Intersil ISL28533EV2Z 5v, rail-rail i/o, zero-drift, programmable gain instrumentation amplifier Datasheet

5V, Rail-Rail I/O, Zero-Drift, Programmable Gain
Instrumentation Amplifiers
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
The ISL28533, ISL28534, ISL28535, ISL28633, ISL28634,
Features
and ISL28635 are 5V Zero-Drift Rail-to-Rail Input/Output
Programmable Gain Instrumentation Amplifiers (PGIA). These
instrumentation amplifiers feature low offset, low noise, low
gain error and high CMRR. They are ideal for high precision
applications over the wide industrial temperature range.
• Ultra high precision front end amplifier
These Instrumentation Amplifiers are designed with a unique
2-bit, 3-state logic interface that allows up to 9 selectable gain
settings. The ISL2853x single-ended output includes and
additional uncommitted zero-drift amplifier, useful to buffer
the REF input or used as a precision amplifier. The ISL2863x
differential output amplifier includes a reference pin to set the
common mode output voltage to interface with differential
input ADCs.
• Single ended output (ISL28533, ISL28534, ISL28535)
• Zero drift instrumentation amplifier
• Pin selectable 9 gain settings: G = 1 to 1,000
• Rail-to-Rail input/output
• Differential output (ISL28633, ISL28634, ISL28635)
• RFI filtered inputs improve EMI rejection
• Single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5V to 5.5V
• Dual supply . . . . . . . . . . . . . . . . . . . . . . . . . ±1.25V to ±2.75V
• Low input offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5µV, Max
Applications
• Low input offset drift . . . . . . . . . . . . . . . . . . . . . 50nV/°C, Max
•
•
•
•
•
•
•
•
• Low gain error. . . . . . . . . . . . . . . . . . . . . <0.4%, All Gains, Max
• High CMRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138dB, G = 100
Pressure and strain gauge transducers
Weight scales
Flow sensors
Biometric: ECG/blood glucose
Temperature sensors
Test and measurement
Data acquisition systems
Low ohmic current sense
• Gain bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3MHz
• Input voltage noise (0.1Hz to 10Hz). . . . . . . . . . . . . . 0.4µVP-P
• Operating temperature range. . . . . . . . . . . .-40°C to +125°C
Related Literature
• “ISLRE-BDGSTKEV1Z DAQ on a Stick User’s Guide” AN1853
• “ISL28533-633EV2Z User’s Guide” AN1880
INA-
INA-
+
20kΩ
+
20kΩ
A1
-
RG
A3
+
RG
VAVA+
-
OUTA
A3
VAVA+
OUTA1MΩ
-
+
RG
20kΩ
20kΩ
A1
+
RG
+
20kΩ
20kΩ
REF
A2
INA+
-
+
OUT
9 GAIN
CONTROL
G0
G1
FIGURE 1. ISL2853x SINGLE-ENDED OUTPUT
September 24, 2013
FN8364.0
1
A4
+
A4
OUTA+
20kΩ
A2
INA+
+
ININ+
20kΩ
-
-
REF
1MΩ
9 GAIN
CONTROL
G0
G1
FIGURE 2. ISL2863x DIFFERENTIAL OUTPUT
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2013. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Table of Contents
Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Typical Sensor Application Block Diagram, ISL28533 Single-Ended Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Typical Bridge Sensor Application Block Diagram, ISL28634 Differential Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
G0 and G1 Programmable Gain Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Typical Instrumentation Amplifier Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Typical Operational Amplifier Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Precision Sensor Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single-Ended Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RFI Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Stage Output VA+/VA- Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable Gain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Setting with DCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Switching Delay Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dual Supply Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power supply and REF Pin Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
common mode input range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
25
25
25
25
26
26
27
27
27
27
Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Sensor Health Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Active Shield Guard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Pin Configurations
ISL28633, ISL28634, ISL28635 DIFFERENTIAL OUTPUT
(14 LD TSSOP)
TOP VIEW
ISL28533, ISL28534, ISL28535 SINGLE ENDED OUTPUT
(14 LD TSSOP)
TOP VIEW
G0 1
3
DNC
12
OUTA
V+
2
13
DNC
VA-
3
12
OUTA+
11
REF
10
OUTA-
-
G1
-
VA-
13
14
+
2
V+
+
G1
G0 1
14
INA+ 4
11
REF
INA+ 4
INA-
5
10
OUT
INA-
5
VA+
6
VA+
6
9
N.C.
