Order this document by MC34001/D These low cost JFET input operational amplifiers combine two state–of–the–art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin–compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC34001/ 34002/34004 series are specified from 0° to +70°C. • Input Offset Voltage Options of 5.0 mV and 10 mV Maximum • • • • • • • • JFET INPUT OPERATIONAL AMPLIFIERS 8 8 1 1 P SUFFIX PLASTIC PACKAGE CASE 626 Low Input Bias Current: 40 pA Low Input Offset Current: 10 pA Wide Gain Bandwidth: 4.0 MHz D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) PIN CONNECTIONS High Slew Rate: 13 V/µs Low Supply Current: 1.4 mA per Amplifier High Input Impedance: 1012 Ω High Common Mode and Supply Voltage Rejection Ratios: 100 dB Offset Null 1 8 NC Inv. Input 2 7 Noninv. Input 3 6 VCC Output VEE 4 5 Offset Null Industry Standard Pinouts + MC34001 (Top View) Output A Inputs A 1 8 2 7 3 VEE – + – + 4 VCC Output B 6 Inputs B 5 MC34002 (Top View) P SUFFIX PLASTIC PACKAGE CASE 646 14 1 PIN CONNECTIONS Output 1 ORDERING INFORMATION Op Amp Function Device Operating Temperature Range Package 1 14 2 13 – + Inputs 1 3 MC34001BD, D Single MC34001BP, P SO–8 TA = 0° to+ 70°C MC34002BD, D Dual MC34002BP, P Quad MC34004BP, P SO–8 TA = 0° to +70°C TA = 0° to +70°C VCC Plastic DIP Plastic DIP – + Inputs 4 12 11 5 10 + – 6 2 3 + – 7 VEE Inputs 3 9 8 Output 3 Plastic DIP MC34004 (Top View) Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA 4 4 Inputs 2 Output 2 1 Output 4 Rev 1 1 MC34001, B MC34002, B MC34004, B MAXIMUM RATINGS Rating Symbol Value Unit VCC, VEE ±18 V VID ±30 V VIDR ±16 V Open Short Circuit Duration tSC Continuous Operating Ambient Temperature Range TA 0 to +70 °C TJ 150 °C Tstg –65 to +150 °C Supply Voltage Differential Input Voltage (Note 1) Input Voltage Range Operating Junction Temperature Storage Temperature Range NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply. ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Min Typ Max — — 3.0 5.0 5.0 10 — 10 — — — 25 25 100 100 — — 50 50 200 200 ri — 1012 — Ω Common Mode Input Voltage Range VICR ±11 — +15 –12 — — V Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 k) MC3400XB MC3400X AVOL 50 25 150 100 — — ±12 ±10 ±14 ±13 — — 80 70 100 100 — — 80 70 100 100 — — — — 1.4 1.4 2.5 2.7 Characteristics Input Offset Voltage (RS ≤ 10 k) MC3400XB MC3400X Average Temperature Coefficient of Input Offset Voltage RS ≤ 10 k, TA = Tlow to Thigh (Note 2) Symbol VIO ∆VIO/∆T Input Offset Current (VCM = 0) (Note 3) MC3400XB MC3400X IIO Input Bias Current (VCM = 0) (Note 3) MC3400XB MC3400X IIB Input Resistance Output Voltage Swing (RL ≥ 10 k) (RL ≥ 2.0 k) VO Common Mode Rejection Ratio (RS ≤ 10 k) MC3400XB MC3400X CMRR Supply Voltage Rejection Ratio (RS ≤ 10 k) (Note 4) MC3400XB MC3400X PSRR Unit mV µV/°C pA pA V/mV V dB dB Supply Current (Each Amplifier) MC3400XB MC3400X ID Slew Rate (AV = 1.0) SR — 13 — V/µs GBW — 4.0 — MHz Equivalent Input Noise Voltage (RS = 100 Ω, f = 1000 Hz) en — 25 — nV/ √ Hz Equivalent Input Noise Current (f = 1000 Hz) in — 0.01 — pA/ √ Hz Gain–Bandwidth Product mA NOTES: 2. Tlow = 0°C for MC34001/34001B Thigh = +70°C for MC34001/34001B 0°C for MC34002 +70°C for MC34002 0°C for MC34004/34004B +70°C for MC34004/34004B 3. The input bias currents approximately double for every 10°C rise in junction temperature, TJ. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum. 4. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice. 2 MOTOROLA ANALOG IC DEVICE DATA MC34001, B MC34002, B MC34004, B ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = Tlow to Thigh [Note 2].) Characteristics Symbol Input Offset Voltage (RS ≤ 10 k) MC3400XB MC3400X VIO Input Offset Current (VCM = 0) (Note 3) MC3400XB MC3400X IIO Input Bias Current (VCM = 0) (Note 3) MC3400XB MC3400X IIB Common Mode Input Voltage Range VICR Large Signal (VO = ±10 V, RL = 2.0 k) MC3400XB MC3400X AVOL Output Voltage Swing (R ≥ 10 k) (R ≥ 2.0 k) VO Common Mode Rejection Ratio (RS ≤ 10 k) MC3400XB MC3400X CMRR Supply Voltage Rejection Ratio (RS ≤ 10 k) (Note 4) MC3400XB MC3400X PSRR Supply Current (Each Amplifier) MC3400XB MC3400X Min Typ Max — — — — 7.0 13 — — — — 4.0 4.0 — — — — 8.0 8.0 ±11 — — 25 15 — — — — ±12 ±10 — — — — 80 70 — — — — 80 70 — — — — — — — — 2.8 3.0 Unit mV nA nA V V/mV V dB dB ID mA NOTES: 2. Tlow = 0°C for MC34001/34001B Thigh = +70°C for MC34001/34001B 0°C for MC34002 +70°C for MC34002 0°C for MC34004/34004B +70°C for MC34004/34004B 3. The input bias currents approximately double for every 10°C rise in junction temperature, TJ. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum. 4. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice. MOTOROLA ANALOG IC DEVICE DATA 3 MC34001, B MC34002, B MC34004, B Figure 1. Input Bias Current versus Temperature Figure 2. Output Voltage Swing versus Frequency 35 10 VO, OUTPUT VOLTAGE SWING (Vpp ) I IB , INPUT BIAS CURRENT (nA) 100 VCC/VEE = ±15 V 1.0 0.1 –50 –25 0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) VCC/VEE = ±15 V 125 ±10 V 20 15 ± 5.0 V 10 5.0 1.0 k Figure 3. Output Voltage Swing versus Load Resistance VO ,OUTPUT VOLTAGE SWING (V pp) VO, OUTPUT VOLTAGE SWING (Vpp ) VCC/VEE = ±15 V TA = 25°C 10 5.0 30 20 10 0 0.2 0.4 0.7 1.0 4.0 2.0 7.0 0 10 20 Figure 6. Supply Current per Amplifier versus Temperature I D, SUPPLY DRAIN CURRENT (mA) VO, OUTPUT VOLTAGE SWING (Vpp ) 15 Figure 5. Output Voltage Swing versus Temperature RL = 10 k 25 RL = 2.0 k 20 15 10 5.0 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 4 10 VCC/VEE , SUPPLY VOLTAGE (V) VCC/VEE = ±15 V –50 5.0 RL, LOAD RESISTANCE (kΩ) 30 0 10 M RL = 2.0 k TA = 25°C 2.0 35 1.0 M 40 20 0 0.1 10 k 100 k f, FREQUENCY (Hz) Figure 4. Output Voltage Swing versus Supply Voltage 40 30 RL = 2.0 k TA = 25°C 25 0 100 0.01 –75 30 100 125 1.8 VCC/VEE = ±15 V 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –50 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA MC34001, B MC34002, B MC34004, B Figure 7. Large–Signal Voltage Gain and Phase Shift versus Frequency Figure 8. Large–Signal Voltage Gain versus Temperature 106 105 104 0° Gain 103 45° 102 90° Phase Shift 101 1 1.0 10 100 1.0 k A VOL, VOLTAGE GAIN (V/mV) VCC/VEE = ±15 V RL = 2.0 k TA = 25°C PHASE SHIFT (DEGREES) A VOL , OPEN–LOOP GAIN 1000 VCC/VEE = ±15 V VO = ±10 V RL = 2.0 k 100 10 135° 10 k 100 k 180° 1.0 M 1.0 M 10 M 1.0 –50 f, FREQUENCY (Hz) NORMALIZED SLEW RATE 1.15 1.10 1.05 1.00 0.95 0.90 0.85 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) en , EQUIVALENT INPUT NOISE VOLTAGE ( nV/ √ Hz ) Figure 9. Normalized Slew Rate versus Temperature –50 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) Figure 10. Equivalent Input Noise Voltage versus Frequency VCC/VEE = ±15 V AV = 10 RS = 100 Ω TA = 25°C 60 50 40 30 20 10 0 0.01 0.05 0.1 0.5 1.0 5.0 10 50 100 f, FREQUENCY (kHz) THD, TOTAL HARMONIC DISTORTION (%) Figure 11. Total Harmonic Distortion versus Frequency 1.0 0.5 0.1 0.05 VCC/VEE = ±15 Vdc AV = 1.0 VO = 6.0 V (RMS) TA = 25°C 0.01 0.005 0.001 0.1 0.5 1.0 5.0 10 50 100 f, FREQUENCY (kHz) MOTOROLA ANALOG IC DEVICE DATA 5 MC34001, B MC34002, B MC34004, B Representative Circuit Schematic (Each Amplifier) Bias Circuitry Common to All Amplifiers Output VCC Q4 Q3 Q2 Q5 Q1 Q6 – Inputs + J1 J2 2.0 k Q17 Q20 Q15 J3 Q23 Q19 10 pF 24 Q14 Q21 Q12 Q13 Q22 Q24 Q16 Q10 Q9 Q11 Q8 Q7 Q25 Q18 Offset Null (MC34001 only) 1.5 k 1.5 k VEE Figure 12. Output Current to Voltage Transformation for a D–to–A Converter VCC Settling time to within 1/2 LSB is approximately 4.0 µs from the time all bits are switched (C = 68 pF). R1 MSB A1 A2 A3 A4 Vref R2 D–to–A A5 A6 A7 LSB A8 The value of C may be selected to minimize overshoot and ringing. VCC = 15 V Theoretical VO 1 VO = + Io 15 pF VEE – Vref A1 A2 A3 A4 A5 A6 A7 A8 + + + + + + + (RO) 2 4 8 16 32 64 128 256 R1 VO MC34001 VEE = –15 V RO C 6 MOTOROLA ANALOG IC DEVICE DATA MC34001, B MC34002, B MC34004, B Figure 13. Positive Peak Detector 8 6 VCC – D1 1/2 2 3 MC34002 + Vin 4 Reset 5 V1 R3 VR R4 – Figure 15. Isolating Large Capacitive Loads R2 5.1 k R1 5.1 k 2 4 R6 Run Clear C* R5 – MC34001 + 3 +2.0 V 0 –2.0 V –15 V *Polycarbonate or Polystyrene Capacitor CC 7 6 4 VO 20 pF VCC 6 + VO *Polycarbonate capacitor D1 = Hi–speed, low–reverse leakage diode +15 V MC34001 7 3 R2 7 * 1 µF 1N914 Reset Network or Relay 2 + VEE Figure 14. Long Interval RC Timer R1 – 1/2 MC34002 IO R3 10 RL 5.1 k CL 0.5 µF VEE Overshoot 10% ts = 10 µs When driving large CL, the VO slew rate is determined by CL and IO(max): t ∆VO IO 0.02 = = V/µs = 0.04 V/µs (with CL shown) 0.5 ∆t CL Time (t) = R4 Cn (VR/VR–VI), R3 = R4, R5 = 0.1 R6 If R1 = R2: t = 0.693 R4C Design Example: 100 Second Timer VR = 10 V C = l.0 µF R3 = R4 = 144 M R6 = 20 k R5 = 2.0 k R1 = R2 = 1.0 k Figure 16. Wide BW, Low Noise, Low Drift Amplifier C2 R2 R1 Vin C1 7 2 fmax VCC ^ 240 kHz 10 V 8 6 3 4 –10 V MC34001 VEE ^ 240 kHz Parasitic input capacitance (C1 ^ 3.0 pF plus any additional layout capacitance) interacts with feedback elements and creates undesirable high–frequency pole. To compensate add C2 such that: R2C2 ^ R1C1. Sr Power BW: fmax = 2π Vp MOTOROLA ANALOG IC DEVICE DATA 7 MC34001, B MC34002, B MC34004, B OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 DIM A B C D F G H J K L M N F –A– NOTE 2 L C J –T– MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 N SEATING PLANE D M K G H 0.13 (0.005) T A M B M M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 8 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 8 M C B S A S DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ MOTOROLA ANALOG IC DEVICE DATA MC34001, B MC34002, B MC34004, B OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F L C J N H G D SEATING PLANE MOTOROLA ANALOG IC DEVICE DATA K M DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 9 MC34001, B MC34002, B MC34004, B NOTES 10 MOTOROLA ANALOG IC DEVICE DATA MC34001, B MC34002, B MC34004, B NOTES MOTOROLA ANALOG IC DEVICE DATA 11 MC34001, B MC34002, B MC34004, B Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 12 ◊ *MC34001/D* MOTOROLA ANALOG IC DEVICE DATA MC34001/D