TI1 OPA336N/250G4 Single-supply, micropower cmos operational amplifiers microamplifier sery Datasheet

OPA
OPA
433
OPA336
OPA2336
OPA4336
6
336
OPA2
336
SBOS068C – JANUARY 1997 – REVISED JANUARY 2005
SINGLE-SUPPLY, microPower
CMOS OPERATIONAL AMPLIFIERS
microAmplifier ™ Series
FEATURES
DESCRIPTION
●
●
●
●
OPA336 series microPower CMOS operational amplifiers
are designed for battery-powered applications. They
operate on a single supply with operation as low as 2.1V.
The output is rail-to-rail and swings to within 3mV of the
supplies with a 100kΩ load. The common-mode range
extends to the negative supply—ideal for single-supply
applications. Single, dual, and quad versions have identical
specifications for maximum design flexibility.
SINGLE-SUPPLY OPERATION
RAIL-TO-RAIL OUTPUT (within 3mV)
microPOWER: IQ = 20µA/Amplifier
microSIZE PACKAGES
● LOW OFFSET VOLTAGE: 125µV max
● SPECIFIED FROM VS = 2.3V to 5.5V
● SINGLE, DUAL, AND QUAD VERSIONS
In addition to small size and low quiescent current
(20µA/amplifier), they feature low offset voltage
(125µV max), low input bias current (1pA), and high openloop gain (115dB). Dual and quad designs feature
completely independent circuitry for lowest crosstalk and
freedom from interaction.
APPLICATIONS
●
●
●
●
●
●
●
BATTERY-POWERED INSTRUMENTS
PORTABLE DEVICES
HIGH-IMPEDANCE APPLICATIONS
PHOTODIODE PRE-AMPS
PRECISION INTEGRATORS
MEDICAL INSTRUMENTS
TEST EQUIPMENT
OPA336 packages are the tiny SOT23-5 surface mount
and SO-8 surface-mount. OPA2336 come in the miniature
MSOP-8 surface-mount, SO-8 surface-mount, and DIP-8
packages. The OPA4336 package is the space-saving
SSOP-16 surface-mount. All are specified from
–40°C to +85°C and operate from –55°C to +125°C.
A macromodel is available for download (at www.ti.com)
for design analysis.
OPA336
Out
1
V–
2
+In
3
5
V+
4
–In
OPA4336
Out A
1
–In A
2
A
SOT23-5
OPA336
OPA2336
NC
1
8
NC
Out A
1
–In
2
7
V+
–In A
2
+In
3
6
Output
+In A
3
V–
4
5
NC
V–
4
SO-8
A
B
DIP-8, SO-8, MSOP-8
16
Out D
15
–In D
D
+In A
3
14
+In D
V+
4
13
V–
+In B
5
12
+In C
8
V+
7
Out B
–In B
6
11
–In C
6
–In B
Out B
7
10
Out C
5
+In B
NC
8
9
NC
B
C
SSOP-16
NC = No Connection
NC = No Connection
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright © 1997-2005, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
www.ti.com
PACKAGE/ORDERING INFORMATION(1)
PRODUCT
PACKAGE-LEAD
PACKAGE
DRAWING
DESIGNATOR
Single
OPA336N
OPA336NA
OPA336NJ
OPA336U
OPA336UA
OPA336UJ
SOT23-5
SOT23-5
SOT23-5
SO-8 Surface-Mount
SO-8 Surface-Mount
SO-8 Surface-Mount
DBV
DBV
DBV
D
D
D
A36(2)
A36(2)
J36
OPA336U
OPA336UA
OPA336UJ
Dual
OPA2336E
OPA2336EA
OPA2336P
MSOP-8 Surface-Mount
MSOP-8 Surface-Mount
DIP-8
DGK
DGK
P
B36(2)
B36(2)
OPA2336P
PACKAGE
MARKING
OPA2336PA
DIP-8
P
OPA2336PA
OPA2336U
OPA2336UA
SO-8 Surface-Mount
SO-8 Surface-Mount
D
D
OPA2336U
OPA2336UA
Quad
OPA4336EA
SSOP-16 Surface-Mount
DBQ
OPA4336EA
NOTES: (1) For the most current package and ordering information, see the package option addendum at the end of this data sheet. (2) Grade will be marked on
the Reel.