V-
7
V-
7
8
N.C.
+ -
9
IN-
8
IN+
Pin Descriptions
ISL28533
ISL28534
ISL28535
(SINGLE- ENDED OUT)
ISL28633
ISL28634
ISL28635
(DIFFERENTIAL OUT)
PIN
NAME
EQUIVALENT
CIRCUIT
4
4
INA+
Circuit 1
INA+ Input
Positive Differential Input
5
5
INA-
Circuit 1
INA- Input
Negative Differential Input
FUNCTION
COMMENTS
12
-
OUTA
Circuit 2
INA Output
Single Ended Output
-
12
OUTA+
Circuit 2
INA +Output
Positive Differential Output
-
10
OUTA-
Circuit 2
INA -Output
Negative Differential Output
6
6
VA+
Circuit 1
A2 Output
INA Gain Stage +Output
3
3
VA-
Circuit 1
A1 Output
INA Gain Stage -Output
11
11
REF
Circuit 1
Output Reference
INA Output Reference
1
1
G0
Circuit 1
Gain Control Logic Input
2
2
G1
Circuit 1
Gain Control Logic Input
8
-
IN+
Circuit 1
Non-Inverting Op Amp Input
Auxiliary Amplifier IN+
9
-
IN-
Circuit 1
Inverting Op Amp Input
Auxiliary Amplifier IN-
10
-
OUT
Circuit 2
Op Amp Output
Auxiliary Amplifier OUT
14
14
V+
Circuit 3
Positive supply
7
7
V-
Circuit 3
Negative supply
Single Supply: +2.5V to +5.5V
Dual Supply: ±1.25V to ±2.75V
-
8, 9
N.C.
No Connect
13
13
DNC
Do Not Connect
INA+,
V+
V+
INA-,
Pin must float
V+
CAPACITIVELY
COUPLED
OUT
IN+,
V-
IN-
ESD CLAMP
VV-
CIRCUIT 1
CIRCUIT 2
3
CIRCUIT 3
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Sensor Application Block Diagram, ISL28533 Single-Ended
Output
VCC
+5V
ISL21090
5V VREF
V+
OUT+
SENSOR
ISL28533
INA-
OUT-
-
COMMON
MODE
SENSE
20kΩ
-
ISL28134
+
20kΩ
+
A1
REF+
RG
10kΩ
VAVA+
VCM
A3
+
RG
10kΩ
-
20kΩ
OUTA
20kΩ
ISL26320
12-bit ADC
REF
A2
INA+
IN
+
OUT
A4
+
VCC
ININ+
ISL21090
2.5V VREF
V-
FIGURE 3. SENSOR APPLICATION WITH COMMON MODE SENSING AND BUFFERED REFERENCE DRIVE
Typical Bridge Sensor Application Block Diagram, ISL28634
Differential Output
*See ISLRE-BDGSTKEV1Z DAQ on a Stick User’s Guide” AN1853
ISL23328
ISL26104
24-BIT ADC
DCP
Gain Control
+5V
Ch 1
35
0Ω
Ch 2
FOIL STRAIN
GAUGE
S
ISL28634
50Ω
+
TO GUI
Ch 3
Ch 4
S
35
0Ω
35
0
Ω
+
-
+
-
Renesas
MICROCONTROLLER
50Ω
VA+
ISL21010
5V VREF
ISL28233
R5F10JBC (RL78/G1C)
VA-
FIGURE 4. SIMPLIFIED STRAIN GAUGE SCHEMATIC
4
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
G0 and G1 Programmable Gain Setting
G1
(NOTE)
G0
(NOTE)
ISL28533
ISL28633
ISL28534
ISL28634
ISL28535
ISL28635
0
0
1
1
1
0
Z
2
2
100
0
1
4
10
120
Z
0
5
50
150
Z
Z
10
100
180
Z
1
20
200
200
1
0
40
300
300
1
Z
50
500
500
1
1
100
1000
1000
MEDICAL
PIEZO-ELECTRIC
PRESSURE SENSOR
FLUID SENSOR
SHUNT SENSE
OPTICAL SENSORS
STRAIN GAUGE
THERMOCOUPLE
STRAIN GAUGE
APPLICATIONS
NOTE: For valid logic “Z” state leave G0/G1 pins in high impedance state. Internal 100kΩ pull-up and pull-down resistors on these pins establishes logic
“Z”. See Application Section for more information.
