Nichia STS-DA1-0335 <Cat.No.081104> SPECIFICATIONS FOR NICHIA BLUE MODEL : NSPB500AS NICHIA CORPORATION LED Nichia STS-DA1-0335 <Cat.No.081104> 1.SPECIFICATIONS (1) Absolute Maximum Ratings Item Forward Current Pulse Forward Current Reverse Voltage Power Dissipation Operating Temperature Storage Temperature Soldering Temperature IFP Conditions : (Ta=25°C) Absolute Maximum Rating Unit 35 mA 110 mA 5 V 123 mW -30 ~ + 85 °C -40 ~ +100 °C 265°C for 10sec. Symbol IF IFP VR PD Topr Tstg Tsld Pulse Width ≤ 10msec. and (2) Initial Electrical/Optical Characteristics Item Symbol Forward Voltage VF Reverse Current IR Luminous Intensity Iv Luminous Intensity Iv x Chromaticity Coordinate y - Duty ≤ 1/10 Condition IF=20[mA] VR= 5[V] IF=20[mA] IF=20[mA] IF=20[mA] IF=20[mA] Typ. (3.2) (9300)(new) (11000)(old) 0.133 0.075 1 2 (Ta=25°C) Max. Unit 3.5 V 50 µA mcd mcd - Please refer to CIE 1931 chromaticity diagram. 1 Change previously listed luminous intensity values (see 2) to luminous intensity values traceable to the current national standards on and after January 1, 2009. (In accordance with CIE 127:2007) (3) Ranking Item Luminous Intensity (new) 1 Rank W Rank V Rank U Item Luminous Intensity (old) 2 Rank W Rank V Rank U Symbol Iv Iv Iv Symbol Iv Iv Iv Condition IF=20[mA] IF=20[mA] IF=20[mA] Condition IF=20[mA] IF=20[mA] IF=20[mA] Luminous Intensity Measurement allowance is ± 10%. -1- Min. 9750 6960 4880 (Ta=25°C) Max. Unit 13950 mcd 9750 mcd 6960 mcd Min. 11500 8240 5760 (Ta=25°C) Max. Unit 16500 mcd 11500 mcd 8240 mcd Nichia STS-DA1-0335 <Cat.No.081104> Color Rank x y 0.11 0.04 (IF=20mA,Ta=25°C) Rank W 0.11 0.15 0.15 0.10 0.10 0.04 Color Coordinates Measurement allowance is ± 0.01. Basically, a shipment shall consist of the LEDs of a combination of the above ranks. The percentage of each rank in the shipment shall be determined by Nichia. 2.INITIAL OPTICAL/ELECTRICAL CHARACTERISTICS Please refer to “CHARACTERISTICS” on the following pages. 3.OUTLINE DIMENSIONS AND MATERIALS Please refer to “OUTLINE DIMENSIONS” on the following page. Resin : Epoxy Resin Material as follows ; Leadframe : Ag Plating Copper Alloy 4.PACKAGING · The LEDs are packed in cardboard boxes after packaging in anti-electrostatic bags. Please refer to “PACKING” on the following pages. The label on the minimum packing unit shows ; Part Number, Lot Number, Ranking, Quantity · In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation. · The LEDs may be damaged if the boxes are dropped or receive a strong impact against them, so precautions must be taken to prevent any damage. · The boxes are not water resistant and therefore must be kept away from water and moisture. · When the LEDs are transported, we recommend that you use the same packing method as Nichia. 5.LOT NUMBER The first six digits number shows lot number. The lot number is composed of the following characters; -U - Year ( 7 for 2007, 8 for 2008 ) - Month ( 1 for Jan., 9 for Sep., A for Oct., - Nichia's Product Number U - Ranking by Color Coordinates - Ranking by Luminous Intensity -2- B for Nov. ) Nichia STS-DA1-0335 <Cat.No.081104> 6.RELIABILITY (1) TEST ITEMS AND RESULTS Test Item Standard Test Method Test Conditions Note Number of Damaged 1 time 0/50 1 time over 95% 0/50 Resistance to Soldering Heat JEITA ED-4701 300 302 Tsld=260 ± 5°C, 10sec. 3mm from the base of the epoxy bulb Solderability JEITA ED-4701 300 303 Tsld=235 ± 5°C, (using flux) Temperature Cycle JEITA ED-4701 100 105 -40°C ~ 25°C ~ 100°C ~ 25°C 30min. 5min. 30min. 5min. 100 cycles 0/50 Moisture Resistance Cyclic JEITA ED-4701 200 203 25°C ~ 65°C ~ -10°C 90%RH 24hrs./1cycle 10 cycles 0/50 Terminal Strength (bending test) JEITA ED-4701 400 401 Load 5N (0.5kgf) 0° ~ 90° ~ 0° bend 2 times No noticeable damage 0/50 Terminal Strength (pull test) JEITA ED-4701 400 401 Load 10N (1kgf) 10 ± 1 sec. No noticeable damage 0/50 High Temperature Storage JEITA ED-4701 200 201 Ta=100°C 1000hrs. 0/50 Temperature Humidity Storage JEITA ED-4701 100 103 Ta=60°C, 1000hrs. 0/50 Low Temperature Storage JEITA ED-4701 200 202 Ta=-40°C 1000hrs. 0/50 1000hrs. 0/50 500hrs. 0/50 1000hrs. 0/50 5sec. RH=90% Steady State Operating Life Ta=25°C, IF=35mA Steady State Operating Life of High Humidity Heat 60°C, RH=90%, Steady State Operating Life of Low Temperature Ta=-30°C, IF=20mA IF=20mA (2) CRITERIA FOR JUDGING DAMAGE Criteria for Judgement Min. Max. Item Symbol Test Conditions Forward Voltage VF IF=20mA U.S.L.