ELECTROSTATIC
DISCHARGE SENSITIVITY
ABSOLUTE MAXIMUM RATINGS(1)
Supply Voltage ................................................................................... 7.5V
Signal Input Terminals, Voltage(2) ..................... (V–) –0.3V to (V+) +0.3V
Current(2) .................................................... 10mA
Output Short-Circuit(3) .............................................................. Continuous
Operating Temperature .................................................. –55°C to +125°C
Storage Temperature ..................................................... –55°C to +125°C
Junction Temperature ...................................................................... 150°C
Lead Temperature (soldering, 10s) ................................................. 300°C
ESD Rating:
Charged Device Model, OPA336 NJ and UJ only (CDM)(4) ....... 1000V
Human Body Model (HBM)(4) ......................................................... 500V
Machine Model (MM)(4) .................................................................. 100V
NOTES: (1) Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum conditions for extended periods may
degrade device reliability. These are stress ratings only. Functional operation of the device at these conditions, or beyond the specified operating
conditions, is not implied. (2) Input terminals are diode-clamped to the power
supply rails. Input signals that can swing more than 0.3V beyond the supply
rails should be current-limited to 10mA or less. (3) Short-circuit to ground,
one amplifier per package. (4) OPA336 NJ and UJ have been tested to CDM
of 1000V. All other previous package versions have been tested using HBM
and MM. Results are shown.
2
This integrated circuit can be damaged by ESD. Texas
Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits
may be more susceptible to damage because very small
parametric changes could cause the device not to meet its
published specifications.
OPA336, 2336, 4336
www.ti.com
SBOS068C
ELECTRICAL CHARACTERISTICS: VS = 2.3V to 5.5V
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C.
At TA = +25°C, VS = +5V, and RL = 25kΩ connected to VS/2, unless otherwise noted.
OPA336N, U
OPA2336E, P, U
PARAMETER
OFFSET VOLTAGE
Input Offset Voltage
vs Temperature
vs Power Supply
Over Temperature
Channel Separation, dc
CONDITION
VOS
dVOS/dT
PSRR
INPUT BIAS CURRENT
Input Bias Current
Over Temperature
Input Offset Current
MIN
TYP(1)
MAX
±60
±125
25
100
130
±1.5
VS = 2.3V to 5.5V
VS = 2.3V to 5.5V
±1
IOS
±1
NOISE
Input Voltage Noise, f = 0.1 to 10Hz
Input Voltage Noise Density, f = 1kHz en
Current Noise Density, f = 1kHz
in
3
40
30
VCM
CMRR
–0.2V < VCM < (V+) –1V
–0.2V < VCM < (V+) –1V
–0.2
80
76
INPUT IMPEDANCE
Differential
Common-Mode
OPEN-LOOP GAIN
Open-Loop Voltage Gain
Over Temperature
Over Temperature
FREQUENCY RESPONSE
Gain-Bandwidth Product
Slew Rate
Overload Recovery Time
AOL RL = 25kΩ, 100mV < VO < (V+) – 100mV