Ordering Information
PART NUMBER
(Notes 1, 2, 3)
PART
MARKING
TEMP RANGE
(°C)
PACKAGE
(Pb-Free)
PKG.
DWG. #
ISL28533FVZ
28533 FVZ
-40 to +125
14 Ld TSSOP
M14.173
ISL28534FVZ
28534 FVZ
-40 to +125
14 Ld TSSOP
M14.173
ISL28535FVZ
Coming Soon
28535 FVZ
-40 to +125
14 Ld TSSOP
M14.173
ISL28633FVZ
28633 FVZ
-40 to +125
14 Ld TSSOP
M14.173
ISL28634FVZ
28634 FVZ
-40 to +125
14 Ld TSSOP
M14.173
ISL28635FVZ
Coming Soon
28635 FVZ
-40 to +125
14 Ld TSSOP
M14.173
ISL28533EV2Z
ISL28533 Evaluation Board
ISL28534EV2Z
ISL28534 Evaluation Board
ISL28535EV2Z
Coming Soon
ISL28535 Evaluation Board
ISL28633EV2Z
ISL28633 Evaluation Board
ISL28634EV2Z
ISL28634 Evaluation Board
ISL28635EV2Z
Coming Soon
ISL28635 Evaluation Board
NOTES:
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635. For
more information on MSL please see tech brief TB363.
5
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Absolute Maximum Ratings
Thermal Information
Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Input Voltage VIN to GND . . . . . . . . . . . . . . . . . . ((V-) - 0.3V) to ((V+) + 0.3V)
Input Differential Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA
Output Current IOUT (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40mA
Latch-Up
Class 2 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
ESD Rating
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8kV
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700V
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV
Thermal Resistance (Typical)
θJA (°C/W) θJC (°C/W)
14 LD TSSOP (Notes 4, 5) . . . . . . . . . . . . . .
92
30
Maximum Storage Temperature Range . . . . . . . . . . . . . -65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +125°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . +140°C
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 2.5V (±1.25V) to 5.5V (±2.75V)
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For θJC, the “case temp” location is taken at the package top center.
Electrical Specifications
V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C.
PARAMETER
DESCRIPTION
CONDITIONS
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
2.5
-
5.5
V
-
2.9
3.4
mA
-
-
3.5
mA
-
3
3.5
mA
-
-
3.6
mA
-5
±0.6
5
µV
POWER SUPPLY DC SPECIFICATIONS
VS
Supply Voltage
VS = (V+) - (V-)
IS
Supply Current
VS = 5V
ISL2853X, RL = OPEN
ISL2863X, RL = OPEN
5V DC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
VOS, I
Input Stage Offset Voltage
+25°C
-40°C to +85°C
-9
-
9
µV
-40°C to +125°C
-10
-
10
µV
TCVOS, I
Input Stage Offset Voltage Temperature