*) Reverse Current IR VR=5V U.S.L.*) Luminous Intensity IV IF=20mA L.S.L.**) 0.7 *) U.S.L. : Upper Standard Level **) L.S.L. : Lower Standard Level -3- 1.1 2.0 Nichia STS-DA1-0335 <Cat.No.081104> 7.CAUTIONS (1) Lead Forming · When forming leads, the leads should be bent at a point at least 3mm from the base of the epoxy bulb. Do not use the base of the leadframe as a fulcrum during lead forming. · Lead forming should be done before soldering. · Do not apply any bending stress to the base of the lead. The stress to the base may damage the LED’s characteristics or it may break the LEDs. · When mounting the LEDs onto a printed circuit board, the holes on the circuit board should be exactly aligned with the leads of the LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the LEDs. (2) Storage · The LEDs should be stored at 30°C or less and 70%RH or less after being shipped from Nichia and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material. · Nichia LED leadframes are silver plated copper alloy. The silver surface may be affected by environments which contain corrosive substances. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the LEDs be used as soon as possible. · Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur. (3) Recommended circuit · In designing a circuit, the current through each LED must not exceed the absolute maximum rating specified for each LED. It is recommended to use Circuit B which regulates the current flowing through each LED. In the meanwhile, when driving LEDs with a constant voltage in Circuit A, the current through the LEDs may vary due to the variation in forward voltage (VF) of the LEDs. In the worst case, some LED may be subjected to stresses in excess of the absolute maximum rating. (B) (A) ... ... · This product should be operated in forward bias. A driving circuit must be designed so that the product is not subjected to either forward or reverse voltage while it is off. In particular, if a reverse voltage is continuously applied to the product, such operation can cause migration resulting in LED damage. -4- Nichia STS-DA1-0335 <Cat.No.081104> (4) Static Electricity · Static electricity or surge voltage damages the LEDs. It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs. · All devices, equipment and machinery must be properly grounded. It is recommended that precautions be taken against surge voltage to the equipment that mounts the LEDs. · When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a light-on test or a VF test at a lower current (below 1mA is recommended). · Damaged LEDs will show some unusual characteristics such as the leak current remarkably increases, the forward voltage becomes lower, or the LEDs do not light at the low current. Criteria : (VF > 2.0V at IF=0.5mA) (5) Soldering Conditions · Nichia LED leadframes are silver plated copper alloy. This substance has a low thermal coefficient (easily conducts heat). Careful attention should be paid during soldering. · Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended. · Recommended soldering conditions Dip Soldering Hand Soldering Pre-Heat 120°C Max. Temperature 350°C Max. Pre-Heat Time 60 seconds Max. Soldering Time 3 seconds Max. Solder Bath 260°C Max. Position No closer than 3 mm from the base of the epoxy bulb. Temperature Dipping Time 10 seconds Max. Dipping Position No lower than 3 mm from the base of the epoxy bulb. · Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the LEDs. · A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature. · Dip soldering should not be done more than one time. · Hand soldering should not be done more than one time. · Do not apply any stress to the lead particularly when heated. · The LEDs must not be repositioned after