DOMINANT DWR-PJG-X2Y1-1 Power domiled Datasheet

DOMINANT
Opto Technologies
Innovating Illumination
TM
DATA SHEET:
Power DomiLED
AlInGaP : DWx-PJG
Power DomiLED
With its significant power in terms brightness, viewing angle and variety
of application possibilities, Power DomiLED truly is a standout performer!
Ideal for automotive interior lighting as well as home, office and industrial
applications, it is also a proven performer in electronic signs and signals.
Features:
>
>
>
>
>
>
High brightness surface mount LED using thin film technology.
120° viewing angle.
Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm.
Qualified according to JEDEC moisture sensitivity Level 2.
Compatible to IR reflow soldering.
Environmental friendly; RoHS compliance.
Applications:
> Automotive:
Interior applications, eg: switches, telematics, climate control system,
dashboard, etc.
Exterior applications, eg: signal lighting, Center High Mounted Stop Light
(CHMSL)
> Signage: full colour display video notice board, signage, special effect
lighting.
> Lighting: architecture lighting, general lighting, garden light, channel light.
© 2005 DomiLED is a trademark of DOMINANT Opto Technologies.
All rights reserved. Product specifications are subject to change without notice.
1
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Optical Characteristics at Tj=25˚C
Part Ordering
Number
Color
Viewing Luminous Intensity @ IF = 50mA Appx. 1.1 Flux @ IF=50mA,mlm
Angle˚
Min.
Typ.
Max.
Typ.
120
1400.0
2125.0
2850.0
5750.0
Red, 620nm
120
2240.0
2850.0
3550.0
7700.0
DWA-PJG-X2Y-1
Amber, 617nm
120
2240.0
3550.0
4500.0
9600.0
DWY-PJG-X2Y-1
Yellow, 589nm
120
2240.0
3550.0
4500.0
9600.0
DWS-PJG-W2X-1 Super Red, 632nm
DWR-PJG-X2Y1-1
Electrical Characteristics at Tj=25˚C
Vf @ If = 50mA Appx. 3.1
Part Number
Min. (V)
Typ. (V)
Max. (V)
Vr @ Ir = 10uA
Min. (V)
DWx-PJG
2.05
2.20
2.50
12
Absolute Maximum Ratings
Maximum Value
Unit
DC forward current
70
mA
Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1)
100
mA
Reverse voltage
12
V
ESD threshold (HBM)
2
kV
125
˚C
Operating temperature
-40 … +110
˚C
Storage temperature
-40 … +125
˚C
200
mW
300
K/W
130
K/W
LED junction temperature
Power dissipation (at room temperature)
Thermal resistance
- Junction / ambient, Rth JA
- Junction / solder point, Rth JS
(Mounting on FR4 PCB, pad size >= 16 mm2 per pad)
2
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Wavelength Grouping at Tj= 25˚C
Color
Group
Wavelength distribution (nm) Appx. 2.2
DWS, Super Red
Full
625 - 640
DWR; Red
Full
620 - 630
DWA; Amber
Full
610 - 621
W
610 - 615
X
615 - 621
Full
585 - 594
X
585 - 588
Y
588 - 591
Z
591 - 594
DWY; Yellow
Luminous Intensity Group at Tj=25˚C
Luminous Intensity Appx. 1.1
IV (mcd)
Brightness Group
W2
1400.0...1800.0
X1
1800.0...2240.0
X2
2240.0...2850.0
Y1
2850.0...3550.0
Y2
3550.0...4500.0
Vf Bining (Optional)
Vf @ If = 50mA
Forward Voltage (V) Appx. 3.1
V51
2.05 ... 2.20
V52
2.20 ... 2.35
V53
2.35 ... 2.50
Please consult sales and marketing for special part number to incorporate Vf binning.