Coefficient
-40°C to +125°C
-50
±5
50
nV/°C
VOS, O
Output Stage Offset Voltage
+25°C
-15
±2
15
µV
-40°C to +85°C
-45
-
45
µV
-40°C to +125°C
-65
-
65
µV
µV/°C
TCVOS, O
Output Stage Offset Voltage
Temperature Coefficient
-40°C to +125°C
-0.5
±0.15
0.5
IB
Input Bias Current
+25°C
-400
±50
400
pA
-40°C to +85°C
-400
-
400
pA
-40°C to +125°C
-1
-
1
nA
+25°C
-300
±50
300
pA
-40°C to +85°C
-350
-
350
pA
-40°C to +125°C
-1
-
1
nA
-
10
-
GΩ
-
5
-
pF
IOS
ZIN
Input Offset Current
Input Impedance
6
Common Mode
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Electrical Specifications
V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C. (Continued)
PARAMETER
EGAIN
DESCRIPTION
Gain Error
CONDITIONS
G = 1 to 50
G = 100 to 500
G = 1000
MAX
(Note 6)
UNIT
-0.2
±0.05
0.2
%
-0.35
-
0.35
%
-0.3
±0.05
0.3
%
-0.4
-
0.4
%
-0.4
±0.05
0.4
%
-
0.5
%
-
10
-
ppm/°C
G=1
-
5
-
ppm
G = 10
-
5
-
ppm
G = 100
-
10
-
ppm
G = 1000
-
10
-
ppm
G=1
80
100
-
dB
G = 10
100
114
-
dB
90
-
-
dB
110
138
-
dB
100
-
-
dB
120
150
-
dB
110
-
-
dB
(V-) +0.1
-
(V+) -0.1
V
Gain Drift
G = 1 to 1,000
-40°C to +125°C
GNL
Gain Non-Linearity
VOUT = +0.1V to +4.9V; RL = 10kΩ
Common Mode Rejection Ratio
TYP
-0.5
GAIN_TC
CMRR
MIN
(Note 6)
VCM = +0.1V to +4.9V
G = 100
G = 1000
CMIR
Common Mode Input Range
Guaranteed by CMRR
VREF Range
Reference Voltage Range
ISL2853X
V-
-
V+
V
ISL2863X
(V-) +0.6
-
(V+) -1
V
ISL2853X
VIN+ = VIN- = VREF = 2.5V
-0.5
0.1
0.5
µA
-1
-
1
µA
ISL2863X
VREF = 2.5V
-500
150
500
pA
-25
-
25
nA
ISL2853X
36
40
44
kΩ
ISL2863X
-
10
-
GΩ
G=1V/V
110
130
-
dB
G=10V/V
110
140
-
dB
G=100V/V
120
140
-
dB
G=1000V/V
120
140
-
dB
IREF
ZREF
PSRR
ISC
VOH
Reference Input Current
Reference Input Impedance
Power Supply Rejection Ratio
Vs = +2.5V to +5.5V
Short Circuit Output Source Current
RL = Short to V-
-
45
-
mA
Short Circuit Output Sink Current
RL = Short to V+
-
-45
-
mA
High Output Voltage from V+
((V+) - VOUT)
RL = 10kΩ V+ to VREF
-
10
15
mV
-
-
20
mV
7
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Electrical Specifications
V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C. (Continued)
PARAMETER
VOL
DESCRIPTION
Low Output Voltage from V((V-) + VOUT)
CONDITIONS
RL = 10kΩ V- to VREF
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
-
10
15
mV
-
-
20
mV
0.8*(Vs)
-
-
V
5V G0/G1 LOGIC INPUTS INSTRUMENTATION AMPLIFIER
VIH
Logic Input High Threshold
Vs = (V+) - (V-)
VIL
Logic Input Low Threshold
Vs = (V+) - (V-)
-
-
0.2*(Vs)
V
VIH_Z/VIL_Z
Hi-Z Logic Input Range
Vs = (V+) - (V-)
0.4*(Vs)
-
0.6*(Vs)
V
VOC
Open Circuit Logic Voltage
Set by 2 internal 100kΩ Resistors;