RL = 25kΩ, 100mV < VO < (V+) – 100mV
RL = 5kΩ, 500mV < VO < (V+) – 500mV
RL = 5kΩ, 500mV < VO < (V+) – 500mV
GBW
SR
Over Temperature
POWER SUPPLY
Specified Voltage Range
Minimum Operating Voltage
Quiescent Current (per amplifier)
Over Temperature
TEMPERATURE RANGE
Specified Range
Operating Range
Storage Range
Thermal Resistance
SOT-23-5 Surface-Mount
MSOP-8 Surface-Mount
SO-8 Surface-Mount
DIP-8
SSOP-16 Surface-Mount
DIP-14
100
100
90
90
✻
70
✻
76
74
VS
IQ
2.3
90
90
✻
✻
IO = 0
IO = 0
–40
–55
–55
✻
✻
✻
✻
✻
✻
✻
76
74
90
90
✻
✻
✻
✻
32
36
+85
+125
+125
✻
✻
✻
V
dB
dB
✻
✻
Ω || pF
Ω || pF
✻
dB
dB
dB
dB
✻
kHz
V/µs
µs
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
23
✻
✻
✻
θJA
200
150
150
100
100
80
µVp-p
nV/√Hz
fA/√Hz
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
pA
pA
pA
86
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
±500 ±2500
µV
✻
µV/°C
✻
✻
µV/V
✻
µV/V
✻
µV/V
✻
✻
✻
86
✻
✻
100
100
500
500
TYP MAX UNITS
✻
✻
✻
✻
5.5
2.1
20
✻
✻
✻
✻
±5
See Text
ISC
CLOAD
✻
✻
MIN
✻
✻
✻
106
3
20
±500
±10
115
RL = 100kΩ, AOL ≥ 70dB
RL = 25kΩ, AOL ≥ 90dB
RL = 25kΩ, AOL ≥ 90dB
RL = 5kΩ, AOL ≥ 90dB
RL = 5kΩ, AOL ≥ 90dB
✻
✻
✻
✻
(V+) –1
100
0.03
100
MAX
±10
±60
90
VS = 5V, G = 1
VS = 5V, G = 1
VIN • G = VS
TYP
OPA336NJ, UJ
✻
1013 || 2
1013 || 4
OUTPUT
Voltage Output Swing from Rail(2)
Over Temperature
Short-Circuit Current
Capacitive Load Drive
MIN
0.1
IB
INPUT VOLTAGE RANGE
Common-Mode Voltage Range
Common-Mode Rejection Ratio
Over Temperature
OPA336NA, UA
OPA2336EA, PA, UA
OPA4336EA
✻
✻
mV
mV
mV
mV
mV
mA
pF
38
42
V
V
µA
µA
✻
✻
✻
°C
°C
°C
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
✻Specifications same as OPA2336E, P, U.
NOTES: (1) VS = +5V. (2) Output voltage swings are measured between the output and positive and negative power-supply rails.
OPA336, 2336, 4336
SBOS068C
www.ti.com
3
TYPICAL CHARACTERISTICS
At TA = +25°C, VS = +5V, and RL = 25kΩ connected to VS/2, unless otherwise noted.
POWER-SUPPLY and COMMON-MODE
REJECTION RATIO vs FREQUENCY
OPEN-LOOP GAIN/PHASE vs FREQUENCY
100
100
G
0
–45
40
–90
Φ
20
–135
0
–180
PSRR, CMRR (dB)
60
CMRR
80
Phase (°)
Voltage Gain (dB)
80
60
PSRR
40
20
–20
0
10
1
100
1k
10k
100k
1M
1
10
Frequency (Hz)
100
1k
100k
QUIESCENT CURRENT vs TEMPERATURE
QUIESCENT CURRENT vs SUPPLY VOLTAGE
30
30
Per Amplifier
Per Amplifier
VS = +5V
Quiescent Current (µA)
25
Quiescent Current (µA)
10k
Frequency (Hz)
25
20
15
20
15
10
VS = +2.3V
5
0
10
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
–75
6.0
–50
–25
Supply Voltage (V)
SHORT-CIRCUIT CURRENT vs SUPPLY VOLTAGE
50
75
100
125
8
7
±5
Short-Circuit Current (mA)
Short-Circuit Current (mA)
25
SHORT-CIRCUIT CURRENT vs TEMPERATURE
±6
+ISC
±4
±3
±2
–ISC
±1
VS = +5V
6
–ISC
5
4
+ISC
+ISC
3
VS = +2.3V
2
–ISC
1
0
0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
–75
Supply Voltage (V)
4
0
Temperature (°C)
–50
–25
0
25
50
75
100
125
Temperature (°C)
OPA336, 2336, 4336
www.ti.com
SBOS068C
TYPICAL CHARACTERISTICS (Cont.)