3
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Relative Luminous Intensity Vs Forward Current
Relative
Luminous
IntensityCurrent
Vs Forward Current
Relative Luminous
Intensity
Vs Forward
IV/IIV(50mA)
);
==25°C
If(I
f(IF); Tj = 25°C
/I (50mA) ==f(I
T =Tj25°C
V/I);
VF(50mA)
Relative Luminous Intensity Irel
Relative
Luminous
Intensity
Irel Irel
Relative
Luminous
Intensity
Forward Current IF
Forward
Current
IF IF
Forward
Current
Relative
Luminous
Intensity
Irel Irel
Relative
Luminous
Intensity
Forward
Current
IF (mA)
Forward
Current
IF (mA)
Forward
CurrentCurrent
IF (mA) IF (mA)
Forward
Forward
Current
IF (mA)
Forward
Current
IF (mA)
Allowable
Forward
Current
IF( mA
Allowable
Forward
Current
IF( )mA )
)
( mA
Current
Allowable
AllowableForward
Forward Current
IF( ImA
)
F
Allowable
Forward
Current
IF( mA
Allowable
Forward
Current
IF( )mA )
40
0.5
0.4
0.3
30
30
20
20
0.4
0.3
0.2
30
20
20
10 Temperature
10
Ta = Ambient Temperature
Ta = Ambient
0.2
0.3
0.1
Ts = Solder PointTTemperature
20
s = Solder Point Temperature
10 Temperature
10
Ta = Ambient Temperature
Ta = Ambient
0.2
0.1
0
0
0.0
= Solder Point Temperature
Ts = Solder PointTTemperature
0 s40
10 50
20 60
30 70
40 80
50 90
60 100
70 110
80 120
90 100 110 120
20 Temperature
30
450
10 0 Ta =10
Ambient
0
0.1
0
0.0
Temperature
Solder
0 Temperature
10
20
50
70T(°C)
80 120
90 100 110 120
0 Ts =10
20 Point
30
40Temperature
50 30
60 40
70T(°C)
80 60
90 100
110
450
0
0.0
Temperature
T(°C)
Temperature
T(°C)
Allowable
Forward
Current
Vs Duty
Forward
Current
Vs Duty
Ratio
T(°C)
0 10 Allowable
20 30 Temperature
40
50 60
70
80
90
100
110
120 Ratio
450
Tj = 25°C;
tp ≤ 10μs )
( Tj = 25°C; tp ≤( 10μs
)
Allowable
Forward
Current
Temperature
T(°C)
Allowable
Current
Vs Duty
RatioVs Duty Ratio
1000 Forward
1000
Tj = 25°C;
)
( Tj = 25°C;
tp ≤( 10μs
)Vs tDuty
Allowable Forward
Current
Ratio
p ≤ 10μs
Allowable
1000 Forward Current Vs Duty Ratio
1000
(T
=
25°C;
t
≤
10μs
)
( Tj j = 25°C; tp ≤p10μs )
1000
100
100
100
10
10
10
0.1
0.1
0.1
Forward Current IF (mA)
j
60
50
50
40
Forward
Current
IF IF
Forward
Current
Irel
RelativeRelative
LuminousLuminous
Intensity IrelIntensity
Relative
Luminous
Intensity
Irel Irel
Relative
Luminous
Intensity
F
Relative
Luminous
IntensityCurrent
Vs Forward Current
Relative1.4
Luminous
Intensity
Vs Forward
70
IV/I
= f(IF); Tj = 25°C
IV/IV(50mA) = f(I
Tj = 25°C
V(50mA)
F);
Relative
Luminous
Intensity
Vs
Forward
Current
1.4
1.4
70
1.2IV/IV(50mA) = f(IF); Tj = 25°C
1.2
60
1.4
70
1.2
1.2
60
1.0
1.0
50
1.2
60
1.0
1.0
50
0.8
0.8
40
1.0
50
0.8
0.8
40
0.6
0.6
30
0.8
40
0.6
0.6
30
0.4
0.4
20
0.6
30
0.4
0.4
20
0.2
0.2
10
0.4
20
0.2
0.2
10
0.0
0.0
0
0.2 0
020
1030
2040
3050
4060
5070
60 10 1.9
70
10
0.0
0.0
0
Current
I
(mA)
0 20Forward
1030
20
30
40
50
60
70
F
0
10 Forward
40
50
60
70
Forward
Current IF (mA)
Current
IF (mA)
