7-0 bits. When OVOLC bit = “0”, OVL7-0 bits control Lch level and OVR7-0 bits control Rch level, respectively. OVTM: Digital Volume Transition Time Setting 0: 1061/fs (default) 1: 256/fs This is the transition time between OVL/R7-0 bits = 00H and FFH. SMUTE: Soft Mute Control 0: Normal Operation (default) 1: DAC outputs soft-muted BIV2-0: SDTIB Input Volume Control (Table 41) Default: “0H” (0dB) SRA1-0: SRC-A Input Signal Select (Table 54) Default: “00” (Lch) Addr 1AH 1BH Register Name Lch Output Volume Control Rch Output Volume Control R/W Default D7 OVL7 OVR7 R/W 0 D6 OVL6 OVR6 R/W 0 D5 OVL5 OVR5 R/W 0 D4 OVL4 OVR4 R/W 1 D3 OVL3 OVR3 R/W 1 D2 OVL2 OVR2 R/W 0 D1 OVL1 OVR1 R/W 0 D0 OVL0 OVR0 R/W 0 D5 SVAR2 R/W 0 D4 SVAR1 R/W 0 D3 SVAR0 R/W 0 D2 SVAL2 R/W 0 D1 SVAL1 R/W 0 D0 SVAL0 R/W 0 OVL7-0, OVR7-0: Output Digital Volume (Table 36) Default: “18H” (0dB) Addr 1CH Register Name Side Tone A Control R/W Default D7 0 RD 0 D6 0 RD 0 SVAL2-0, SVAR2-0: Side Tone Volume A (SVOLA) (Table 34) Default: “000” (0dB)) MS0963-E-00 2008/05 - 158 - [AK4675] Addr 1DH Register Name Digital Filter Select R/W Default D7 GN1 R/W 0 D6 GN0 R/W 0 D5 LPF R/W 0 D4 HPF R/W 0 D3 EQ0 R/W 0 D2 FIL3 R/W 0 D1 HPFAD R/W 1 D0 PFSEL R/W 0 PFSEL: Signal Select of Programmable Filter Block (Table 43.) 0: ADC Output Data (default) 1: SDTI Input Data HPFAD: HPF Control of ADC 0: OFF 1: ON (default) When HPFAD bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPFAD bit is “0”, HPFAD block is through (0dB). GN1-0: Gain Select at GAIN block (Table 23) Default: “00” (0dB) FIL3: FIL3 (Stereo Separation Emphasis Filter) Coefficient Setting Enable 0: Disable (default) 1: Enable When FIL3 bit is “1”, the settings of F3A13-0 and F3B13-0 bits are enabled. When FIL3 bit is “0”, FIL3 block is OFF (MUTE). EQ0: EQ0 (Gain Compensation Filter) Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ0 bit is “1”, the settings of E0A15-0, E0B13-0 and E0C15-0 bits are enabled. When EQ0 bit is “0”, EQ0 block is through (0dB). HPF: HPF Coefficient Setting Enable 0: Disable (default) 1: Enable When HPF bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is “0”, HPF block is through (0dB). LPF: LPF Coefficient Setting Enable 0: Disable (default) 1: Enable When LPF bit is “1”, the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is “0”, LPF block is through (0dB). MS0963-E-00 2008/05 - 159 - [AK4675] Addr 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H Register Name FIL3 Co-efficient 0 FIL3 Co-efficient 1 FIL3 Co-efficient 2 FIL3 Co-efficient 3 EQ Co-efficient 0 EQ Co-efficient 1 EQ Co-efficient 2 EQ Co-efficient 3 EQ Co-efficient 4 EQ Co-efficient 5 R/W Default D7 F3A7 F3AS F3B7 0 E0A7 E0A15 E0B7 0 E0C7 E0C15 W 0 D6 F3A6 0 F3B6 0 E0A6 E0A14 E0B6 0 E0C6 E0C14 W 0 D5 F3A5 F3A13 F3B5 F3B13 E0A5 E0A13 E0B5 E0B13 E0C5 E0C13 W 0 D4 F3A4 F3A12 F3B4 F3B12 E0A4 E0A12 E0B4 E0B12 E0C4 E0C12 W 0 D3 F3A3 F3A11 F3B3 F3B11 E0A3 E0A11 E0B3 E0B11 E0C3 E0C11 W 0 D2 F3A2 F3A10 F3B2 F3B10 E0A2 E0A10 E0B2 E0B10 E0C2 E0C10 W 0 D1 F3A1 F3A9 F3B1 F3B9 E0A1 E0A9 E0B1 E0B9 E0C1 E0C9 W 0 D0 F3A0 F3A8 F3B0 F3B8 E0A0 E0A8 E0B0 E0B8 E0C0 E0C8 W 0 F3A13-0, F3B13-0: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2) Default: “0000H” F3AS: FIL3 (Stereo Separation Emphasis Filter) Select 0: HPF (Default) 1: LPF