MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference General Description The single MAX9015/MAX9016 and dual MAX9017– MAX9020 nanopower comparators in space-saving SOT23 packages feature Beyond-the-Rails™ inputs and are guaranteed to operate down to 1.8V. The Agrade packages feature an on-board 1.236V ±1% reference, while the B-grade packages feature a 1.24V ±1.75% reference. An ultra-low supply current of 0.85µA (MAX9019/MAX9020), 1µA (MAX9015/MAX9016), or 1.2µA (MAX9017/MAX9018) makes the MAX9015– MAX9020 family of comparators ideal for all 2-cell battery monitoring/management applications. The unique design of the MAX9015–MAX9020 output stage limits supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks and sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 6mA. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that makes them suitable for mixed-voltage system design. All devices are available in the ultra-small 8-pin SOT23 package. Features o Ultra-Low Total Supply Current 0.85µA (MAX9019/MAX9020) 1.0µA (MAX9015A/MAX9016A) 1.2µA (MAX9017/MAX9018) o Guaranteed Operation Down to 1.8V o Precision VOS < 5mV (max) o Internal 1.236V ±1% Reference (A Grade) o Input Voltage Range Extends 200mV Beyond-the-Rails o CMOS Push-Pull Output with ±6mA Drive Capability (MAX9015/MAX9017/MAX9019) o Open-Drain Output Versions Available (MAX9016/MAX9018/MAX9020) o Crowbar-Current-Free Switching o Internal 4mV Hysteresis for Clean Switching o No Phase Reversal for Overdriven Inputs o Dual Versions in Space-Saving 8-Pin SOT23 Package Ordering Information Refer to the MAX9117–MAX9120 data sheet for similar single comparators with or without reference in a tiny SC70 package. Applications 2-Cell Battery Monitoring/Management Window Detectors Sensing at Ground or Supply Line Ultra-Low Power Systems Mobile Communications Telemetry and Remote Systems Notebooks and PDAs Medical Instruments Threshold Detectors/ Discriminators PINPACKAGE TOP MARK MAX9015AEKA-T -40°C to +85°C 8 SOT23 AEIW MAX9016AEKA-T -40°C to +85°C 8 SOT23 AEIX MAX9017AEKA-T -40°C to +85°C 8 SOT23 AEIQ MAX9017BEKA-T 8 SOT23 AEIS PART TEMP RANGE -40°C to +85°C T = Tape and reel. Ordering Information continued at end of data sheet. Pin Configurations appear at end of data sheet. Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc. Selector Guide PART COMPARATOR(S) INTERNAL REFERENCE (V) OUTPUT TYPE SUPPLY CURRENT (µA) MAX9015A 1 MAX9016A 1 1.236 ±1% Push-pull 1 1.236 ±1% Open drain 1 MAX9017A MAX9017B 2 1.236 ±1% Push-pull 1.2 2 1.240 ±1.75% Push-pull 1.2 MAX9018A 2 1.236 ±1% Open drain 1.2 MAX9018B 2 1.240 ±1.75% Open drain 1.2 MAX9019 2 — Push-pull 0.85 MAX9020 2 — Open drain 0.85 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. 19-2874; Rev 3; 10/13 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ABSOLUTE MAXIMUM RATINGS Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s Continuous Power Dissipation (TA = +70°C) 8-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C Supply Voltage (VCC to VEE) ....................................................6V IN+, IN-, INA+, INB+, INA-, INB-, REF/INA-, REF..................................(VEE - 0.3V) to (VCC + 0.3V) Output Voltage (OUT_) MAX9015A, MAX9017_, MAX9019....(VEE - 0.3V) to (VCC + 0.3V) MAX9016A, MAX9018_, MAX9020...................(VEE - 0.3V) to +6V Output Current (REF, OUT_, REF/INA-)............................