1.9
0.0
0
Maximum
Current
Vs
Temperature
Maximum
Current
Vs
Temperature
Forward
Current
I
(mA)
0
10
20 Forward
30 Current
40 IF (mA)
50
60 F
70
1.9
IF = f (T)
IF = f (T)Vs Temperature
Maximum
Current
Maximum
Current
Vs
Temperature
Maximum
Current
Vs
Temperature
80 Forward Current IF (mA)
80
1.0
IF = f (T)
IFI=F=f(T)
f (T)
T
Maximum
Current
Vs
Temperature
T
80
80
1.0
s
s
0.9
70
70
IF = f (T)
T
T
s
80
1.0
0.9
Ta s
Ta
0.8
70
70
60
60
T
Ta s
Ta
0.8
0.9
0.7
70
60
60
50
50
Ta
0.8
0.7
0.6
60
50
50
0.7
0.6
40
40
0.5
50
40
40
0.6
0.5
0.4
30
30
1.4
40
30
30
20
20
10
10
0
0
Intensity
Relative
Luminous
Intensity
Irel Irel
Luminous
Relative
Relative
Luminous
Intensity
Irel
V V
Forward Current Vs Forward Voltage
Forward
CurrentVoltage
Vs Forward Voltage
Forward Current
Vs Forward
); Tj =
25°C
If(V
= 25°C
IF = f(VF); ITFj =
F F); T
F = f(V
j = 25°C
Forward
CurrentVoltage
Vs Forward Voltage
Forward Current
Vs Forward
70
IF = f(VF); Tj = I25°C
F = f(VF); Tj = 25°C
Forward
Current Vs Forward Voltage
70
IF = f(VF); Tj = 25°C
60
1.9
2.0
1.9
2.0
2.0
2.1
2.1
2.2
2.2
2.3
2.3
Forward
(V)
Forward
(V)
Forward
Voltage
VFVoltage
2.0
2.1VoltageVV
2.2
F F (V)
2.1
2.2
2.3
2.3
Forward
VF (V)
(V)Voltage
Forward
VSpectral
Relative
Emission
Spectral
Emission
F 2.2
2.0 Relative
2.1Voltage
2.3
Irel = f(λ);
T50mA
= 50mA
Irel = f(λ); TRelative
IF =Spectral
j = 25°C; IFEmission
j = 25°C;
Relative
Spectral
Emission
Relative
Spectral
Emission
Forward Voltage VF (V)
1.0
TTj50mA
= 25°C; I = 50mA
Irelf(λ);
= f(λ);
Irel = f(λ); TIjrel
==
25°C;
IF =
j = 25°C; IF =F50mA
1.0
0.9 Relative Spectral Emission
Irel = f(λ); Tj =Yellow
25°C; IF = 50mA
Yellow
Super Red Super Red
0.9
0.8
Yellow
0.8
0.7
Amber
Yellow
0.7
0.6
Amber
Yellow
Amber
Amber
0.6
0.5
Amber
Super Red
Red
Super Red
Red
Super Red
Red
Red
Red
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0.0
500 450 550 500 600 550 650 600 700 650 750 700
0.0
λ (nm)
λWavelength
(nm)
500 600 550
650 750 700
500 450 550Wavelength
650 600 700
500
750
750
λ (nm)
λWavelength
(nm)
Wavelength
550 Wavelength
600
650
700 λ (nm)
750
Wavelength λ (nm)
Radiation Pattern
30°
20°
10°
0°
1.0
40°
0.8
100
100
10
10
50°
0.6
60°
0.4
70°
0.1
1
10 100
100
0.1
1 Duty Ratio, 1%Duty
10 Ratio, % 10 100
100
1
1
10
Duty Ratio, %Duty Ratio, %
10
Duty
Ratio,
Duty Ratio,
%%
80°
90°
100
4
0.2
0
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0.0
0.0
-0.1
-0.1
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
-0.5
-0.5
-50
-50 -30
YellowYellow
AmberAmber
Red Red
Super Super
Red Red
-30
-10
-10
10
10
30
30
50
50
70
70
90
90
110
Junction
Temperature
Tj(°C)
Junction
Temperature
T j(°C)
Junction
Temperature
T j(°C)
110
130
130
1.6
1.4
1.4
1.2
1.2
1.0
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0.0
0.0
-50
-50 -30
Red Red
Super Super
Red Red
YellowYellow
AmberAmber
-30
-10
-10
10
10
30
30
50