E0A15-0, E0B13-0, E0C15-C0: EQ0 (Gain Compensation Filter) Coefficient (14bit x 2 + 16bit x 1) Default: “0000H” Addr 28H 29H 2AH 2BH Register Name FIL1 Co-efficient 0 FIL1 Co-efficient 1 FIL1 Co-efficient 2 FIL1 Co-efficient 3 R/W Default D7 F1A7 0 F1B7 0 W D6 F1A6 0 F1B6 0 W D5 F1A5 F1A13 F1B5 F1B13 W D4 F1A4 F1A12 F1B4 F1B12 W D3 F1A3 F1A11 F1B3 F1B11 W D2 F1A2 F1A10 F1B2 F1B10 W D1 F1A1 F1A9 F1B1 F1B9 W D0 F1A0 F1A8 F1B0 F1B8 W F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” F1A13-0, F1B13-B0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2) Default: F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” (fc=150Hz@fs=44.1kHz) Addr 2CH 2DH 2EH 2FH Register Name FIL2 Co-efficient 0 FIL2 Co-efficient 1 FIL2 Co-efficient 2 FIL2 Co-efficient 3 R/W Default D7 F2A7 0 F2B7 0 W 0 D6 F2A6 0 F2B6 0 W 0 D5 F2A5 F2A13 F2B5 F2B13 W 0 D4 F2A4 F2A12 F2B4 F2B12 W 0 D3 F2A3 F2A11 F2B3 F2B11 W 0 D2 F2A2 F2A10 F2B2 F2B10 W 0 D1 F2A1 F2A9 F2B1 F2B9 W 0 D0 F2A0 F2A8 F2B0 F2B8 W 0 F2A13-0, F2B13-B0: FIL2 (LPF) Coefficient (14bit x 2) Default: “0000H” MS0963-E-00 2008/05 - 160 - [AK4675] Addr 30H Register Name Digital Filter Select 2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 EQ5 R/W 0 D3 EQ4 R/W 0 D2 EQ3 R/W 0 D1 EQ2 R/W 0 D0 EQ1 R/W 0 EQ1: Equalizer 1 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ1 bit is “1”, the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When EQ1 bit is “0”, EQ1 block is through (0dB). EQ2: Equalizer 2 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ2 bit is “1”, the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When EQ2 bit is “0”, EQ2 block is through (0dB). EQ3: Equalizer 3 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ3 bit is “1”, the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When EQ3 bit is “0”, EQ3 block is through (0dB). EQ4: Equalizer 4 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ4 bit is “1”, the settings of E4A15-0, E4B15-0 and E4C15-0 bits are enabled. When EQ4 bit is “0”, EQ4 block is through (0dB). EQ5: Equalizer 5 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ5 bit is “1”, the settings of E5A15-0, E5B15-0 and E5C15-0 bits are enabled. When EQ5 bit is “0”, EQ5 block is through (0dB). MS0963-E-00 2008/05 - 161 - [AK4675] Addr 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH Register Name E1 Co-efficient 0 E1 Co-efficient 1 E1 Co-efficient 2 E1 Co-efficient 3 E1 Co-efficient 4 E1 Co-efficient 5 E2 Co-efficient 0 E2 Co-efficient 1 E2 Co-efficient 2 E2 Co-efficient 3 E2 Co-efficient 4 E2 Co-efficient 5 E3 Co-efficient 0 E3 Co-efficient 1 E3 Co-efficient 2 E3 Co-efficient 3 E3 Co-efficient 4 E3 Co-efficient 5 E4 Co-efficient 0 E4 Co-efficient 1 E4 Co-efficient 2 E4 Co-efficient 3 E4 Co-efficient 4 E4 Co-efficient 5 E5 Co-efficient 0 E5 Co-efficient 1 E5 Co-efficient 2 E5 Co-efficient 3 E5 Co-efficient 4 E5 Co-efficient 5 R/W Default D7 E1A7 E1A15 E1B7 E1B15 E1C7 E1C15 E2A7 E2A15 E2B7 E2B15 E2C7 E2C15 E3A7 E3A15 E3B7 E3B15 E3C7 E3C15 E4A7 E4A15 E4B7 E4B15 E4C7 E4C15 E5A7 E5A15 E5B7 E5B15 E5C7 E5C15 W 0 D6 E1A6 E1A14 E1B6 E1B14 E1C6 E1C14 E2A6 E2A14 E2B6 E2B14 E2C6 E2C14 E3A6 E3A14 E3B6 E3B14 E3C6 E3C14 E4A6 E4A14 E4B6 E4B14 E4C6 E4C14 E5A6 E5A14 E5B6 E5B14 E5C6 E5C14 W 0 D5 E1A5 E1A13 E1B5 E1B13 E1C5 E1C13 E2A5 E2A13 E2B5 E2B13 E2C5 