PD - 95947 IRFZ44VZPbF IRFZ44VZSPbF IRFZ44VZLPbF AUTOMOTIVE MOSFET Features l l l l l l HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D RDS(on) = 12mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. VDSS = 60V ID = 57A S TO-220AB IRFZ44VZPbF TO-262 D2Pak IRFZ44VZSPbF IRFZ44VZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM 230 PD @TC = 25°C Power Dissipation 92 W 0.61 ± 20 W/°C V 73 mJ 57 Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range °C i Parameter RθJC Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface RθJA Junction-to-Ambient www.irf.com A -55 to + 175 Mounting Torque, 6-32 or M3 screw Junction-to-Ambient (PCB Mount) 110 mJ Thermal Resistance i h See Fig.12a, 12b, 15, 16 g Soldering Temperature, for 10 seconds RθJA A 40 c i j 300 (1.6mm from case ) y y 10 lbf in (1.1N m) Typ. Max. Units ––– 1.64 °C/W 0.50 ––– ––– 62 ––– 40 1 11/16/04 IRFZ44VZS/LPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.061 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 9.6 12 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 25 ––– ––– V VDS = 25V, ID = 34A Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 60V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V -200 V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 34A V e VDS = VGS, ID = 250µA VDS = 60V, VGS = 0V, TJ = 125°C Gate-to-Source Reverse Leakage ––– ––– Qg VGS = -20V Total Gate Charge ––– 43 65 Qgs Gate-to-Source Charge ––– 11 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 18 ––– VGS = 10V td(on) Turn-On Delay Time ––– 14 ––– VDD = 30V tr Rise Time ––– 62 ––– td(off) Turn-Off Delay Time ––– 35 ––– tf Fall Time ––– 38 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package and center of die contact VGS = 0V ID = 34A nC VDS = 48V e ID = 34A ns nH RG = 12 Ω e D G S Ciss Input Capacitance ––– 1690 ––– Coss Output Capacitance ––– 270 ––– Crss Reverse Transfer Capacitance ––– 130 ––– Coss Output Capacitance ––– 1870 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 260 ––– VGS = 0V, VDS = 48V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 510 ––– VGS = 0V, VDS = 0V to 48V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 57 ISM (Body Diode) Pulsed Source Current ––– ––– 230 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 23 35 ns Qrr Reverse Recovery Charge ––– 17 26 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 34A, VGS = 0V TJ = 25°C, IF = 34A, VDD = 30V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFZ44VZS/LPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 60µs PULSE WIDTH Tj = 25°C 1 10 BOTTOM 10 4.5V 60µs PULSE WIDTH Tj = 175°C 1 1 0.1 100 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 60 Gfs, Forward Transconductance (S) 1000 ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 T J = 175°C 10 T J = 25°C VDS = 25V 60µs PULSE WIDTH 1 4.0 5.0 6.0 7.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9.0 T J = 175°C 50 40 T J = 25°C 30 20 10 VDS = 15V 380µs PULSE WIDTH 0 0 10 20 30 40 50 60 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFZ44VZS/LPbF 3000 20 2500 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C, Capacitance (pF) C oss = C ds + C gd 2000 Ciss 1500 1000 500 Coss Crss VDS= 48V VDS= 30V VDS= 12V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 ID= 34A 10 0 100 10 40 50 60 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 1000.0 ISD, Reverse Drain Current (A) 30 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.0 T J = 175°C 10.0 T J = 25°C 1.0 0.2 0.6 1.0 1.4 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 1.8 1msec 1 0.1 0.1 100µsec 10 VGS = 0V 4 20 Tc = 25°C Tj = 175°C Single Pulse 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFZ44VZS/LPbF 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 60 ID , Drain Current (A) 50 40 30 20 10 0 ID = 34A VGS = 10V 2.0 1.5 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 T J , Junction Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τC τ τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.960 0.00044 0.680 0.00585 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFZ44VZS/LPbF 300 D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp EAS, Single Pulse Avalanche Energy (mJ) 15V A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp ID 3.8A 5.0A BOTTOM 34A TOP 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) Gate threshold Voltage (V) 10 V ID = 250µA 3.0 2.0 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRFZ44VZS/LPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 34A 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFZ44VZS/LPbF D.U.T Driver Gate Drive + * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFZ44VZS/LPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE www.irf.com PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C 9 IRFZ44VZS/LPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information (Lead-Free) T H IS IS AN IR F 5 3 0 S W IT H L OT COD E 8 0 24 AS S E M B L E D O N W W 0 2 , 2 0 0 0 IN T H E AS S E M B L Y L IN E "L " IN T E R N AT IO N AL R E C T IF IE R L O GO N ote: "P " in as s em bly line pos ition in dicates "L ead-F ree" P AR T N U M B E R F 530S AS S E M B L Y L O T CO D E D AT E C O D E Y E AR 0 = 2 0 0 0 WE E K 02 L IN E L OR IN T E R N AT IO N AL R E C T IF IE R L O GO AS S E M B L Y L OT COD E 10 P AR T N U M B E R F 530S D AT E CO D E P = D E S IG N AT E S L E AD - F R E E P R O D U C T (O P T IO N AL ) Y E AR 0 = 2 0 0 0 WE E K 02 A = AS S E M B L Y S IT E C O D E www.irf.com IRFZ44VZS/LPbF TO-262 Package Outline TO-262 Part Marking Information E X AMP L E : T H IS IS AN IR L 31 03 L L OT COD E 17 89 AS S E MB L E D ON W W 1 9, 19 97 IN T H E AS S E MB L Y L IN E "C" N ote: "P " in as s em bly line pos ition indicates "L ead-F ree" IN T E R N AT ION AL R E CT IF IE R L OGO AS S E MB L Y L OT COD E P AR T N U MB E R D AT E COD E Y E AR 7 = 1 99 7 W E E K 19 L IN E C OR IN T E R N AT ION AL R E CT IF IE R L OGO AS S E MB L Y L OT COD E www.irf.com P AR T N U MB E R D AT E COD E P = D E S IGN AT E S L E AD -F R E E P R OD U CT (OP T ION AL ) Y E AR 7 = 19 97 WE E K 19 A = AS S E MB L Y S IT E COD E 11 IRFZ44VZS/LPbF D2Pak Tape & Reel Infomation TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: Repetitive rating; pulse width limited by Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.12mH This value determined from sample failure population. 100% RG = 25Ω, IAS = 34A, VGS =10V. Part not tested to this value in production. recommended for use above this value. This is only applied to TO-220AB pakcage. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. This is applied to D2Pak, when mounted on 1" square PCB (FR Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS . TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/04 12 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/