VS = (V+) - (V-)
0.45*VS
-
0.55*VS
V
ZIN
Logic Input Impedance
-
50k
-
kΩ
5V AC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
eN
Total Input Referred Voltage Noise
eN = √(eNi2 + (eNo/G)2 + (IN*RS)2)
eNi
Input Noise Voltage
f = 0.1Hz to 10Hz; G = 100
-
0.4
-
µVP-P
f = 1kHz; G = 100
-
17
-
nV/√Hz
f = 0.1Hz to 10Hz; G = 1
-
1.8
-
µVP-P
f = 1kHz; G = 1
-
65
-
nV/√Hz
eNo
Output Noise Voltage
IN
Input Noise Current
f = 10Hz; RS = 5MΩ; G = 100
-
100
-
fA/√Hz
GBWP
Gain Bandwidth Product
G ≥ 10
-
2.3
-
MHz
G < 10
-
1.6
-
MHz
VOUT = 4VP-P; G = 1
-
0.8
-
V/µs
VOUT = 4VP-P; G = 100
-
0.28
-
V/µs
5V TRANSIENT RESPONSE INSTRUMENTATION AMPLIFIER
SR
Slew Rate
20% to 80%
tGPD
Gain Select Prop Delay
All Gains, 2V to 4V output after gain
change
-
1
-
µs
ts
Settling Time
To 0.1%, 4VP-P Step
-
20
-
µs
To 0.01%, 4VP-P Step
-
70
-
µs
G=1
-
1
-
µs
-
140
-
dB
-2.5
-0.2
2.5
µV
TA = -40°C to +85°C
-3.475
-
3.475
µV
TA = -40°C to +125°C
-4
-
-4
µV
TA = -40°C to +125°C
-15
-0.5
15
nV/°C
trecover
Output Overload Recovery Time,
Recovery to 90% of output saturation
5V DC SPECIFICATIONS OPERATIONAL AMPLIFIER
AvOPEN
Open Loop Gain
VOS
Input Offset Voltage
TCVOS
Input Offset Voltage Temperature
Coefficient
IB
Input Bias Current
8
TA = +25°C
TA = +25°C
-300
±15
300
pA
TA = -40°C to +85°C
-300
-
300
pA
TA = -40°C to +125°C
-550
-
550
pA
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Electrical Specifications
V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C. (Continued)
PARAMETER
IOS
DESCRIPTION
CONDITIONS
Input Offset Current
Common Mode
Input Voltage
Range
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
-600
±50
600
pA
TA = -40°C to +85°C
-600
-
600
pA
TA = -40°C to +125°C
-1100
-
1100
pA
V+ = 5.0V, V- = 0V
Guaranteed by CMRR
0
-
5
V
135
-
dB
CMRR
Common Mode Rejection Ratio
VCM = 0V to 5V
110
97
-
-
dB
PSRR
Power Supply Rejection Ratio
VS = 2.5V to 5.5V
120
135
-
dB
ISC
Short Circuit Output Source Current
RL = Short to V-
-
40
-
mA
Short Circuit Output Sink Current
RL = Short to V+
-
-40
-
mA
Output Voltage Swing, HIGH
From VOUT to V+
RL = 10kΩ to V-
-
20
45
mV
RL = 10kΩ to V-
-
-
50
mV
RL = 10kΩ to V+
-
20
45
mV
RL = 10kΩ to V+
-
-
50
mV
VOH
VOL
Output Voltage Swing, LOW
From V- to VOUT
5V AC SPECIFICATIONS OPERATIONAL AMPLIFIER
CIN
Input Capacitance
Differential
-
5.2
-
pF
Common Mode
-
5.6
-
pF
-
0.25
-
µVP-P
eN
Input Noise Voltage
f = 0.1Hz to 10Hz
f = 1kHz
-
10
-
nV/√Hz
IN
Input Noise Current
f = 1kHz
-
200
-
fA/√Hz
GBWP
Gain Bandwidth Product
-
3
-
MHz
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C.