E2C13 E3A5 E3A13 E3B5 E3B13 E3C5 E3C13 E4A5 E4A13 E4B5 E4B13 E4C5 E4C13 E5A5 E5A13 E5B5 E5B13 E5C5 E5C13 W 0 D4 E1A4 E1A12 E1B4 E1B12 E1C4 E1C12 E2A4 E2A12 E2B4 E2B12 E2C4 E2C12 E3A4 E3A12 E3B4 E3B12 E3C4 E3C12 E4A4 E4A12 E4B4 E4B12 E4C4 E4C12 E5A4 E5A12 E5B4 E5B12 E5C4 E5C12 W 0 D3 E1A3 E1A11 E1B3 E1B11 E1C3 E1C11 E2A3 E2A11 E2B3 E2B11 E2C3 E2C11 E3A3 E3A11 E3B3 E3B11 E3C3 E3C11 E4A3 E4A11 E4B3 E4B11 E4C3 E4C11 E5A3 E5A11 E5B3 E5B11 E5C3 E5C11 W 0 D2 E1A2 E1A10 E1B2 E1B10 E1C2 E1C10 E2A2 E2A10 E2B2 E2B10 E2C2 E2C10 E3A2 E3A10 E3B2 E3B10 E3C2 E3C10 E4A2 E4A10 E4B2 E4B10 E4C2 E4C10 E5A2 E5A10 E5B2 E5B10 E5C2 E5C10 W 0 D1 E1A1 E1A9 E1B1 E1B9 E1C1 E1C9 E2A1 E2A9 E2B1 E2B9 E2C1 E2C9 E3A1 E3A9 E3B1 E3B9 E3C1 E3C9 E4A1 E4A9 E4B1 E4B9 E4C1 E4C9 E5A1 E5A9 E5B1 E5B9 E5C1 E5C9 W 0 D0 E1A0 E1A8 E1B0 E1B8 E1C0 E1C8 E2A0 E2A8 E2B0 E2B8 E2C0 E2C8 E3A0 E3A8 E3B0 E3B8 E3C0 E3C8 E4A0 E4A8 E4B0 E4B8 E4C0 E4C8 E5A0 E5A8 E5B0 E5B8 E5C0 E5C8 W 0 E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3) Default: “0000H” E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3) Default: “0000H” E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3) Default: “0000H” E4A15-0, E4B15-0, E4C15-0: Equalizer 4 Coefficient (16bit x3) Default: “0000H” E5A15-0, E5B15-0, E5C15-0: Equalizer 5 Coefficient (16bit x3) Default: “0000H” MS0963-E-00 2008/05 - 162 - [AK4675] Addr 50H 51H Register Name EQ Control 250Hz/100Hz EQ Control 3.5kHz/1kHz R/W Default Addr 52H Register Name EQ Control 10kHz R/W Default D7 EQB3 EQD3 R/W 1 D6 EQB2 EQD2 R/W 0 D5 EQB1 EQD1 R/W 0 D4 EQB0 EQD0 R/W 0 D3 EQA3 EQC3 R/W 1 D2 EQA2 EQC2 R/W 0 D1 EQA1 EQC1 R/W 0 D0 EQA0 EQC0 R/W 0 D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 EQE3 R/W 1 D2 EQE2 R/W 0 D1 EQE1 R/W 0 D0 EQE0 R/W 0 EQA3-0: Select the boost level of 100Hz EQB3-0: Select the boost level of 250Hz EQC3-0: Select the boost level of 1kHz EQD3-0: Select the boost level of 3.5kHz EQE3-0: Select the boost level of 10kHz See Table 35. MS0963-E-00 2008/05 - 163 - [AK4675] Addr 53H Register Name PCM I/F Control 0 R/W Default D7 GPOM2 R/W 0 D6 GPOE2 R/W 0 D5 PLLBT2 R/W 0 D4 PLLBT1 R/W 0 D3 PLLBT0 R/W 0 D2 PMPCM R/W 0 D1 PMSRB R/W 0 D0 PMSRA R/W 0 PMSRA: SRC-A Power Management 0: Power down (default) 1: Power up PMSRB: SRC-B Power Management 0: Power down (default) 1: Power up PMPCM: PCM I/F Power Management 0: Power down (default) 1: Power up PLLBT2-0: PLLBT Reference Clock Select PLLBT3 bit is D6 of Addr=55H. Default: “0000”: SYNCA GPOE2: General Purpose Output 2 Enable at GPOM2 bit = “1” “0”: GPO2 pin = “L” (default) “1”: GPO2 pin = “H” GPOM2: General Purpose Output 2 Operation Mode (Table 111.) “0”: Controlled by GPOE2 bit (default) “1”: MIC Detection Interrupt MS0963-E-00 2008/05 - 164 - [AK4675] Addr 54H Register Name PCM I/F Control 2 R/W Default D7 SDOAD R/W 0 D6 BCKO2 R/W 0 D5 MSBSA R/W 0 D4 BCKPA R/W 0 D3 LAWA1 R/W 0 D2 LAWA0 R/W 0 D1 FMTA1 R/W 0 D0 FMTA0 R/W 0 FMTA1-0: PCM I/F A Format (Table 103) Default: “00” (Mode 0) LAWA1-0: PCM I/F A Mode (Table 101) Default: “00” (Mode 0) BCKPA: BICKA Polarity of PCM I/F A (Table 105) “0”: SDTOA is output by the rising edge (“↑”) of BICKA and SDTIA is latched by the falling edge (“↓”). (default) “1”: SDTOA is output by the falling edge (“↓”) of BICKA and SDTIA is latched by the rising