At TA = +25°C, VS = +5V, and RL = 25kΩ connected to VS/2, unless otherwise noted.
INPUT VOLTAGE AND CURRENT NOISE
SPECTRAL DENSITY vs FREQUENCY
CHANNEL SEPARATION vs FREQUENCY
1k
150
100
100
10
10
Current Noise (fA/√Hz)
140
130
Dual and Quad devices, G = 1, all
channels. Quad measured channel A
to D or B to C—other combinations
yield improved rejection.
120
Current Noise
1
110
1
10
100
1k
10k
100k
100
1k
Frequency (Hz)
120
AOL
VS = +5.5V
AOL, CMRR, PSRR (dB)
4
3
VS = +2.3V
2
1
110
100
PSRR
90
CMRR
80
70
0
1k
100
10k
–75
100k
–50
–25
0
25
50
75
100
Frequency (Hz)
Temperature (°C)
OFFSET VOLTAGE
PRODUCTION DISTRIBUTION
OFFSET VOLTAGE DRIFT MAGNITUDE
PRODUCTION DISTRIBUTION
25
125
25
Percent of Amplifiers (%)
Typical production
distribution of
packaged units.
15
10
5
0.1% 0.3%
0.2% 0.1%
20
15
10
5
Offset Voltage (µV)
4
3.5
3.75
3
3.25
2.5
2.75
2
2.25
1.5
1
1.25
Offset Voltage Drift (µV/°C)
OPA336, 2336, 4336
SBOS068C
0.5
0.25
500
400
300
200
100
0
–100
–200
–300
–400
0
–500
0
Typical production
distribution of
packaged units.
0.75
Output Voltage (Vp-p)
5
Percent of Amplifiers (%)
100k
AOL, CMRR, PSRR vs TEMPERATURE
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY
6
20
10k
Frequency (Hz)
1.75
Voltage Noise (nV/√Hz)
Voltage Noise
Channel Separation (dB)
1k
www.ti.com
5
TYPICAL CHARACTERISTICS (Cont.)
At TA = +25°C, VS = +5V, and RL = 25kΩ connected to VS/2, unless otherwise noted.
INPUT BIAS CURRENT
vs INPUT COMMON-MODE VOLTAGE
INPUT BIAS CURRENT vs TEMPERATURE
4
Input Bias Current (pA)
Input Bias Current (pA)
1k
100
10
1
3
VS = +5V
2
1
0
0.1
–75
–50
–25
0
25
50
Temperature (°C)
75
100
0
125
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
1
2
3
Common-Mode Voltage (V)
4
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
5
–2.5
VS = ±2.5V
VS = +5V
–2.0
–55°C
Sourcing
Current
+125°C
+25°C
Output Voltage (V)
4
Output Voltage (V)
5
3
VS = +2.3V
+125°C
2
–55°C
1
Sinking
Current
–1.5
+125°C
–1.0
–55°C
–0.5
+25°C
+25°C
0
0
0
1
2
3
4
5
Output Current (mA)
6
7
8
–0
–2
–3
–4
–5
Output Current (mA)
–6
–7
–8
LARGE-SIGNAL STEP RESPONSE
G = 1, CL = 620pF, VS = +5V
20mV/div
500mV/div
SMALL-SIGNAL STEP RESPONSE
G = 1, CL = 200pF, VS = +5V
200µs/div
50µs/div
6
–1
OPA336, 2336, 4336
www.ti.com
SBOS068C
APPLICATIONS INFORMATION
OPA336 series op amps are fabricated on a state-of-the-art
0.6 micron CMOS process. They are unity-gain stable and
suitable for a wide range of general-purpose applications.
Power-supply pins should be bypassed with 0.01µF ceramic
capacitors. OPA336 series op amps are protected against
reverse battery voltages.