±50mA Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF) (VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Supply Voltage Range SYMBOL VCC CONDITIONS Inferred from the PSRR test MAX9015A/ MAX9016A Supply Current ICC MAX9017_/ MAX9018_ MIN TYP 1.8 MAX UNITS 5.5 V VCC = 1.8V, TA = +25°C 1.0 1.5 VCC = 5.0V, TA = +25°C 1.1 1.7 VCC = 5.0V, TA = TMIN to TMAX 2.0 VCC = 1.8V, TA = +25°C 1.2 1.9 VCC = 5.0V, TA = +25°C 1.4 2.3 VCC = 5.0V, TA = TMIN to TMAX µA 2.8 Input Common-Mode Voltage Range (MAX9015A/MAX9016A) VCM Inferred from VOS test VEE - 0.2 VCC + 0.2 V IN+ Voltage Range (MAX9017_/MAX9018_) VIN+ Inferred from the output swing test VEE - 0.2 VCC + 0.2 V Input Offset Voltage VOS VEE - 0.2V < VCM < VCC + 0.2V (Note 2) Input-Referred Hysteresis VHB Input Bias Current (IN+, IN-, INA+, INB+, INB-) IB Power-Supply Rejection Ratio PSRR Output Voltage Swing High (MAX9015A/MAX9017_) Output Voltage Swing Low (MAX9015A/MAX9016A/ MAX9017_/MAX9018_) 2 VCC - VOH VOL TA = +25°C TA = TMIN to TMAX VEE - 0.2V < VCM < VCC + 0.2V (Note 3) TA = +25°C 0.15 4 ±0.15 TA = TMIN to TMAX VCC = 1.8V, I SOURCE = 1mA TA = +25°C VCC = 5.0V, I SOURCE = 6mA TA = +25°C VCC = 5.0V, I SINK = 6mA 0.1 1 100 200 TA = TMIN to TMAX TA = TMIN to TMAX TA = +25°C 300 250 TA = TMIN to TMAX 350 nA mV/V mV 450 105 TA = TMIN to TMAX TA = +25°C mV mV ±1 ±2 VCC = 1.8V to 5.5V VCC = 1.8V, I SINK = 1mA 5 10 200 300 285 350 mV 450 Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF) (continued) (VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Output Leakage Current (MAX9016A/MAX9018_) Output Short-Circuit Current SYMBOL ILEAK I SC CONDITIONS VCC = 5.5V, VOUT = 5.5V Sourcing, VOUT = VEE (MAX9015A/ MAX9017_ only) Sinking, VOUT = VCC High-to-Low Propagation Delay (Note 4) t PD- TYP MAX UNITS 0.001 1 µA VCC = 1.8V 3 VCC = 5.0V 35 VCC = 1.8V 3 VCC = 5.0V 33 VCC = 1.8V 7 VCC = 5.0V 6 VCC = 1.8V Low-to-High Propagation Delay (Note 4) MIN t PD+ VCC = 5.0V MAX9015A/MAX9017_ 11 MAX9016A/MAX9018_, RPULLUP = 100k to VCC 12 MAX9015A/MAX9017_ 28 MAX9016A/MAX9018_, RPULLUP = 100k to VCC 31 mA µs µs Rise Time tRISE CL = 15pF (MAX9015A/MAX9017_) 1.6 Fall Time tFALL CL = 15pF 0.2 µs 1.2 ms Power-Up Time t ON MAX901_A Reference Voltage (Note 5) VREF MAX901_B Reference Voltage Temperature Coefficient 1.224 1.205 TA = +25°C, 1.75% 1.218 TA = TMIN to TMAX, 4.5% 1.184 1.236 1.248 1.267 1.240 1.262 V 1.296 40 TCREF ppm/°C BW = 10Hz to 1kHz, CREF = 1nF 29 BW = 10Hz to 6kHz, CREF = 1nF 60 VREF/ VCC 1.8V VCC 5.5V 0.5 mV/V VREF/ I OUT I OUT = 0 to 100nA 0.03 mV/nA Reference Output Voltage Noise EN Reference Line Regulation Reference Load Regulation Maxim Integrated TA = +25°C, 1.0% TA = TMIN to TMAX, 2.5% µs µVRMS 3 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Supply Voltage Range Supply Current SYMBOL VCC ICC CONDITIONS TYP MAX UNITS 5.5 V VCC = 1.8V, TA = +25°C 0.85 1.50 VCC = 5.0V, TA = +25°C 1.1 1.70 Inferred from the PSRR test MAX9019/ MAX9020 VCM Inferred from VOS test Input Offset Voltage VOS VEE - 0.2V < VCM < VCC + 0.2V (Note 2) Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) Power-Supply Rejection Ratio Output Voltage Swing High (MAX9019 Only) Output Voltage Swing Low Output Leakage Current (MAX9020 Only) Output Short-Circuit Current IB PSRR VCC - VOH VOL ILEAK I SC t PD- 1 TA = TMIN to TMAX 4 VCC = 1.8V, I SOURCE = 1mA VCC = 5.0V, I SOURCE = 6mA TA = +25°C VCC = 5.0V, I SINK = 6mA TA = TMIN to TMAX TA = +25°C 1 55 200 190 350 300 TA = +25°C 55 200 190 350 300 TA = TMIN to TMAX nA mV/V mV mV 450 0.001 VCC = 1.8V 3 VCC = 5.0V 35 VCC = 1.8V 3 VCC = 5.0V 33 VCC = 1.8V 7 VCC = 5.0V 6 t PD+ mV 450 TA = TMIN to TMAX VCC = 5.5V, VOUT = 5.5V Sourcing, VOUT = VEE (MAX9019 only) 0.1 TA = TMIN to TMAX V mV 1 2 TA = +25°C VCC = 1.8V, I SINK = 1mA 5 10 0.15 VCC = 1.8V to 5.5V VCC = 5.0V 4 VCC + 0.2 TA = TMIN to TMAX VCC = 1.8V Low-to-High Propagation Delay (Note 4) TA = +25°C µA 2.0 VEE - 0.2 TA = +25°C Sinking, VOUT = VCC High-to-Low Propagation Delay (Note 4) 1.8 VCC = 5.0V, TA = TMIN to