edge (“↑”). MSBSA: SYNCA Phase of PCM I/F A (Table 105) “0”: The rising edge (“↑”) of SYNCA is half clock of BICKA before the channel change. (default) “1”: The rising edge (“↑”) of SYNCA is one clock of BICKA before the channel change. BCKO2: BICKA/B Output Frequency Select at Master Mode (Table 96) 0: 16fs2 (default) 1: 32fs2 SDOAD: SDTOA Disable (Table 56.) “0”: Enable (default) “1”: Disable (“L”) Addr 55H Register Name PCM I/F Control 3 R/W Default D7 SDOBD R/W 0 D6 PLLBT3 R/W 0 D5 MSBSB R/W 0 D4 BCKPB R/W 0 D3 LAWB1 R/W 0 D2 LAWB0 R/W 0 D1 FMTB1 R/W 0 D0 FMTB0 R/W 0 FMTB1-0: PCM I/F B Format (Table 104) Default: “00” (Mode 0) LAWB1-0: PCM I/F B Mode (Table 102) Default: “00” (Mode 0) BCKPB: BICKB Polarity of PCM I/F B (Table 106) “0”: SDTOB is output by the rising edge (“↑”) of BICKB and SDTIB is latched by the falling edge (“↓”). (default) “1”: SDTOB is output by the falling edge (“↓”) of BICKB and SDTIB is latched by the rising edge (“↑”). MSBSB: SYNCB Phase of PCM I/F B (Table 106) “0”: The rising edge (“↑”) of SYNCB is half clock of BICKB before the channel change. (default) “1”: The rising edge (“↑”) of SYNCB is one clock of BICKB before the channel change. PLLBT3: PLLBT Reference Clock Select PLLBT2-0 bits is D5-3 of Addr=53H. Default: “0000”: SYNCA SDOBD: SDTOB Disable (Table 58) “0”: Enable (default) “1”: Disable (“L”) MS0963-E-00 2008/05 - 165 - [AK4675] Addr 56H Register Name Digital Volume B Control R/W Default D7 BVL7 R/W 0 D6 BVL6 R/W 0 D5 BVL5 R/W 0 D4 BVL4 R/W 1 D3 BVL3 R/W 1 D2 BVL2 R/W 0 D1 BVL1 R/W 0 D0 BVL0 R/W 0 D6 CVL6 R/W 0 D5 CVL5 R/W 0 D4 CVL4 R/W 1 D3 CVL3 R/W 1 D2 CVL2 R/W 0 D1 CVL1 R/W 0 D0 CVL0 R/W 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 SDOA R/W 0 D2 SVB2 R/W 0 D1 SVB1 R/W 0 D0 SVB0 R/W 0 D5 SDOL1 R/W 0 D4 SDOL0 R/W 0 D3 BVMX1 R/W 0 D2 BVMX0 R/W 0 D1 SBMX1 R/W 0 D0 SBMX0 R/W 0 BVL7-0: Digital Volume B (Table 38) Default: “18H” (0dB) Addr 57H Register Name Digital Volume C Control R/W Default D7 CVL7 R/W 0 CVL7-0: Digital Volume B (Table 39) Default: “18H” (0dB) Addr 58H Register Name Side Tone Volume Control R/W Default D7 0 RD 0 SVB2-0: Side Tone Volume (Table 40) Default: “5H” (−12dB) SDOA: SDTOA Output Signal Select (Table 55.) “0”: SRC-A (default) “1”: SDTI-B Addr 59H Register Name Digital Mixing Control R/W Default D7 SDOR1 R/W 0 D6 SDOR0 R/W 0 SBMX1-0: SDTOB Output Signal Select (Table 57.) Default: “00” (SDTIA) BVMX1-0: SRC-B Input Signal Select (Table 59.) Default: “00” (SDTIA) SDOL1-0: SDTO Lch Output Mixing (Table 45.) Default: “00” (Lch Signal Selected by Table 44) SDOR1-0: SDTO Rch Output Mixing (Table 46.) Default: “00” (Rch Signal Selected by Table 44) MS0963-E-00 2008/05 - 166 - [AK4675] Addr 5AH Register Name SAR ADC Control R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 GPOM1 R/W 0 D3 GPOE1 R/W 0 D2 A1 R/W 0 D1 A0 R/W 0 D0 PMSAD R/W 0 PMSAD: 10bit ADC Power Management “0”: Power down (default) “1”: Power up A1-0: SAR ADC Measurement Mode (Table 113) Default: “00” (SAIN1) GPOE1: General Purpose Output 1 Enable at GPOM1 bit = “1” “0”: GPO pin = “L” (default) “1”: GPO pin = “H” GPOM1: General Purpose Output 1 Operation Mode “0”: Controlled by GPOE1 bit (default) “1”: Controlled by A0 bit MS0963-E-00 2008/05 - 167 - [AK4675] ■ Register Map (HP/SPK-Amp