Normally, input bias current is approximately 1pA. However, input voltages exceeding the power supplies can
cause excessive current to flow in or out of the input pins.
Momentary voltages greater than the power supply can be
tolerated as long as the current on the input pins is limited
to 10mA. This is easily accomplished with an input resistor, as shown in Figure 2.
OPERATING VOLTAGE
+5V
OPA336 series op amps can operate from a +2.1V to +5.5V
single supply with excellent performance. Most behavior
remains unchanged throughout the full operating voltage
range. Parameters which vary significantly with operating
voltage are shown in the typical characteristics. OPA336
series op amps are fully specified for operation from +2.3V
to +5.5V; a single limit applies over the supply range. In
addition, many parameters are ensured over the specified
temperature range, –40°C to +85°C.
INPUT VOLTAGE
The input common-mode range of OPA336 series op amps
extends from (V–) – 0.2V to (V+) – 1V. For normal
operation, inputs should be limited to this range. The
absolute maximum input voltage is 300mV beyond the
supplies. Thus, inputs greater than the input
common-mode range but less than maximum input voltage, while not valid, will not cause any damage to the op
amp. Furthermore, the inputs may go beyond the power
supplies without phase inversion, as shown in Figure 1,
unlike some other op amps.
IOVERLOAD
10mA max
VOUT
OPAx336
VIN
5kΩ
FIGURE 2. Input Current Protection for Voltages Exceeding
the Supply Voltage.
CAPACITIVE LOAD AND STABILITY
OPA336 series op amps can drive a wide range of capacitive loads. However, all op amps under certain conditions
may become unstable. Op-amp configuration, gain, and
load value are just a few of the factors to consider when
determining stability.
When properly configured, OPA336 series op amps can
drive approximately 10,000pF. An op amp in unity-gain
configuration is the most vulnerable to capacitive load. The
capacitive load reacts with the op amp’s output resistance,
along with any additional load resistance, to create a pole in
the response which degrades the phase margin. In unity gain,
OPA336 series op amps perform well with a pure capacitive
load up to about 300pF. Increasing gain enhances the
amplifier’s ability to drive loads beyond this level.
One method of improving capacitive load drive in the
unity-gain configuration is to insert a 50Ω to 100Ω resistor
inside the feedback loop, as shown in Figure 3. This reduces
ringing with large capacitive loads while maintaining DC
6V
VOUT
RS
100Ω
OPAx336
0V
VOUT
VIN
CL
FIGURE 1. No Phase Inversion with Inputs Greater than the
Power-Supply Voltage.
FIGURE 3. Series Resistor in Unity-Gain Configuration
Improves Capacitive Load Drive.
OPA336, 2336, 4336
SBOS068C
RL
www.ti.com
7
accuracy. For example, with RL = 25kΩ, OPA336 series op
amps perform well with capacitive loads in excess of 1000pF,
as shown in Figure 4. Without RS, capacitive load drive is
typically 350pF for these conditions, as shown in Figure 5.
Figure 5 shows the recommended operating regions for the
OPA336. Decreasing the load resistance generally improves
capacitive load drive. Figure 5 also illustrates how stability
differs depending on where the resistive load is connected.
With G = +1 and RL = 10kΩ connected to VS/2, the OPA336
can typically drive 500pF. Connecting the same load to
ground improves capacitive load drive to 1000pF.
20mV/div
RS = 100Ω, Load = 2kΩ || 1000pF, VS = +5V
Direct Current (DC) error at the output; however, this error
may be insignificant. For instance, with RL = 100kΩ and
RS = 100Ω, there is only about a 0.1% error at the output.
10k
50µs/div
FIGURE 4. Small-Signal Step Response Using Series Resistor to Improve Capacitive Load Drive.
Alternatively, the resistor may be connected in series with
the output outside of the feedback loop. However, if there is
a resistive load parallel to the capacitive load, it and the
series resistor create a voltage divider. This introduces a
8
Capacitive Load (pF)
Operation Above Selected Gain
Curve Not Recommended
G = +1
RL to Ground
G = +2
RL to Ground
1k
G = +1
RL to VS/2
VS = +5V, VO = VS/2
100
5
10
100
Resistive Load (kΩ)
FIGURE 5. Stability—Capacitive Load vs Resistive Load.
