fax id: 7013 1CY 54/7 4FCT138 T CY54/74FCT138T 1-of-8 Decoder Features Source current • Function, pinout, and drive compatible with FCT and F logic • FCT-C speed at 5.0 ns max. (Com’l), FCT-A speed at 5.8 ns max. (Com’l) • Reduced VOH (typically = 3.3V) versions of equivalent FCT functions • Edge-rate control circuitry for significantly improved noise characteristics • Power-off disable feature • ESD > 2000V • Matched rise and fall times • Fully compatible with TTL input and output logic levels • Extended commercial range of −40°C to +85°C • Sink current 64 mA (Com’l), 32 mA (Mil) Logic Block Diagram 32 mA (Com’l), 12 mA (Mil) • Dual 1-of-8 decoder with enables Functional Description The FCT138T is a 1-of-8 decoder. The FCT138T accepts three binary weighted inputs (A0, A1, A2) and, when enabled, provides eight mutually exclusive active LOW outputs (O0–O7). The FCT138T features three enable inputs, two active LOW (E1, E2) and one active HIGH (E3). All inputs will be HIGH unless E1 and E2 are LOW and E3 is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four FCT138T devices and one inverter. The outputs are designed with a power-off disable feature to allow for live insertion of boards. Pin Configurations E1 E2 E3 LCC Top View A0 O7 E2 NC E1 A2 A1 E3 A2 8 7 6 5 4 9 10 11 GND NC O6 3 2 1 20 19 12 13 O5 DIP/SOIC/QSOP Top View A0 1 16 VCC A1 A1 2 15 O0 A0 A2 3 14 O1 NC VCC E1 4 13 O2 E2 5 12 O3 O0 E3 6 11 O4 O7 7 10 O5 GND 8 9 O6 O1 O4 O3 NC O2 14 15 16 17 18 FCT138T–2 O7 O6 O5 O4 O3 O2 O1 O0 FCT138T–3 FCT138T–1 Pin Description Name Description A Address Inputs E1−E2 Enable Inputs (Active LOW) E3 Enable Input (Active HIGH) O Outputs Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 May 1994 – Revised March 17, 1997 CY54/74FCT138T ] Function Table[1] Inputs Outputs E1 E2 E3 A0 A1 A2 O0 O1 O2 O3 O4 O5 O6 O7 H X X X H X X X L X X X X X X X X X H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L H H H H L H L H L L H H L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H L L L L L L L L H H H H L H L H L L H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L Maximum Ratings[2, 3] Power Dissipation.......................................................... 0.5W Static Discharge Voltage ........................................... >2001V (per MIL-STD-883, Method 3015) (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ................................. –65°C to +150°C Operating Range Ambient Temperature with Power Applied............................................. –65°C to +135°C Range Supply Voltage to Ground Potential ............... –0.5V to +7.0V Commercial DC Input Voltage............................................ –0.5V to +7.0V Military[4] Ambient Temperature VCC All –40°C to +85°C 5V ± 5% All –55°C to +125°C 5V ± 10% Range DC Output Voltage ......................................... –0.5V to +7.0V DC Output Current (Maximum Sink Current/Pin)....... 120 mA Electrical Characteristics Over the Operating Range Parameter Description Test Conditions Min. Typ.[5] Max. Unit VOH Output HIGH Voltage VCC=Min., IOH=–32 mA Com’l 2.0 V VOH Output HIGH Voltage VCC=Min., IOH=–15 mA Com’l 2.4 3.3 V VOH Output HIGH Voltage VCC=Min., IOH=–12 mA Mil 2.4 3.3 V VOL Output LOW Voltage VCC=Min., IOL=64 mA Com’l 0.3 0.55 V VCC=Min., IOL=32 mA Mil 0.3 0.55 V VIH Input HIGH Voltage 2.0 V VIL Input LOW Voltage VH Hysteresis[6] All inputs 0.2 VIK Input Clamp Diode Voltage VCC=Min., IIN=–18 mA –0.7 II Input HIGH Current IIH 0.8 V V –1.2 V VCC=Max., VIN=VCC 5 µA Input HIGH Current VCC=Max., VIN=2.7V ±1 µA IIL Input LOW Current VCC=Max., VIN=0.5V IOS Output Short Circuit Current[7] VCC=Max., VOUT=0.0V IOFF Power-Off Disable VCC=0V, VOUT=4.5V –60 –120 ±1 µA –225 mA ±1 µA Notes: 1. H = HIGH Voltage Level. L = LOW Voltage Level. X = Don’t Care. 2. Unless otherwise noted, these limits are over the operating free-air temperature range. 3. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V CC or ground. 4. TA is the “instant on” case temperature. 5. Typical values are at VCC=5.0V, TA=+25°C ambient. 6. This parameter is guaranteed but not tested. 7. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last. 2 CY54/74FCT138T Capacitance[6] Parameter Description Typ.[5] Max. Unit CIN Input Capacitance 5 10 pF COUT Output Capacitance 9 12 pF Power Supply Characteristics Parameter Description Test Conditions Typ.[5] Max. Unit ICC Quiescent Power Supply Current VCC=Max., VIN<0.2V, VIN > VCC–0.2V 0.1 0.2 mA ∆ICC Quiescent Power Supply Current (TTL inputs) VCC=Max., VIN=3.4V,[8] f1=0, Outputs Open 0.5 2.0 mA ICCD Dynamic Power Supply Current[9] VCC=Max., One Input Toggling, 50% Duty Cycle, Outputs Open, VIN < 0.2V or VIN > VCC–0.2V 0.06 0.12 mA/MHz IC Total Power Supply Current[10] VCC=Max., f1=10 MHz, 50% Duty Cycle, Outputs Open, Toggle E1, E2, or E3, One Output Toggling, VIN < 0.2V or VIN > VCC–0.2V 0.7 1.4 mA VCC=Max., f1=10 MHz, 50% Duty Cycle, Outputs Open, Toggle E1, E2, or E3, One Output Toggling, VIN=3.4V or VIN=GND 1.0 2.4 mA Notes: 8. Per TTL driven input (VIN=3.4V); all other inputs at VCC or GND. 9. This parameter is not directly testable, but is derived for use in Total Power Supply calculations. = IQUIESCENT + IINPUTS + IDYNAMIC 10. IC IC = ICC+∆I CCDHNT+ICCD(f0/2 + f1N1) ICC = Quiescent Current with CMOS input levels ∆ICC = Power Supply Current for a TTL HIGH input (VIN=3.4V) DH = Duty Cycle for TTL inputs HIGH = Number of TTL inputs at DH NT ICCD = Dynamic Current caused by an input transition pair (HLH or LHL) = Clock frequency for registered devices, otherwise zero f0 f1 = Input signal frequency = Number of inputs changing at f1 N1 All currents are in milliamps and all frequencies are in megahertz. 3 CY54/74FCT138T Switching Characteristics Over the Operating Range FCT138T Military Parameter Description Min. [11] FCT138AT Commercial Max. [11] Min. Max. Military [11] Min. Commercial Max. Min.[11] Max. Unit Fig. No.[12] tPLH tPHL Propagation Delay A to O 1.5 12.0 1.5 9.0 1.5 7.8 1.5 5.8 ns 1, 2 tPLH tPHL Propagation Delay E1 or E2 to O 1.5 12.5 1.5 9.0 1.5 8.0 1.5 5.9 ns 1, 5 tPLH tPHL Propagation Delay E3 to O 1.5 12.5 1.5 9.0 1.5 8.0 1.5 5.9 ns 1, 5 FCT138CT Military Parameter Description Commercial Min.[11] Max. Min.[11] Max. Unit Fig. No.[12] tPLH tPHL Propagation Delay A to O 1.5 6.0 1.5 5.0 ns 1, 2 tPLH tPHL Propagation Delay E1 or E2 to O 1.5 6.1 1.5 5.0 ns 1, 5 tPLH tPHL Propagation Delay E3 to O 1.5 6.1 1.5 5.0 ns 1, 5 Ordering Information Speed (ns) 5.0 5.8 6.0 9.0 Ordering Code Package Name Package Type CY74FCT138CTQC Q1 16-Lead (150-Mil) QSOP CY74FCT138CTSOC S1 16-Lead (300-Mil) Molded SOIC CY74FCT138ATPC P1 16-Lead (300-Mil) Molded DIP CY74FCT138ATQC Q1 16-Lead (150-Mil) QSOP CY74FCT138ATSOC S1 16-Lead (300-Mil) Molded SOIC CY54FCT138CTDMB D2 16-Lead (300-Mil) CerDIP CY54FCT138CTLMB L61 20-Pin Square Leadless Chip Carrier CY74FCT138TSOC S1 16-Lead (300-Mil) Molded SOIC Notes: 11. Minimum limits are guaranteed but not tested on Propagation Delays. 12. See “Parameter Measurement Information” in the General Information Section. Document #: 38-00297-B 4 Operating Range Commercial Commercial Military Commercial CY54/74FCT138T Package Diagrams 16-Lead (300-Mil) CerDIP D2 MIL-STD-1835 20-Pin Square Leadless Chip Carrier L61 D-2 Config.A MIL-STD-1835 C-2A 16-Lead (300-Mil) Molded DIP P1 5 CY54/74FCT138T Package Diagrams (continued) 16-Lead Quarter Size Outline Q1 16-Lead Molded SOIC S1 © Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.