Blocks) Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H Register Name Power Management 0 Power Management 1 Power Management 2 Mode Control 0 Lch Headphone Mixer Rch Headphone Mixer Reserved Reserved Input Volume #1 Reserved Reserved Reserved Mode Control 1 Headphone PGA Control Speaker PGA Control ALCA Mode Control 1 ALCA Mode Control 2 ALCA Mode Control 3 Mode Control 2 D7 0 D6 D5 D4 D3 PMMHR PMMHL PMHPR 0 0 THDET 0 0 0 0 0 0 0 PMHPL 0 0 0 0 0 0 0 0 0 R1V3 0 0 0 0 0 0 R1V2 0 0 0 0 0 0 0 0 0 0 0 R1V1 0 0 0 0 R1V0 0 0 0 0 L1V3 0 0 0 0 L1V2 0 0 0 0 L1V1 0 0 0 0 L1V0 0 0 0 MOFF 0 0 HPZ 0 HPMTN 0 HPGA4 SPGA4 PTS1 HPGA3 SPGA3 PTS0 HPGA2 SPGA2 0 HPGA1 SPGA1 0 HPGA0 SPGA0 0 0 0 0 REFA5 0 REFA4 REFA3 REFA2 REFA1 REFA0 ZTMA1 ZTMA0 WTMA2 WTMA1 WTMA0 0 0 ALCA 0 ZELMNA LMATA1 LMATA0 RGAINA1 RGAINA0 LMTHA 0 0 0 BATCPU MSEL OSCN GDDLY SPGA5 D2 PMCP D1 D0 PMVCMA 0 PMOSC 0 PMSPK 0 0 0 0 0 0 0 PMV1 0 0 0 0 0 0 0 HPLR1 HPRR1 HPLL1 HPRL1 All registers writing are inhibited at PDNA pin = “L”. The PDNA pin = “L” resets the HP/SPK-Amp’s registers to their default value. Note 88: The bits defined as 0 must contain a “0” value. Note 89: Only write to address 00H to 12H. MS0963-E-00 2008/05 - 168 - [AK4675] ■ Register Definitions (HP/SPK-Amp Blocks) Addr 00H Register Name Power Management 0 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 0 PMMHR PMMHL PMHPR PMHPL PMCP PMOSC PMVCMA RD 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 PMVCMA: Power Management for VCOM and Regulator which used for Headphone-Amp 0: Power OFF (default) 1: Power ON PMOSC: I Power Management for Internal Oscillator 0: Power OFF (default) 1: Power ON PMCP: Power Management for Charge Pump Circuit 0: Power OFF (default) 1: Power ON PMHPL: Power Management for Lch Headphone-Amp 0: Power OFF (default) 1: Power ON PMHPR: Power Management for Rch Headphone-Amp 0: Power OFF (default) 1: Power ON PMMHL: Power Management for Mixing & Selector Circuit of Lch Headphone-Amp 0: Power OFF (default) 1: Power ON PMMHR: Power Management for Mixing & Selector Circuit of Rch Headphone-Amp 0: Power OFF (default) 1: Power ON MS0963-E-00 2008/05 - 169 - [AK4675] Addr 01H Register Name Power Management 1 R/W Default D7 GDDLY R/W 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 D2 0 0 RD 0 RD 0 D1 0 RD 0 D3 0 RD 0 D2 0 RD 0 D1 0 RD 0 D0 PMSPK R/W 0 PMSPK: Power Management for Speaker-Amp 0: Power OFF (default) 1: Power ON When PMSP bit is “0”, the SPP pin and SPN pin become Hi-Z. GDDLY: Gate driver delay setting for dulling output wave of Class-D 0: 15ns (default) 1: 60ns Delay increase, EMI improve, Efficiency down when “0” Æ “1” Addr 02H Register Name Power Management 2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D0 PMV1 R/W 0 PMV1: Power Management for Input Volume #1 0: Power OFF (default) 1: Power ON All blocks of HP/SPK-Amp blocks can be powered-down by setting the PDNA pin to “L” regardless of register values setup. In this case, all control register values of HP/SPK-Amp blocks are initilized. When all registers in address 00H, 01H and 02H are set to “0”, all blocks of HP/SPK-Amp blocks are powered-down. The register values of HP/SPK-Amp blocks remain unchanged. Power supply current is 18μA(typ). For fully shut down, set the PDNA pin to “L”. MS0963-E-00 2008/05 - 170 - [AK4675] Addr 03H Register Name Mode Control 0 R/W Default D7 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 0 RD 0 D1 0 RD 0 D0 0 RD 0 D7 0 0 RD 0 D6 0 0 RD 0 D5 0 0 RD 0 D4 0 0 RD 0 D3 0 0 RD 0 D2 0 0 RD 0 D1 HPLR1 HPRR1 R/W 0 D0 HPLL1 HPRL1 R/W 0 D7 R1V3 R/W 1 D6 R1V2 R/W 0 D5 R1V1 R/W 1 D4 R1V0 R/W 0 D3 L1V3 R/W 1 D2 L1V2 R/W 0 D1 L1V1 R/W 1 D0 L1V0 R/W 0 THDET RD 0 THDET: Thermal Shutdown Detection 0: Normal Operation (default) 1: Thermal Shutdown Addr 04H 05H Register Name Lch Headphone Mixer Rch Headphone Mixer R/W Default Input Mixers: (Figure 80) 0: OFF (default) 1: ON Addr 08H Register Name Input Volume #1 R/W Default Input Volumes: Default: 0dB (Table 76) MS0963-E-00 2008/05 - 171 - [AK4675] Addr 0CH Register Name Mode Control 1 R/W Default D7 0 RD 0 D6 0 RD 0 D5 MOFF R/W 0 D4 0 RD 0 D3 PTS1 R/W 0 D2 PTS0 R/W 0 D1 0 RD 0 D0 0 RD 0 D4 HPGA4 R/W 1 D3 HPGA3 R/W 1 D2 HPGA2 R/W 0 D1 HPGA1 R/W 0 D0 HPGA0 R/W 1 D3 SPGA3 R/W 1 D2 SPGA2 R/W 0 D1 SPGA1 R/W 0 D0 SPGA0 R/W 0 PTS1-0: Headphone-Amp Mute ON/OFF Transition Time Default: “00”; typ. 16.4ms (Table 81) MOFF: Soft transition for changing HPMTN bit 0: Enable (default) 1: Disable Addr 0DH Register Name Headphone PGA Control R/W Default D7 0 RD 0 D6 HPZ R/W 0 D5 HPMTN R/W 0 HPGA4-0: Headphone-Amp Volume Setting Default: 19H; 0dB (Table 77) HPMTN: Headphone-Amp Mute 0: Mute (default) 1: Normal Output HPZ: Headphone-Amp Pull-down Control 0: Ground Mode (default) HPL/HPR pins are shorted to VSS3. 1: Hi-Z Mode HPL/HPR pins are pulled-down by 25kΩ(typ) to VSS3. Addr 0EH Register Name Speaker PGA Control R/W Default D7 0 RD 0 D6 0 RD 0 D5 SPGA5 R/W 0 D4 SPGA4 R/W 1 SPGA5-0: Speaker-Amp Volume Setting Default: 18H; 0dB (Table 89) When PMSPK bit is set to “0”, reading and writing of SPGA5-0 bits are inhibited. When changing from PMSPK bit = “0” to PMSPK bit = “1”, SPGA volume becomes default value (0dB) regardless of the setting of SPGA5-0 bits. Addr 0FH Register Name ALCA Mode Control 1 R/W Default D7 0 RD 0 D6 0 RD 0 D5 REFA5 R/W 1 D4 REFA4 R/W 1 D3 REFA3 R/W 1 D2 REFA2 R/W 1 D1 REFA1 R/W 0 D0 REFA0 R/W 0 REFA5-0: Reference value at ALC Recovery Operation Default: 3CH; +18dB (Table 87) MS0963-E-00 2008/05 - 172 - [AK4675] Addr 10H Register Name ALCA Mode Control 2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 D3 D2 D1 D0 ZTMA1 ZTMA0 WTMA2 WTMA1 WTMA0 R/W 0 R/W 1 R/W 1 R/W 0 R/W 1 WTMA2-0: ALCA Recovery Waiting Period Default: “101”, typ. 524.8ms (@OSCN bit = “0”) (Table 85) ZTMA1-0: ALCA Zero Crossing Timeout Period Default: “01”, typ. 32.8ms (@ OSCN bit = “0”) (Table 84) Addr 11H Register Name ALCA Mode Control 3 R/W Default D7 0 RD 0 D6 ALCA R/W 0 D5 D4 D3 D2 D1 D0 ZELMNA LMATA1 LMATA0 RGAINA1 RGAINA0 LMTHA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 LMTHA: ALC Limiter Detection Level / Recovery Waiting Counter Reset Level Default: “0” (Table 82) RGAINA1-0: ALCA Recovery GAIN Step Default: “00”; 1 step (Table 86) LMATA1-0: ALCA Limiter ATT Step Default: “00”; 1 step (Table 83) ZELMNA: Zero Crossing Detection Enable at ALCA Limiter Operation 0: Enable (default) 1: Disable ALCA: ALCA Enable 0: ALCA Disable (default) 1: ALCA Enable When ALC bit is set to “1”, the ALCA operation is enabled. The initial value is “0” (Disable). Addr 12H Register Name Mode Control 2 