OPA336, 2336, 4336
www.ti.com
SBOS068C
PACKAGE OPTION ADDENDUM
www.ti.com
15-Apr-2017
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
HPA00779NA/3K
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
OPA2336E/250
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336E/250G4
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336E/2K5
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336E/2K5G4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336EA/250
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336EA/250G4
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336EA/2K5
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336EA/2K5G4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 85
B36
OPA2336P
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
-40 to 85
OPA2336P
OPA2336PA
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
-40 to 85
OPA2336P
A
OPA2336PAG4
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
-40 to 85
OPA2336P
A
OPA2336PG4
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
-40 to 85
OPA2336P
OPA2336U
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
OPA2336U/2K5
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
OPA2336U/2K5G4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
OPA2336UA
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
Addendum-Page 1
A36
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
15-Apr-2017
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
A
OPA2336UA/2K5
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
A
OPA2336UA/2K5G4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
A
OPA2336UAG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
A
OPA2336UG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
2336U
OPA336N/250
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336N/250G4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336N/3K
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336N/3KG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336NA/250
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336NA/250G4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336NA/3K
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336NA/3KG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
A36
OPA336NJ/250
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
J36
OPA336NJ/250G4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
J36
OPA336NJ/3K
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
J36
OPA336NJ/3KG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
J36
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
15-Apr-2017
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
OPA336U
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
OPA336U/2K5
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
OPA336U/2K5G4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
OPA336UA
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
A
OPA336UA/2K5
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
A
OPA336UA/2K5G4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
A
OPA336UAG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
A
OPA336UG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
OPA
336U
OPA4336EA/250
ACTIVE
SSOP
DBQ
16
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
4336EA
OPA4336EA/250G4
ACTIVE
SSOP
DBQ
16
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
4336EA
OPA4336EA/2K5
ACTIVE
SSOP
DBQ
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
4336EA
OPA4336EA/2K5G4
ACTIVE
SSOP
DBQ
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
OPA
4336EA
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
15-Apr-2017
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF OPA336 :
• Enhanced Product: OPA336-EP
NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 4
PACKAGE MATERIALS INFORMATION
www.ti.com
29-Mar-2017
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
OPA2336E/250
VSSOP
DGK
8
250
180.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