50
70
70
90
90
110
110
130
130
0.020
0.015
0.010
2.0
Red
0.0
Super Red
-2.0
∆Cx
0.005
∆Cx, ∆Cy
∆λdom(nm)
Wavelength
Relative
Relative
Wavelength ∆λ
dom(nm)
1.6
0.025
4.0
-4.0
0.000
-0.005
∆Cy
-0.010
-0.015
-6.0
-0.020
-8.0
-10.0
1.8
0.030
Yellow
6.0
1.8
Chromaticity Coordinate Shift Vs Junction Temperature
∆Cx, ∆Cy = f(Tj); IF = 50mA
Amber
8.0
2.0
Junction
Temperature
Junction
Temperature
Tj(°C)
Junction
Temperature
T j(°C) T j(°C)
Relative
Vs Junction
Temperature
RelativeWavelength
Wavelength Vs Junction
Temperature
∆λdom
λdom - λ-dom
(25°C)(25°C)
= f(Tj); IF =
= 50mA
∆λdom
= =λdom
λdom
f(Tj); IF =50mA
10.0
2.0
Relative
LuminousIntensity
Intensity Irel
Irel
Luminous
Relative
0.5
Relative
Luminous
Intensity
Vs
Temperature
Relative
Luminous
Intensity
Vs Junction
Junction
Temperature
Relative
Luminous
Intensity
Vs Junction
Temperature
=
f(T
);
I
=
50mA
IV /IV (25°C)
= f(T
);
I
=
50mA
IIV /I/IV (25°C)
j
V
(25°C)
=
f(T
);
I
=
50mA
j
V
V V
j
F
Relative Luminous Intensity Irel
0.5
Relative Forward Voltage ∆VF (V)
RelativeForward
Forward Voltage
∆V∆V
(V)
Voltage
Relative
F (V)
F
Relative
Forward
Voltage
Junction
Temperature
Relative
Forward
Voltage
Vs Junction
Temperature
Relative
Forward
Voltage
VsVs
Junction
Temperature
= FV(25°C)
=IFf(T
);I IF=50mA
= 50mA
V
= f(T
=);j50mA
F - VF(25°C)
F--FV
j);
∆VF∆V=F =VV∆V
(25°C)
=
f(T
F
F
j
F
-0.025
-50
-30
-10
10
30
50
70
90
110
130
-0.030
-50
-30
-10
10
30
50
70
90
110
130
Junction Temperature T j(°C)
Junction
Temperature TTj(°C)
Junction
Temperature
(°C)
j
5
03/07/2017 V8.0
DOMINANT
DOMINANT
Opto Technologies
TM
TM
AlInGaP : DWx-PJG
AlInGaP : DWx-PJG
Opto
Technologies
Innovating
Illumination
Innovating Illumination
DomiLED
Power DomiLED
• AllnGaP
• AlInGaP
: DWx-PJG
: DWx-PJG
Package
Package
Outlines
Outlines
DomiLED
Power DomiLED
• AllnGaP
• AlInGaP
: DWx-PJG
: DWx-PJG
Package
Package
Outlines
Outlines
TM
TM
Note : Primary thermal path is through Cathode lead of LED package.
Note : Primary thermal path is through Cathode lead of LED package.
Material
Material
Material
Material
Lead-frame
Lead-frame
Cu Alloy With Ag Plating
Cu Alloy With Ag Plating
Package
Package
High Temperature Resistant Plastic, PPA
High Temperature Resistant Plastic, PPA
Encapsulant
Encapsulant
Silicone resin
Silicone resin
Soldering Leads
Soldering Leads
Sn Plating
Sn Plating
6
6
03/07/2017 V8.0
13/12/2016 V7.0
DOMINANT
Opto Technologies
DOMINANT
TM
AlInGaP : DWx-PJG
AlInGaP : DWx-MKG
TM
Innovating
Illumination
Opto
Technologies
Innovating Illumination
Recommended Solder Pad
Recommended Solder Pad
7
03/07/2017 V8.0
8
31/10/2016 V1.0
DOMINANT
DOMINANT
Opto
Technologies
TM
AlInGaP : DWx-PJG
AlInGaP : DWx-PJG
TM
Innovating
Illumination
Opto Technologies
Innovating Illumination
Taping and orientation
Taping and orientation
•
••
•
Reels come in quantity of 2000 units.