R/W Default D7 D6 0 0 RD 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 BATCPU R/W 0 D1 MSEL R/W 0 D0 OSCN R/W 0 OSCN: Internal Oscillator / External Clock Select 0: Internal Oscillator (default) 1: External Clock (MCKIA pin) MSEL: MCKIA Input Frequency Select 0: 2.048MHz (default) 1: 2.8224MHz or 3.072MHz BATCPU: Battery Monitor Circuit Enable 0: Disable (default) 1: Enable MS0963-E-00 2008/05 - 173 - [AK4675] SYSTEM DESIGN Figure 114 shows the system connection diagram for the AK4675. An evaluation board [AKD4675] is available which demonstrates the optimum layout, power supply arrangements and measurement results. Condition: Internal Full-differential Mic, External pseudo differential Mic, Receiver Output, I²C mode; Battery Monitor is used; the PDNA pin of HP/SPK-Amp blocks is controlled by the GPO1 pin. Analog Ground Headphone 10u 0.1u 0.1u Base Band 2.2u C Cp Rp 0.1u R 0.1u 2.2u Digital (Base Band) 1.6 ∼ 3.6V 2.2u Analog 2.6 ∼ 3.6V Digital Ground 2.2u Battery TEST HPR VCOM VCOC AVDD RCN VBATO VCOCBT HPL PVDDA VSS3A CP SDTIA GPO2 PVEE SDTOA SYNCA CN PDNA BICKA Receiver 0.1u 0.1u 0.1u VSS1 Line In 0.22u DC Measurement ROUT3 VCOMA RIN4 PVDD TVDD2 TVDDA VSS4 MCKIA TEST6 DVDD SDA MCKO NC SCL VBATIN LOUT3 LIN3 RCP LIN4 RIN1A RIN3 IN2− SAIN2 MCKI TEST5 BICK IN2+ SAIN3 SAIN1 LRCK PDN VSS1A IN1+ IN1− AK4675EG Digital (μP & CPU) 1.6 ∼ 3.6V μP Top View LIN1A MPWR ROUT2S SAVDD SDTOB SDTO BICKB NC TEST3 AVDDA NC VSS3 SPN SYNCB SDTIB TEST4 SPIN SVDDA VSS2A TVDD3 SPP TEST2 SDTI GPO1 0.1u CPU 1k 0.22u 1k 2.2k Internal MIC 0.1u External MIC MDT LOUT2S NC 0.1u Battery or AC Adaptor 3.0 ∼ 5.5V VSS2 0.1u Bluetooth Module 10u Digital (Bluetooth) 1.6 ∼ 3.6V Speaker MS0963-E-00 2008/05 - 174 - [AK4675] Notes: - VSS1, VSS2, VSS3, VSS4, VSS1A, VSS2A and VSS3A of the AK4675 must be distributed separately from the ground of external controllers. - All digital input pins msut not be left floating. - When the AK4675 is EXT mode (PMPLL bit = “0”), a resistor and capacitor of the VCOC pin is not needed. - When the AK4675 is PLL mode (PMPLL bit = “1”), a resistor and capacitor of the VCOC pin is shown in Table 4. - When the AK4675 is in master mode, the LRCK and BICK pins are floating before M/S bit is changed to “1”. Therefore, 100kΩ around pull-up resistor msut be connected to the LRCK and BICK pins of the AK4675. - A resistor and capacitor of the VCOCBT pin is shown in Table 95. - When PCM I/F is used at master mode, SYNCA, BICKA, SYNCB and BICKB pins are floating before PMPCM bit is changed to “1”. Therefore, 100kΩ around pull-up or pull-down resistor msut be connected to the SYNCA, BICKA, SYNCB and SYNCB pins of the AK4675. - These capacitors at the CP/CN pins and VSS3A/PVEE pins require low ESR (Equivalent Series Resistance) over all temperature range. When these capacitors are polarized, the positive side must be connected to the CP and VSS3A pins, respectively. - A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM pin. - A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOMA pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOMA pin. - AC coupling capacitors of 0.22μF or smaller value msut be connected at the LIN1A/RIN1A pins respectively to reduce pop noise at Headphone-Amp power-up. - AC coupling capacitors of 0.1μF or smaller