TMAX Input Common-Mode Voltage Range Input Bias Current (INA-, INA+, INB+, INB-) MIN MAX9019 11 MAX9020, RPULLUP = 100k to VCC 12 MAX9019 28 MAX9020, RPULLUP = 100k to VCC 31 1 µA mA µs µs Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (continued) (VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS Rise Time tRISE CL = 15pF (MAX9019 only) Fall Time tFALL CL = 15pF Power-Up Time t ON MIN TYP MAX UNITS 1.6 µs 0.2 µs 1.2 ms Note 1: All devices are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design, not production tested. Note 2: VOS is defined as the center of the hysteresis band at the input. Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the band (i.e., VOS) (Figure 1). Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL = 15pF. VOVERDRIVE is defined above and beyond the offset voltage and hysteresis of the comparator input. Note 5: High current traces should not be routed in the vicinity of or below MAX9018. There is a chance of voltage reference being overloaded resulting in drop of output voltage. Typical Operating Characteristics (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 MAX9015 toc04 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 VCC = 5V VCC = 3V 0.8 0.7 0.6 0.5 0.4 VCC = 1.8V -40 -15 Maxim Integrated 10 35 TEMPERATURE (°C) 60 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 85 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 VCC = 5V VCC = 1.8V -40 -15 10 35 TEMPERATURE (°C) 60 MAX9015 toc03 TA = -40°C 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 MAX9019/MAX9020 SUPPLY CURRENT vs. TEMPERATURE VCC = 3V 1.2 1.1 1.0 0.9 0.8 TA = +25°C 1.5 5.5 MAX9017/MAX9018 SUPPLY CURRENT vs. TEMPERATURE SUPPLY CURRENT (μA) SUPPLY CURRENT (μA) MAX9015/MAX9016 SUPPLY CURRENT vs. TEMPERATURE 2.0 TA = +85°C 0.6 0.5 0.4 TA = -40°C 1.5 5.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 85 1.6 1.5 1.4 1.3 1.2 1.1 1.0 MAX9015 toc06 2.0 TA = +25°C 1.1 1.0 0.9 0.8 TA = -40°C 1.5 1.6 1.5 1.4 1.3 1.2 SUPPLY CURRENT (μA) 0.6 0.5 0.4 TA = +85°C SUPPLY CURRENT (μA) TA = +25°C 1.6 1.5 MAX9015 toc05 TA = +85°C 2.0 1.9 1.8 1.7 MAX9015 toc02 MAX9015 toc01 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 SUPPLY CURRENT (μA) SUPPLY CURRENT (μA) 1.6 1.5 MAX9019/MAX9020 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE MAX9017/MAX9018 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE MAX9015/MAX9016 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE VCC = 5V VCC = 3V 0.9 0.8 0.7 0.6 0.5 0.4 VCC = 1.8V -40 -15 10 35 TEMPERATURE (°C) 60 85 5 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) VCC = 1.8V 30 25 20 VCC = 3V 15 VCC = 5V 10 1 100 1k 10k 10 100k VCC = 5V VCC = 1.8V 30 25 20 VCC = 5V 15 VCC = 3V 10 0 10 100 1k 10k 1 100k 10 100 1k 10k OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT VOLTAGE LOW vs. SINK CURRENT OUTPUT VOLTAGE LOW vs. SINK CURRENT AND TEMPERATURE OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT 500 0.7 0.6 VCC = 3V TA = +25°C VCC = 1.8V 0.5 VCC = 5V VCC - VOH (V) 400 300 TA = +85°C 200 2 3 4 5 6 7 8 9 VCC = 5V 0.1 0 0 10 0.3 0.2 0 1 VCC = 1.8V 0.4 TA = -40°C 100 100k MAX9015 toc12 600 MAX9015 toc11 VCC = 3V 0 35 5 1 MAX9015 toc10 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 10 VOL (mV) 1 2 3 4 5 6 7 8 9 0 10 1 2 3 4 5 6 7 8 9 10 SINK CURRENT (mA) SINK CURRENT (mA) SOURCE CURRENT (mA) OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT AND TEMPERATURE SHORT-CIRCUIT TO VCC (SINK CURRENT) vs. TEMPERATURE SHORT-CIRCUIT TO GND (SOURCE CURRENT) vs.TEMPERATURE 0.3 TA = +85°C 0.2 30 25 20 VCC = 3V 15 10 TA = -40°C 0.1 VCC = 5V 1 2 3 4 5 6 7 SOURCE CURRENT (mA) 8 9 10 VCC = 5V 35 30 25 20 VCC = 3V 15 VCC = 1.8V 5 0 0 0 40 10 VCC = 1.8V 5 0 45 