soldering. · After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature. · Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused from warping of the PC board or from the clinching and cutting of the leadframes. When it is absolutely necessary, the LEDs may be mounted in this fashion but the User will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. Nichia’s LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin. · When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs. · Cut the LED leadframes at room temperature. Cutting the leadframes at high temperatures may cause failure of the LEDs. -5- Nichia STS-DA1-0335 <Cat.No.081104> (6) Heat Generation · Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification. · The operating current should be decided after considering the ambient maximum temperature of LEDs. (7) Cleaning · It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the resin or not. Freon solvents should not be used to clean the LEDs because of worldwide regulations. · Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur. (8) Safety Guideline for Human Eyes · The International Electrical Commission (IEC) published in 2006 IEC 62471:2006 Photobiological safety of lamps and lamp systems which includes LEDs within its scope. Meanwhile LEDs were removed from the scope of the IEC 60825-1:2007 laser safety standard, the 2001 edition of which included LED sources within its scope. However, keep in mind that some countries and regions have adopted standards based on the IEC laser safety standard IEC 60825-1:2001 which includes LEDs within its scope. Following IEC 62471:2006, most of Nichia LEDs can be classified as belonging to either Exempt Group or Risk Group 1. Optical characteristics of a LED such as output power, spectrum and light distribution are factors that affect the risk group determination of the LED. Especially a high-power LED, that emits light containing blue wavelengths, may be in Risk Group 2. Great care should be taken when viewing directly the LED driven at high current or the LED with optical instruments, which may greatly increase the hazard to your eyes. -6- Nichia STS-DA1-0335 <Cat.No.081104> (9) Others · NSPB500AS complies with RoHS Directive. · Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating when using the LEDs with matrix drive. · Flashing lights have been known to cause discomfort in people; you can prevent this by taking precautions during use. Also, people should be cautious when using equipment that has had LEDs incorporated into it. · The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances). Consult Nichia’s sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor control systems, automobiles, traffic control equipment, life support systems and safety devices). · User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from Nichia. When defective LEDs are found, the User shall inform Nichia directly before disassembling or analysis. · The formal specifications must be exchanged and signed by both parties before large volume purchase begins. · The appearance and specifications of the product may be modified for improvement without notice. -7- Nichia STS-DA1-0335 <Cat.No.081104> ICI Chromaticity Diagram 0.9 520 530 0.8 540 510 550 0.7 560 0.6 570 500 580 0.5 y 590 0.4 600 610 0.3 620 630 490 0.2 480 0.1 W 470 460 0 0 0.1 0.2 0.3 0.4 x Color Coordinates Measurement allowance is ± 0.01. -8- 0.5 0.6 0.7 0.8 50 20 10 5 3 2 1 0 0 20 40 60 80 100 120 Forward Current IFP (mA) Ambient Temperature vs. Forward Voltage Ambient Temperature vs. Relative Luminosity 5.0 2.0 4.6 4.2 IFP=60mA IFP=20mA IFP=5mA 3.8 3.4 3.0 2.6 2.2 -40 -20 0 20 40 60 80 100 Ambient Temperature Ta (°C) Relative Luminosity (a.u.) -9- Forward Voltage VF (V) 1 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Forward Voltage VF (V) Ta=25°C 4 IFP=20mA 1.0 0.5 0.2 -40 -20 0 20 40 60 80 100 Ambient Temperature Ta (°C) Allowable Forward Current IFP (mA) Ta=25°C 200 Ta=25°C 110 50 35 20 10 1 5 10 20 50 100 Duty Ratio (%) Ambient Temperature vs. Allowable Forward Current Allowable Forward Current IF (mA) 5 Relative