OPA2336E/2K5
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
OPA2336EA/250
VSSOP
DGK
8
250
180.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
OPA2336EA/2K5
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
OPA2336U/2K5
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
OPA2336UA/2K5
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
OPA336N/250
SOT-23
DBV
5
250
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
OPA336N/3K
SOT-23
DBV
5
3000
179.0
8.4
3.2
3.2
1.4
4.0
8.0
Q3
OPA336N/3K
SOT-23
DBV
5
3000
178.0
9.0
3.23
3.17
1.37
4.0
8.0
Q3
OPA336NA/250
SOT-23
DBV
5
250
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
OPA336NA/3K
SOT-23
DBV
5
3000
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
OPA336NA/3K
SOT-23
DBV
5
3000
179.0
8.4
3.2
3.2
1.4
4.0
8.0
Q3
OPA336NJ/250
SOT-23
DBV
5
250
178.0
9.0
3.23
3.17
1.37
4.0
8.0
Q3
OPA336NJ/3K
SOT-23
DBV
5
3000
179.0
8.4
3.2
3.2
1.4
4.0
8.0
Q3
OPA336NJ/3K
SOT-23
DBV
5
3000
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
OPA336U/2K5
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
OPA336UA/2K5
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
OPA4336EA/250
SSOP
DBQ
16
250
180.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
29-Mar-2017
Device
OPA4336EA/2K5
Package Package Pins
Type Drawing
SSOP
DBQ
16
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2500
330.0
12.4
6.4
B0
(mm)
K0
(mm)
P1
(mm)
5.2
2.1
8.0
W
Pin1
(mm) Quadrant
12.0
Q1
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
OPA2336E/250
VSSOP
DGK
8
250
210.0
185.0
35.0
OPA2336E/2K5
VSSOP
DGK
8
2500
367.0
367.0
35.0
OPA2336EA/250
VSSOP
DGK
8
250
210.0
185.0
35.0
OPA2336EA/2K5
VSSOP
DGK
8
2500
367.0
367.0
35.0
OPA2336U/2K5
SOIC
D
8
2500
367.0
367.0
35.0
OPA2336UA/2K5
SOIC
D
8
2500
367.0
367.0
35.0
OPA336N/250
SOT-23
DBV
5
250
180.0
180.0
18.0
OPA336N/3K
SOT-23
DBV
5
3000
203.0
203.0
35.0
OPA336N/3K
SOT-23
DBV
5
3000
180.0
180.0
18.0
OPA336NA/250
SOT-23
DBV
5
250
180.0
180.0
18.0
OPA336NA/3K
SOT-23
DBV
5
3000
180.0
180.0
18.0
OPA336NA/3K
SOT-23
DBV
5
3000
203.0
203.0
35.0
OPA336NJ/250
SOT-23
DBV
5
250
180.0
180.0
18.0
OPA336NJ/3K
SOT-23
DBV
5
3000
203.0
203.0
35.0
OPA336NJ/3K
SOT-23
DBV
5
3000
180.0
180.0
18.0
OPA336U/2K5
SOIC
D
8
2500
367.0
367.0
35.0
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
29-Mar-2017
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
OPA336UA/2K5
SOIC
D
8
2500
367.0
367.0
35.0
OPA4336EA/250
SSOP
DBQ
16
250
210.0
185.0
35.0
OPA4336EA/2K5
SSOP
DBQ
16
2500
367.0
367.0
35.0
Pack Materials-Page 3
PACKAGE OUTLINE
DBQ0016A
SSOP - 1.75 mm max height
SCALE 2.800
SHRINK SMALL-OUTLINE PACKAGE
C
SEATING PLANE
.228-.244 TYP
[5.80-6.19]
A
.004 [0.1] C
PIN 1 ID AREA
16
1
14X .0250
[0.635]
2X
.175
[4.45]
.189-.197
[4.81-5.00]
NOTE 3
8
9
B
.150-.157
[3.81-3.98]
NOTE 4
16X .008-.012
[0.21-0.30]
.007 [0.17]
C A
B
.069 MAX
[1.75]
.005-.010 TYP
[0.13-0.25]
SEE DETAIL A
.010
[0.25]
GAGE PLANE
.004-.010
[0.11-0.25]
0 -8
.016-.035
[0.41-0.88]
(.041 )
[1.04]
DETAIL A
TYPICAL
4214846/A 03/2014
NOTES:
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed .006 inch, per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MO-137, variation AB.
www.ti.com
EXAMPLE BOARD LAYOUT
DBQ0016A
SSOP - 1.75 mm max height
SHRINK SMALL-OUTLINE PACKAGE
16X (.063)
[1.6]
SEE
DETAILS
SYMM
1
16
16X (.016 )
[0.41]
14X (.0250 )
[0.635]
9
8
(.213)
[5.4]
LAND PATTERN EXAMPLE
SCALE:8X
METAL
SOLDER MASK
OPENING
SOLDER MASK
OPENING
.002 MAX
[0.05]
ALL AROUND
METAL
.002 MIN
[0.05]
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4214846/A 03/2014
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DBQ0016A
SSOP - 1.75 mm max height
SHRINK SMALL-OUTLINE PACKAGE
16X (.063)
[1.6]
SYMM
1
16
16X (.016 )
[0.41]
SYMM
14X (.0250 )
[0.635]
9
8
(.213)
[5.4]
SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.127 MM] THICK STENCIL
SCALE:8X
4214846/A 03/2014
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Similar pages