SINK CURRENT (mA) TA = +25°C 0.4 35 SINK CURRENT (mA) 0.5 50 MAX9015toc15 40 MAX9015 toc13 0.6 MAX9015 toc14 VOL (mV) VCC = 3V 0 0 VCC - VOH (V) 20 15 40 5 5 6 VCC = 1.8V 25 45 SUPPLY CURRENT (μA) 35 30 SUPPLY CURRENT (μA) 40 50 MAX9015 toc08 45 SUPPLY CURRENT (μA) 35 MAX9015 toc07 50 MAX9019/MAX9020 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY MAX9017/MAX9018 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY MAX9015 toc09 MAX9015/MAX9016 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY -40 -15 10 35 TEMPERATURE (°C) 60 85 -40 -15 10 35 60 85 TEMPERATURE (°C) Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) 1.2 6 VOS (mV) 5 4 0.4 0 VCC = 5V -0.4 3 -0.8 2 A GRADE 25 -1.2 20 15 10 5 -1.6 0 -2.0 0 -1.5 -1.2 -0.9 -0.6 -0.3 0 -40 0.3 0.6 0.9 1.2 1.5 -15 10 35 60 1.232 85 1.238 VREF (V) HYSTERESIS VOLTAGE vs. TEMPERATURE REFERENCE VOLTAGE vs. TEMPERATURE REFERENCE VOLTAGE vs. SUPPLY VOLTAGE 3.5 3.0 1.236 VCC = 3V 1.234 VCC = 5V 1.239 1.232 2.5 2.0 10 35 60 85 1.238 1.237 1.236 1.235 1.230 -15 MAX9015 toc21 VCC = 1.8V 1.238 1.240 1.240 REFERENCE VOLTAGE (V) REFERENCE VOLTAGE (V) A GRADE MAX9015 toc20 1.240 MAX9015 toc19 4.0 1.234 -40 -15 10 35 60 85 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 TEMPERATURE (°C) SUPPLY VOLTAGE (V) REFERENCE VOLTAGE vs. REFERENCE SOURCE CURRENT REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT AND TEMPERATURE 1.246 VCC = 3V VCC = 5V 1.229 1.244 VCC = 1.8V 1.242 1.240 VCC = 5V 1.238 1.236 VCC = 3V 80 120 160 REFERENCE SOURCE CURRENT (nA) Maxim Integrated 200 1.245 TA = +25°C 1.240 1.235 TA = -40°C 1.225 1.232 40 TA = +85°C 1.230 1.234 1.226 VCC = 3V 1.250 REFERENCE VOLTAGE (V) REFERENCE VOLTAGE (V) 1.235 1.255 MAX9015 toc23 MAX9015 toc22 VCC = 1.8V 1.232 1.248 MAX9015 toc24 TEMPERATURE (°C) 1.238 0 1.236 TEMPERATURE (°C) 4.5 -40 1.234 VOS (mV) 5.0 VHB (mV) VCC = 1.8V 0.8 30 MAX9015 toc18 1.6 1 REFERENCE VOLTAGE (V) MAX9015 toc17 MAX9015 toc16 PERCENTAGE OF UNITS (%) 7 REFERENCE VOLTAGE DISTRIBUTION OFFSET VOLTAGE vs. TEMPERATURE 2.0 PERCENTAGE OF UNITS (%) INPUT OFFSET VOLTAGE DISTRIBUTION 8 0 40 80 120 160 REFERENCE SINK CURRENT (nA) 200 0 40 80 120 160 200 REFERENCE SINK CURRENT (nA) 7 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) INPUT BIAS CURRENT vs. INPUT BIAS VOLTAGE VCC = 5V 10 -0.200 VCC = 1.8V 8 6 VCC = 3V 4 -0.600 -1.000 30 VCC = 3V 20 10 VCC = 5V VCC = 1.8V 0 0 0.5 1.5 2.5 3.5 4.5 5.5 -40 -15 10 35 60 -40 85 -15 10 35 TEMPERATURE (°C) TEMPERATURE (°C) PROPAGATION DELAY (tPD-) vs. CAPACITIVE LOAD PROPAGATION DELAY (tPD+) vs. CAPACITIVE LOAD PROPAGATION DELAY (tPD-) vs. INPUT OVERDRIVE 200 160 140 VCC = 3V VCC = 5V 80 40 VCC = 3V 120 100 80 60 50 tPD- (μs) 100 140 tPD+ (μs) 120 VCC = 1.8V 180 VCC = 5V 30 20 VCC = 1.8V VCC = 5V 60 40 40 20 20 0 0 0.1 1 10 100 1000 10 VCC 20= 3V 0 0.01 0.1 1 10 100 CAPACITIVE LOAD (nF) CAPACITIVE LOAD (nF) PROPAGATION DELAY (tPD+) vs. INPUT OVERDRIVE PROPAGATION DELAY (tPD-) vs. PULLUP RESISTANCE VCC = 1.8V 9 30 tPD- (μs) VCC = 3V 20 15 10 20 7 VCC = 5V 200 160 VCC = 5V 120 VCC = 3V 80 40 5 0 4 0 10 20 30 INPUT OVERDRIVE (mV) 40 50 50 VCC = 1.8V 10 VCC = 1.8V 40 PROPAGATION DELAY (tPD+) vs. PULLUP RESISTANCE 6 5 30 INPUT OVERDRIVE (mV) VCC = 3V 8 25 0 tPD+ (μs) VCC = 5V 1000 MAX9015 toc32 35 10 MAX9015 toc31 40 85 MAX9015 toc30 VCC = 1.8V MAX9015 toc29 180 160 0.01 60 INPUT BIAS VOLTAGE (IN-) (V) MAX9015 toc28 -0.5 tPD- (μs) tPD+ (μs) tPD- (μs) 0.200 tPD+ (μs) 40 12 2 8 50 MAX9015 toc27 0.600 14 MAX9015 toc33 IN+ = 2.5V MAX9015 toc26 16 MAX9015 toc25 INPUT BIAS CURRENT (IN-) (nA) 1.000 PROPAGATION DELAY (tPD+) vs. TEMPERATURE PROPAGATION DELAY (tPD-) vs. TEMPERATURE 0 10k 100k RPULLUP (Ω) 1M 10M 10k 100k 1M 10M RPULLUP (Ω) Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) PROPAGATION DELAY (tPD-) (VCC = 5V) PROPAGATION DELAY (tPD-) (VCC = 3V) PROPAGATION DELAY (tPD+) (VCC = 5V) MAX9015 toc34 MAX9015 toc36 MAX9015 toc35 VIN+ 50mV/div VOUT 2V/div VOUT 2V/div 2μs/div VOUT 2V/div 2μs/div 10μs/div PROPAGATION DELAY (tPD+) (VCC = 3V) PROPAGATION DELAY (tPD-) (VCC = 1.8V) MAX9015 toc37 PROPAGATION DELAY (tPD+) (VCC = 1.8V) MAX9015 toc38 MAX9015 toc39 VIN+ 50mV/div VIN+ 50mV/div VOUT 2V/div VOUT 1V/div 10μs/div 2μs/div 1kHz RESPONSE (VCC = 5V) VIN+ 50mV/div VIN+ 50mV/div VOUT 1V/div 10μs/div POWER-UP RESPONSE SLOW POWER-UP/DOWN RESPONSE MAX9015 toc40 VIN+ 50mV/div MAX9015 toc42 MAX9015 toc41 VCC 2V/div IN+ 50mV/div AC-COUPLED VCC 1V/div VOUT 2V/div OUT 2V/div VREF 1V/div VOUT 1V/div 200μs/div Maxim Integrated 40μs/div 20μs/div 9 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Pin Description PIN MAX9015/ MAX9016 MAX9017/ MAX9018 MAX9019/ MAX9020 NAME FUNCTION 1 — — REF 1.24V Reference Output 2 — — IN- Comparator Inverting Input 3 — — IN+ Comparator Noninverting Input 4 4 4 VEE Negative Supply Voltage 5, 8 — — N.C. No Connection. Not internally connected. 6 — — OUT Comparator Output Positive Supply Voltage 7 8 8 VCC — 1 1 OUTA Comparator A Output — 3 3 INA+ Comparator A Noninverting Input — 5 5 INB+ Comparator B Noninverting Input — 6 6 INB- Comparator B Inverting Input — 7 7 OUTB — — 2 INA- Comparator A Inverting Input — 2 — REF/ INA- 1.24V Reference Output. Internally connected to the inverting input of comparator A (MAX9017/MAX9018 only). Comparator B Output Functional Diagrams 7 8 VCC VCC 8 VCC 3 INA+ 3 INA+ 3 IN+ OUTA 1 OUT 6 2 OUTA 1 2 REF/INA- 2 INA- 5 INB+ 5 IN- MAX9015 MAX9016 1 REF REF 1.24V OUTB 7 OUTB 7 6 INB- 6 INB- VEE 4 MAX9019 MAX9020 INB+ MAX9017 MAX9018 REF 1.24V VEE 4 VEE 4 10 Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Detailed Description The MAX9015–MAX9018 feature an on-board 1.24V ±0.5% (±1.45% for the B grade) reference, yet draw an ultra-low supply current. The MAX9019/MAX9020 (duals without reference) consume just 850nA of supply current. All devices are guaranteed to operate down to 1.8V supply. Their common-mode input voltage range extends 200mV beyond-the-rails. An internal 4mV hysteresis ensures clean output switching, even with slowmoving input signals. Large internal output drivers swing rail-to-rail with up to ±6mA loads (MAX9015/ MAX9017/MAX9019). The output stage employs a unique design that minimizes supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks as well as sources current. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that can be pulled beyond VCC up to 5.5V above VEE. These open-drain versions are ideal for implementing wire-ORed output logic functions. Input Stage Circuitry The input common-mode voltage ranges extend from VEE - 0.2V to VCC + 0.2V. These comparators operate at any differential input voltage within these limits. Input bias current is typically ±150pA at the trip point, if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal ESD protection diodes connected to the supply rails. As the input voltage exceeds the supply rails, these ESD protection diodes become forward biased and begin to conduct increasing input bias current (see the Input Bias Current vs. Input Bias Voltage graph in the Typical Operating Characteristics). Output Stage Circuitry The MAX9015–MAX9020 feature a unique breakbefore-make output stage capable of driving ±8mA loads rail-to-rail. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with the MAX9015– MAX9020 family of comparators, the supply-current change during an output transition is extremely small. In the Typical Operating Characteristics, the Supply Current vs. Output Transition Frequency graphs show the minimal supply-current increase as the output switching frequency approaches 1kHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. In battery-powered applications, this characteristic results in a substantial increase in battery life. Reference (MAX9015–MAX9018) The MAX9015–MAX9018s’ internal +1.24V reference has a typical temperature coefficient of 40ppm/°C over the full -40°C to +85°C temperature range. The reference is a very-low-power bandgap cell, with a typical 35kΩ output impedance. REF can source and sink up to 100nA to external circuitry. For applications needing increased drive, buffer REF with a low input-bias current op amp such as the MAX4162. Most applications require no REF bypass capacitor. For noisy environments or fast transients, connect a 1nF to 10nF ceramic capacitor from REF to GND. Applications Information Low-Voltage, Low-Power Operation The MAX9015–MAX9020 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of battery types, capacities, and approximate operating times for the MAX9015–MAX9020, assuming nominal conditions. Table 1. Battery Applications Using the MAX9015–MAX9020 RECHARGEABLE VFRESH (V) VEND-OFLIFE (V) CAPACITY, AA SIZE (mA-hr) MAX9015A/ MAX9016A OPERATING TIME (hr) MAX9017/ MAX9018 OPERATING TIME (hr) MAX9019/ MAX9020 OPERATING TIME (hr) Alkaline (2 cells) No 3.0 1.8 2000 2000k 1540k 1333k Nickel-cadmium (2 cells) Yes 2.4 1.8 750 750k 570k 500k Nickel-metal-hydride (2 cells) Yes 2.4 1.8 1000 1000k 770k 660k Lithium-ion (1 cell) Yes 3.6 2.9 1000 1000k 770k 660k BATTERY TYPE Maxim Integrated 11 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Internal Hysteresis Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. Oscillations can occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9015–MAX9020 have internal 4mV hysteresis to counter parasitic effects and noise. The hysteresis in a comparator creates two trip points: one for the rising input voltage (VTHR) and one for the falling input voltage (VTHF) (Figure 1). The difference between the trip points is the hysteresis (VHB). When the comparator’s input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. Figure 1 illustrates the case in which the comparator’s inverting input has a fixed voltage applied, and the noninverting input is varied. If the inputs were reversed, the figure would be the same, except with an inverted output. Additional Hysteresis (MAX9015/MAX9017/MAX9019) (Push-Pull Outputs) THRESHOLDS IN+ VTHR HYSTERESIS INVTHF OUT Figure 1. Threshold Hysteresis Band VCC R3 R1 VIN VCC R2 The MAX9015/MAX9017/MAX9019 feature a built-in 4mV hysteresis band (VHB). Additional hysteresis can be generated with three resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values: 1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least 0.2µA to minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF/IR3 or R3 = (VCC - VREF)/IR3. Use the smaller of the two resulting resistor values. For example, when using the MAX9017 (VREF = 1.24V) and VCC = 5V, and if we choose IR3 = 0.2µA, then the two resistor values are 6.2MΩ and 19MΩ. Choose a 6.2MΩ standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: ⎛ 50mV ⎞ R1 = 6.2MΩ ⎜ ⎟ = 12kΩ ⎝ 5V ⎠ 12 OUT VEE VREF MAX9015 MAX9017 MAX9019 Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis 4) Choose the trip point for VIN rising (VTHR) such that: V ⎞ ⎛ VTHR > VREF ⎜1 + HB ⎟ ⎝ VCC ⎠ where VTHR is the trip point for VIN rising. This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V. 5) Calculate R2 as follows: R2 = ⎛V ⎞ R1 = R3 ⎜ HB ⎟ ⎝ VCC ⎠ For this example, insert the values: BAND VHB R2 = 1 ⎡⎛ VTHR ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎤ ⎢⎜ ⎟ − ⎜ ⎟ − ⎜ ⎟⎥ ⎢⎣⎝ VREF X R1⎠ ⎝ R1⎠ ⎝ R3 ⎠ ⎥⎦ 1 = 43.99kΩ ⎡⎛ ⎞ 3.0 V ⎛ 1 ⎞ ⎛ 1 ⎞⎤ − − ⎥ ⎢⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎝ 62kΩ ⎠ ⎝ 6.2MΩ ⎠ ⎥⎦ ⎢⎣⎝ (1.24 V X 62kΩ) ⎠ For this example, choose a 44.2kΩ standard value. Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 6) Verify the trip voltages and hysteresis as follows: 4) Choose the trip point for VIN rising (VTHR) such that: VIN rising: = 2.992V, which is equivalent to REF times R1 divided by the parallel combination of R1, R2: ⎡⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎤ VTHR = VREF x R1 ⎢⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ ⎥ ⎣⎝ R1⎠ ⎝ R2 ⎠ ⎝ R3 ⎠ ⎦ and R3. VIN falling: = 2.942V: V ⎞ ⎛ VTHR > VREF ⎜1 + HB ⎟ ⎝ VCC ⎠ (VTHR is the trip point for VIN rising). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V: 5) Calculate R2 as follows: R2 = ⎛ R1 x VCC ⎞ VTHF = VTHR − ⎜ ⎟ ⎝ R3 ⎠ 1 ⎡⎛ VTHR ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞⎤ − ⎜ ⎟ −⎜ ⎢⎜ ⎟⎥ ⎟ ⎝ R1⎠ ⎝ R 3 ⎠ ⎥⎦ ⎢⎣⎝ VREF x R1⎠ Hysteresis = VTHR - VTHF = 50mV. Additional Hysteresis (MAX9016/MAX9018/MAX9020) (Open-Drain Outputs) The MAX9016/MAX9018/MAX9020 feature a built-in 4mV hysteresis band. These devices have open-drain outputs and require an external pullup resistor (Figure 3). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX9015/MAX9017/MAX9019. Use the following procedure to calculate resistor values: 1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least 0.2µA to minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF/IR3 or R3 = [(VCC - VREF)/IR3] - R4. Use the smaller of the two resulting resistor values. For example, when using the MAX9018 (VREF = 1.24V) and VCC = 5V, and if we choose IR3 = 0.2µA, and R4 = 1MΩ, then the two resistor values are 6.2MΩ and 18MΩ. Choose a 6.2MΩ standard value for R3. R2 = 1 ⎡⎛ ⎞ 3.0V ⎛ 1 ⎞ ⎛ 1 ⎞⎤ ⎢⎜ ⎟ − ⎜⎝ 72kΩ ⎟⎠ − ⎜⎝ 6.2MΩ ⎟⎠ ⎥ 1 . 24 V x 72 k Ω ⎝ ⎠ ⎥⎦ ⎢⎣ For this example, choose a 49.9kΩ standard value. 6) Verify the trip voltages and hysteresis as follows: ⎛⎛ 1 ⎞ ⎛ 1⎞ ⎛ 1 ⎞⎞ VIN risin g : VTHR = VREF x R1 ⎜ ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ R 3 ⎠ ⎟⎠ R R 1 2 ⎝ = 3.043V ⎛⎛ 1 ⎞ ⎛ 1⎞ ⎛ 1 ⎞⎞ VIN falling : VTHF = VREF x R1 ⎜ ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ ⎝ R2 ⎠ ⎝ R 3 ⎠ ⎟⎠ ⎝ ⎝ R1⎠ − R1 x VCC = 2.993V R 3 + R4 Hysteresis = VTHR - VTHF = 50mV. VCC R3 2) Choose the hysteresis band required (VHB). 3) Calculate R1 according to the following equation. For this example, insert the values: ⎛V ⎞ R1 = (R3 + R4) ⎜ HB ⎟ ⎝ VCC ⎠ ⎛ 50mV ⎞ R1 = (6.2MΩ + 1MΩ) ⎜ ⎟ = 72kΩ ⎝ 5V ⎠ = 51.1kΩ R1 R4 VIN VCC R2 OUT VEE VREF MAX9016 MAX9018 MAX9020 Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis Maxim Integrated 13 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Board Layout and Bypassing The MAX9015–MAX9020 ultra-low supply current typically requires no power-supply bypass capacitors. However, when the supply has high output impedance, long lead lengths or excessive noise, or fast transients, bypass VCC to VEE with a 0.1µF capacitor placed as close to the VCC pin as possible. Minimize signal trace lengths to reduce stray capacitance. Use a ground plane and surfacemount components for best performance. If REF is decoupled, use a low-leakage ceramic capacitor. High traces should not be routed in the vicinity of or below MAX9018. There is a chance of voltage reference being overloaded resulting in drop of output voltage. VIN V OTH = 4.2V VUTH = 2.9V R3 The design procedure is as follows: 1) Select R1. The input bias current into INB- is normally less than 2nA, so the current through R1 should exceed 100nA for the thresholds to be accurate. In this example, choose R1 = 1.24MΩ (1.24V/1µA). 