PD- 91577B IRG4PH40KD Short Circuit Rated UltraFast IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • High short circuit rating optimized for motor control, tsc =10µs, VCC = 720V , TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes VCES = 1200V VCE(on) typ. = 2.74V G @VGE = 15V, IC = 15A E n-ch an nel Benefits • Latest generation 4 IGBT's offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses • This part replaces the IRGPH40KD2 and IRGPH40MD2 products • For hints see design tip 97003 TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 1200 30 15 60 60 8.0 130 10 ± 20 160 65 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.24 ––– 6 (0.21) 0.77 1.7 ––– 40 ––– Units °C/W g (oz) 1 2/7/2000 IRG4PH40KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown VoltageS 1200 — — V Temperature Coeff. of Breakdown Voltage — 0.37 — V/°C Collector-to-Emitter Saturation Voltage — 2.74 3.4 — 3.29 — V — 2.53 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -3.3 — mV/°C Forward Transconductance T 8.0 12 — S Zero Gate Voltage Collector Current — — 250 µA — — 3000 Diode Forward Voltage Drop — 2.6 3.3 V — 2.4 3.1 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 15A VGE = 15V IC = 30A See Fig. 2, 5 IC = 15A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 15A VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 125°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 94 140 IC = 15A 14 22 nC VCC = 400V See Fig.8 37 55 VGE = 15V 50 — 31 — TJ = 25°C ns 96 140 IC = 15A, VCC = 800V 220 330 VGE = 15V, RG = 10Ω 1.31 — Energy losses include "tail" 1.12 — mJ and diode reverse recovery 2.43 2.8 See Fig. 9,10,18 — — µs VCC = 720V, TJ = 125°C VGE = 15V, RG = 10Ω , VCPK < 500V 49 — TJ = 150°C, See Fig. 10,11,18 33 — IC = 15A, VCC = 800V ns 290 — VGE = 15V, RG = 10Ω, 440 — Energy losses include "tail" 5.1 — mJ and diode reverse recovery 13 — nH Measured 5mm from package 1600 — VGE = 0V 77 — pF VCC = 30V See Fig. 7 26 — ƒ = 1.0MHz 63 95 ns TJ = 25°C See Fig. 106 160 TJ = 125°C 14 IF = 8.0A 4.5 8.0 A TJ = 25°C See Fig. 6.2 11 TJ = 125°C 15 VR = 200V 140 380 nC TJ = 25°C See Fig. 335 880 TJ = 125°C 16 di/dt = 200Aµs 133 — A/µs TJ = 25°C See Fig. 85 — TJ = 125°C 17 www.irf.com IRG4PH40KD 25 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified P ow e r Dis sip ation = 35 W LOAD CURRENT (A) 20 15 S q u a re w a v e : 6 0% of rate d volta ge 10 I 5 Id e a l d io d e s 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C , Collector-to-Emitter Current (A) TJ = 150 °C 10 TJ = 25 °C V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 100 100 TJ = 150 °C 10 TJ = 25 ° C V = 50V 5µs PULSE WIDTH CC 1 4 6 8 10 12 14 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH40KD 4.0 V = 15V 80 us PULSE WIDTH GE VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 30 25 20 15 10 5 0 25 50 75 100 125 150 I C = 30 A 3.5 3.0 I C = 15 A 2.5 I C = 7.5 A 2.0 -60 -40 -20 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 P DM 0.05 t1 0.02 0.01 0.01 0.00001 SINGLE PULSE (THERMAL RESPONSE) 0.0001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH40KD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 2000 Cies 1500 1000 500 Coes Cres 20 VGE , Gate-to-Emitter Voltage (V) 2500 0 1 10 12 8 4 0 100 0 Total Switching Losses (mJ) Total Switching Losses (mJ) 100 2.6 2.4 2.2 2.0 20 30 40 , GateResistance Resistance(Ohm) (Ω) RGRG , Gate Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 60 80 100 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 800V V CC = 480V V GE = 15V TJ = 25 °C 2.8 I C = 15A 10 20 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0 VCC = 400V I C = 15A 16 VCE , Collector-to-Emitter Voltage (V) 3.0 50 RG = 10 Ohm Ω VGE = 15V 800V VCC = 480V IC = 30 A 10 IC = 15 A IC = 7.5 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH40KD 100 = 10 Ohm Ω = 150 ° C 800V = 480V = 15V I C , Collector-to-Emitter Current (A) RG TJ 12 VCC VGE 10 8 6 4 2 VGE = 20V T J = 125 oC 10 SAFE OPERATING AREA 1 0 0 5 10 15 20 25 1 30 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Insta ntaneo us F orw ard Cu rrent - I F (A ) Total Switching Losses (mJ) 14 10 TJ = 15 0°C TJ = 12 5°C TJ = 2 5°C 1 0 2 4 6 8 10 Fo rwa rd V oltage D rop - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH40KD 100 200 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 160 I F = 8 .0 A I F = 4 .0A I IR R M - (A ) t rr - (ns) I F = 16A 120 I F = 1 6A I F = 8.0A 10 I F = 4 .0 A 80 40 0 100 d i f /d t - (A /µ s) 1 100 1000 1000 di f /dt - (A /µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 1000 600 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 500 d i(re c)M /d t - (A /µs) I F = 4 .0A Q R R - (nC ) 400 I F = 16 A 300 200 I F = 8 .0A I F = 4 .0A I F = 8.0 A 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 100 0 100 d i f /d t - (A /µ s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com I F = 1 6A 1000 10 100 1000 di f /dt - (A /µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PH40KD 90% Vge +Vge Same ty pe device as D .U.T. Vce 430µF 80% of Vce Ic D .U .T. 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t1 + 5 µ S V c e ic d t t1 ∫ Vce Ic dt t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id d t tx ∫ Ic dt +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 t4 V d id d t t3 ∫ Vd Ic dt t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH40KD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 800V 4 X IC @25°C 0 - 800V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH40KD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. Case Outline — TO-247AC 3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 ) 1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B- -D- M D B M -A5 .5 0 (.2 17 ) 2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 2X 1 2 5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4 5.5 0 (.2 1 7) 4.5 0 (.1 7 7) LEAD 1234- 3 -C- * 1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 ) 2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X 4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 3X 1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M 3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 ) NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C . * A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 ) 3X C A S CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P) D im e n s io n s in M illim e te rs a n d (In c h e s ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 6/00 10 www.irf.com