value must be connected at the SPIN pins respectively to reduce pop noise at power-up of ALCA block for Speaker. Figure 114. Typical Connection Diagram MS0963-E-00 2008/05 - 175 - [AK4675] 1. Grounding and Power Supply Decoupling The AK4675 requires careful attention to power supply and grounding arrangements. AVDD, PVDD, SAVDD, DVDD, TVDD2, TVDD3, AVDDA, PVDDA, SVDDA and TVDDA are usually supplied from the system’s analog supply. TVDDA must be connected to DVDD. If AVDD, PVDD, SAVDD, DVDD, TVDD2, AVDDA, PVDDA and SVDDA are supplied separately, the power-up sequence is not critical. VSS1, VSS2, VSS3, VSS4, VSS1A, VSS2A and VSS3A of the AK4675 must be connected to the analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4675 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference VCOM is a signal ground of CODEC block. VCOMA is a signal ground of HP/SPK-Amp blocks. A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOMA pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM/VCOMA pins. All signals, especially clocks, should be kept away from the VCOM and VCOMA pins in order to avoid unwanted coupling into the AK4675. 3. Analog Inputs The Mic, Line and MIN inputs of CODEC block are single-ended. The input signal range scales with nominally at 0.6 x AVDD Vpp (typ) at MGNL=MGNR=0dB and single-ended input, centered at the internal common voltage of CODEC block (0.5 x AVDD). The inputs of HP/SPK-Amp blocks are single-ended. The input signal range is 2.0Vpp (typ) for LIN1A/RIN1A pins and 1.6Vpp (typ) for SPLIN/SPRIN pins respectively, centered at the internal common voltage of HP/SPK-Amp blocks (VCOMA=1.2V (typ)). The input signal should be AC coupled using a capacitor. The cut-off frequency is fc = 1/ (2πRC). The AK4675 can accept input voltages from VSS1 to AVDD for CODEC block and from VSS1A to AVDDA for HP/SPK-Amp blocks, respectively. 4. Analog Outputs The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFH(@16bit) and a negative full scale for 8000H(@16bit). The ideal output for 0000H(@16bit) is VCOM voltage for CODEC block and VCOMA voltage for HP/SPK-Amp blocks, respectively. VCOM voltage is 0.5 x AVDD (typ) and VCOMA voltage is 1.2Vpp (typ), respectively. The output of LOUT1/RCP, ROUT1/RCN, LOUT2S, ROUT2S, LOUT3/LOP, ROUT3/LON pins must be AC coupled using a capacitor. The output of HPL and HPR pins must be directly connected to the headphone without AC coupling. MS0963-E-00 2008/05 - 176 - [AK4675] PACKAGE 5.5 ± 0.1 φ 0.05 A 83 - φ 0.3 ± 0.05 M S AB 5 4 3 2 1 A B C D E 4.5 5.5 ± 0.1 10 9 8 7 6 B F G H J K 0.5 0.5 S 1.2MAX 0.25 ± 0.05 0.08 S Material & Lead finish Package molding compound: Interposer material: Solder ball material: Epoxy BT resin SnAgCu MS0963-E-00 2008/05 - 177 - [AK4675] MARKING 4675 XXXXX 1 XXXXX: Date code identifier (5digits) Pin #1 indication REVISION HISTORY Date (YY/MM/DD) 08/05/23 Revision 00 Reason First Edition Page Contents IMPORTANT NOTICE z These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products. z AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein. z Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. z AKEMD products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. z It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification. MS0963-E-00 2008/05 - 178 -