2) Calculate R2 + R3. The overvoltage threshold should be 4.2V when V IN is rising. The design equation is as follows: ⎡⎛ ⎤ ⎞ VOTH R2 + R3 = R1 x ⎢⎜ ⎟ − 1⎥ V + V ⎢⎣⎝ REF HB ⎠ ⎦⎥ OUTA REF 1.24V R2 MAX9018 INB+ VEE OUTB INBR1 VEE Figure 4. Window Detector Circuit For this example, choose a 499kΩ standard value 1% resistor. 4) Calculate R3: R3 = (R2 + R3) - R2 = 2.95MΩ - 546kΩ = 240MΩ 5) Verify the resistor values. The equations are as follows, evaluated for the above example: Overvoltage threshold: VOTH = (VREF + VHB ) x Undervoltage threshold: =2.95MΩ VUTH = (VREF − VHB ) x = (1.24MΩ + 2.95MΩ) x = 546kΩ (1.236) − 1.24MΩ 2.9 POWERGOOD REF/INA- ⎡⎛ ⎤ ⎞ 4.2V = 1.24MΩ x ⎢⎜ ⎟ − 1⎥ ⎢⎣⎝ 1.24V + 0.004 ⎠ ⎥⎦ 3) Calculate R2. The undervoltage threshold should be 2.9V when VIN is falling. The design equation is as follows: − VHB ⎞ ⎛V R2 = (R1 + R2 + R3) x ⎜ REF ⎟ − R1 ⎝ ⎠ VUTH 14 VCC INA+ Window Detector The MAX9018 is ideal for window detectors (undervoltage/overvoltage detectors). Figure 4 shows a window detector circuit for a single-cell Li+ battery with a 2.9V endof-life charge, a peak charge of 4.2V, and a nominal value of 3.6V. Choose different thresholds by changing the values of R1, R2, and R3. OUTA provides an active-low undervoltage indication, and OUTB provides an active-low overvoltage indication. ANDing the two open-drain outputs provides an active-high, power-good signal. 5V (R1 + R2 + R3) = 4.20V R1 (R1 + R2 + R3) = 2.97V (R1 + R2) where the internal hysteresis band, VHB, is 4mV. Zero-Crossing Detector Figure 5 shows a zero-crossing detector application. The MAX9015/MAX9016/MAX9019/MAX9020s’ inverting input is connected to ground, and its noninverting input is connected to a 100mVP-P signal source. As the signal at the noninverting input crosses zero, the comparator’s output changes state. Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Application Circuit Logic-Level Translator The open-drain comparators can be used to convert 5V logic to 3V logic levels. The MAX9020 can be powered by the 5V supply voltage, and the pullup resistor for the MAX9020’s open-drain output is connected to the 3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translations, connect the 3V supply voltage to VCC and the 5V supply voltage to the pullup resistor. VIN V OTH = 4.2V VUTH = 2.9V 5V R3 VCC INA+ OUTA UNDERVOLTAGE VCC REF/INA- VCC 100mVP-P REF 1.24V R2 IN+ MAX9017 VEE OUT INB+ OUTB OVERVOLTAGE IN- VEE MAX9015 MAX9016 MAX9019 MAX9020 INBR1 VEE Figure 5. Zero-Crossing Detector Pin Configurations TOP VIEW REF 1 8 N.C. OUTA 1 7 VCC REF/INA- 2 3 6 OUT INA+ VEE 4 5 N.C. IN- 2 IN+ MAX9015 MAX9016 SOT23 Maxim Integrated 8 VCC 7 3 VEE 4 MAX9017 MAX9018 SOT23 OUTA 1 8 VCC OUTB INA- 2 7 OUTB 6 INB- INA+ 3 6 INB- 5 INB+ VEE 4 5 INB+ MAX9019 MAX9020 SOT23 15 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Ordering Information (continued) PART TEMP RANGE PINPACKAGE TOP MARK MAX9018AEKA-T -40°C to +85°C 8 SOT23 MAX9018BEKA-T -40°C to +85°C 8 SOT23 AEIT MAX9019EKA-T -40°C to +85°C 8 SOT23 AEIU MAX9020EKA-T -40°C to +85°C 8 SOT23 AEIV T = Tape and reel. 16 Chip Information TRANSISTOR COUNT: 349 PROCESS: BiCMOS AEIR Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 8 SOT23 K8-5 21-0078 90-0176 Maxim Integrated MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Revision History REVISION NUMBER REVISION DATE 2 12/09 Updated EC table parameters after final test changes 2, 4 3 10/13 Added Note 5 to Electrical Characteristics and revised Board Layout and Bypassing section 5, 14 DESCRIPTION PAGES CHANGED Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 ________________________________ 17 © 2013 Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.