Luminosity (a.u.) Forward Current IFP (mA) 200 110 Duty Ratio vs. Allowable Forward Current Forward Current vs. Relative Luminosity Forward Voltage vs. Forward Current 40 30 20 10 8.5 0 0 20 40 60 80 100 Ambient Temperature Ta (°C) NICHIA CORPORATION NSPBxxxx Title CHARACTERISTICS No. 070528765631 Nichia STS-DA1-0335 <Cat.No.081104> Model Forward Current vs. Chromaticity Coordinate (λD) 1mA(474nm) 0.09 y 5mA(473nm) 0.08 20mA(471nm) 0.07 50mA(469nm) 110mA(468nm) 0.06 0.10 0.11 0.12 0.13 0.14 0.15 477 Ta=25°C 475 473 471 469 467 465 1 5 10 20 50 110 200 Forward Current IFP (mA) Ta=25°C IF=20mA 1.0 0.8 0.6 0.4 0.2 0 350 400 450 500 550 600 650 Wavelength λ (nm) Ambient Temperature vs. Dominant Wavelength Dominant Wavelength λ D (nm) -10- Dominant Wavelength λ D (nm) x Forward Current vs. Dominant Wavelength 1.2 Directivity 475 0° 1.0 477 Relative Luminosity (a.u.) Ta=25°C 0.10 Relative Emission Intensity (a.u.) 0.11 Spectrum IFP=20mA 473 471 469 467 465 -40 -20 0 20 40 60 80 100 Ambient Temperature Ta (°C) 10° 20° 30° Ta=25°C IFP=20mA 40° 50° 60° 0.5 70° 80° 0 90° 60° 30° Radiation Angle NICHIA CORPORATION 0.5 90° 1.0 NSPB500AS Title CHARACTERISTICS No. 070528765661 Nichia STS-DA1-0335 <Cat.No.081104> Model 0° 1.5MAX. 5.3 φ5 1.1 (2.5) Cathode 0.5 ± 0.05 Anode Stopper 1 φ 5.6 7.6 0.3 8.6 12.4 ± 0.5 -11- 28.9 ± 1 0.3 (2) ITEM RESIN LEAD FRAME 1 MATERIALS Epoxy Resin Ag Plating Copper Alloy Model NICHIA CORPORATION Title No. NSPB500AS OUTLINE DIMENSIONS 080702820841 Nichia STS-DA1-0335 <Cat.No.081104> Remark: Please note that the bare copper alloy showing at the cut end of the lead frame may be corroded under certain conditions. LEDs have some sharp edges and points, particularly lead frames. Please handle with care so as to avoid injuries. Unit mm 3/1 Scale Allow ±0.2 Nichia STS-DA1-0335 <Cat.No.081104> Print N ICHIA Cardboard XXXX LED Anti-electrostatic bag TYPE NxPxxxxxx LOT QTY xxxxxx-U pcs RoHS NICHIA CORPORATION 491OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN CAUTION TO ELECTROSTATIC DAMAGE The quantity is printed on this bag. 静電気に注意 Label NICHIA XXXX LED Cardboard TYPE LOT QTY NxPxxxxxx xxxxxx-U PCS RoHS NICHIA CORPORATION 491 OKA, KAMINAKA, ANAN, TOKUSHIMA, JAPAN Cardboard box 360¯135¯215¯4t ½ One box contains 8 bags at maximum. NICHIA CORPORATION Cardboard Model NxPxxxxxx Title PACKING No. 070508659112 Print NIC HIA Anti-electrostatic bag XXXX LED TYPE NxPxxxxxx LOT QTY xxxxxx-U pcs RoHS NICHIA CORPORATION The quantity is printed on this bag. 491OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN CAUTION TO ELECTROSTATIC DAMAGE 静電気に注意 Cardboard box A Label NICHIA XXXX LED TYPE LOT QTY NxPxxxxxx xxxxxx-U PCS RoHS NICHIA CORPORATION 491 OKA, KAMINAKA, ANAN, TOKUSHIMA, JAPAN Cardboard ½ Put this label on the cardboard box B. Cardboard box B 360¯135¯215¯4t ½ The cardboard box B contains 2 cardboard box A at maximum. NICHIA CORPORATION -12- Model NxPxxxxxx Title PACKING No. 070508659122 Nichia STS-DA1-0335 <Cat.No.081104> Print Cardboard NICHIA Anti-electrostatic bag XXXX LED TYPE NxPxxxxxx LOT QTY xxxxxx-U pcs RoHS NICHIA CORPORATION 491OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN The quantity is printed on this bag. CAUTION TO ELECTROSTATIC DAMAGE 静電気に注意 Label NICHIA Cardboard XXXX LED TYPE LOT QTY NxPxxxxxx xxxxxx-U PCS RoHS NICHIA CORPORATION 491 OKA, KAMINAKA, ANAN, TOKUSHIMA, JAPAN Cardboard box 425¯135¯355¯4t ½ One box contains 20 bags at maximum. NICHIA CORPORATION Model NxPxxxxxx Title PACKING No. 070508659132 Print Cardboard NICH IA XXXX LED Anti-electrostatic bag TYPE NxPxxxxxx LOT QTY xxxxxx-U pcs RoHS NICHIA CORPORATION 491OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN The quantity is printed on this bag. Cardboard box A CAUTION TO ELECTROSTATIC DAMAGE 静電気に注意 Label NICHIA XXXX LED TYPE LOT QTY Cardboard NxPxxxxxx xxxxxx-U PCS RoHS NICHIA CORPORATION 491 OKA, KAMINAKA, ANAN, TOKUSHIMA, JAPAN ½ Put this label on the cardboard box B. Cardboard box B 425¯135¯355¯4t NICHIA CORPORATION Model NxPxxxxxx Title PACKING No. 070508659142 ½ The cardboard box B contains 4 cardboard box A at maximum. -13-