Reels come in quantity of 2000 units.
Reel
diameter is 180 mm.
Reel diameter is 180 mm.
8
8
13/12/2016 V7.0
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Packaging Specification
9
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Packaging Specification
Moisture sensitivity level
Barcode label
DOMINANT Opto Technologies
(L) Lot No : lotno
ML TEMP
2 260˚C
RoHS Compliant
(P) Part No : partno
(C) Cust No : partno
(Q) Quantity : quantity
(G) Grouping : group
(D) D/C : date code
Made in Malaysia
(S) S/N : serial no
Reel
Moisture absorbent material +
Moisture indicator
Label
The reel, moisture absorbent material and moisture indicator are
sealed inside the moisture proof foil bag
Weight
Weight(gram)
(gram)
Average 1pc Power DomiLED
1 completed bag (2000pcs)
0.034
0.034
240 ± 10
190
10
Cardboard
Box
DOMINANT TM
For Power DomiLED
Cardboard Box
Size
Dimensions (mm)
Empty Box
Weight (kg)
Reel / Box
Super Small
325 x 225 x 190
0.38
9 reels MAX
Small
325 x 225 x 280
0.54
15 reels MAX
Medium
570 x 440 x 230
1.46
60 reels MAX
Large
570 x 440 x 460
1.92
120 reels MAX
10
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Recommended Pb-free Soldering Profile
Classification Reflow Profile (JEDEC J-STD-020C)
300
255-260˚C
10-30s
275
250
Temperature (˚C)
Ramp-up
3˚C/sec max.
217˚C
225
200
60-150s
175
150
125
Rampdown
6˚C/sec
max.
100
75
Preheat 60-180s
50
25
480s max
0
50
100
150
200
Time (sec)
11
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Appendix
1)
Brightness:
1.1
Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of
± 11 % (according to GUM with a coverage factor of k=3).
1.2
Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 %
(according to GUM with a coverage factor of k=3).
2)
Color:
2.1
Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded
uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3).
2.2
DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty
of ± 1nm (accordingly to GUM with a coverage factor of k=3).
3)
Voltage:
3.1
Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of
± 0.1V (accordingly to GUM with a coverage factor of k=3).
12
03/07/2017 V8.0
DOMINANT
TM
AlInGaP : DWx-PJG
Opto Technologies
Innovating Illumination
Revision History
Page
Subjects
Date of Modification
Add Typical Total Flux Value
Add graph “Allowable Forward Current vs
Duty Ratio”
Update Operating Temperature
09 Mar 2011
2
Add part no: DWS-PJG-W2X-1
04 Apr 2011
2, 4, 5
Update Vf Binning
Update Graph: Relative Luminous Intensity
Vs Forward Current
22 Dec 2011
6
Update Package Outline
05 Sep 2014
1, 4, 5, 6, 10, 12
Update Product Photo
Update Graph
Add Notes in Package Outline
Update Packaging Specification
Add Appendix
13 Dec 2016
3
Typo Error on Vf Binning Naming
03 Jul 2017
2, 5
NOTE
All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT
Opto Technologies does not assume any liability arising out of the application or use of any product described herein.
DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function
or design.
DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems
without the express written approval from the Managing Director of DOMINANT Opto Technologies.
13
03/07/2017 V8.0
DOMINANT
TM
Opto Technologies
AlInGaP : DWx-PJG
Innovating Illumination
About Us
DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art
manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found
under http://www.dominant-semi.com.
Please contact us for more information:
DOMINANT Opto Technologies Sdn. Bhd.
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia
Tel: (606) 283 3566 Fax: (606) 283 0566
E-mail: [email protected]
Similar pages