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
+25°C
-5
±0.6
5
µV
-40°C to +85°C
-9
-
9
µV
-40°C to +125°C
-10
-
10
µV
TCVOS, I
Input Stage Offset Voltage Temperature -40°C to +125°C
Coefficient
-50
±5
50
nV/°C
VOS, O
Output Stage Offset Voltage
+25°C
-15
±2
15
µV
-40°C to +85°C
-45
-
45
µV
-40°C to +125°C
-65
-
65
µV
PARAMETER
DESCRIPTION
CONDITIONS
2.5V DC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
VOS, I
Input Stage Offset Voltage
TCVOS, O
Output Stage Offset Voltage
Temperature Coefficient
-40°C to +125°C
-0.5
±0.15
0.5
µV/°C
IB
Input Bias Current
+25°C
-400
±50
400
pA
-40°C to +85°C
-400
-
400
pA
-40°C to +125°C
-1
-
1
nA
9
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C. (Continued)
PARAMETER
IOS
MIN
(Note 6)
TYP
+25°C
-300
±50
300
pA
-40°C to +85°C
-350
-
350
pA
-40°C to +125°C
-1
-
1
nA
-
10
-
GΩ
DESCRIPTION
Input Offset Current
CONDITIONS
ZIN
Input Impedance
Common Mode
EGAIN
Gain Error
G = 1 to 50
G = 100 to 500
MAX
(Note 6)
UNIT
-
5
-
pF
-0.2
±0.05
0.2
%
-0.35
-
0.35
%
-0.3
±0.05
0.3
%
-0.4
-
0.4
%
-0.4
±0.05
0.4
%
-0.5
-
0.5
%
-
10
-
ppm/°C
G=1
80
100
-
dB
G = 10
100
114
-
dB
90
-
-
dB
110
138
-
dB
100
-
-
dB
120
150
-
dB
110
-
-
dB
(V-) +0.1
-
(V+) -0.1
V
G = 1000
GAIN_TC
Gain Drift
G = 1 to 1,000
-40°C to +125°C
CMRR
Common Mode Rejection Ratio
VCM = +0.1V to +2.4V
G = 100
G = 1000
CMIR
Common Mode Input Range
Guaranteed by CMRR
VREF Range
Reference Voltage Range
ISL2853x
V-
-
V+
V
ISL2863x
(V-) +0.6
-
(V+) -1
V
ISL2853x
VIN+ = VIN- = VREF = 1.25V
-0.5
0.1
0.5
µA
-1
-
1
µA
ISL2863x
-500
150
500
pA
-25
-
25
nA
ISL2853x
36
40
44
kΩ
ISL2863x
-
10
-
GΩ
G = 1V/V
110
130
-
dB
G = 10V/V
110
140
-
dB
G = 100V/V
120
140
-
dB
G = 1000V/V
120
140
-
dB
IREF
ZREF
PSRR
ISC
VOH
Reference Input Current
Reference Input Impedance
Power Supply Rejection Ratio
Vs = +2.5V to +5.5V
Short Circuit Output Source Current
RL = Short to V-
-
25
-
mA
Short Circuit Output Sink Current
RL = Short to V+
-
-25
-
mA
Output Voltage Swing, HIGH
RL = 10kΩ to VREF
-
5
15
mV
-
-
20
mV
10
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C. (Continued)
PARAMETER
VOL
DESCRIPTION
Output Voltage Swing, LOW
CONDITIONS
RL = 10kΩ to VREF
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
-
5
15
mV
-
-
20
mV
0.8*(Vs)
-
-
V
2.5V G0/G1 LOGIC INPUTS INSTRUMENTATION AMPLIFIER
VIH
Logic Input High Threshold
VIL
Logic Input Low Threshold
Vs = (V+) - (V-)
-
-
0.2*(Vs)
V
VIH_Z/VIL_Z
Hi-Z Logic Input Range
Vs = (V+) - (V-)
0.4*(Vs)
-
0.6*(Vs)
V
VOC
Open Circuit Logic Voltage
Set by 2 internal 100kΩ Resistors;
VS = (V+) - (V-)
0.45*VS
-
0.55*VS
V
ZIN
Logic Input Impedance
-
50k
-
kΩ
Vs = (V+) - (V-)
2.5V AC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
eN
Total Input Referred Voltage Noise
eN = √(eNi2 + (eNo/G)2 + (IN*RS)2)
eNi
Input Noise Voltage
f = 0.1Hz to 10Hz; G = 100
-
0.4
-
µVP-P
f = 1kHz; G = 100
-
17
-
nV/√Hz
f = 0.1Hz to 10Hz; G = 1
-
1.8
-
µVP-P
f = 1kHz; G = 1
-
65
-
nV/√Hz
eNo
Output Noise Voltage
IN
Input Noise Current
f = 10Hz; RS = 5MΩ; G = 100
-
100
-
fA/√Hz
GBWP
Gain Bandwidth Product
G ≥ 10
-
2.3
-
MHz
G < 10
-
1.6
-
MHz
Slew Rate
10% to 90%
VOUT = 2VP-P; G = 1
-
0.8
-
V/µs
VOUT = 2VP-P; G = 100
-
0.1
-
V/µs
tGPD
Gain Select Prop Delay
All Gains
-
1
-
µs
ts
Settling Time to 0.1%, 4VP-P Step
To 0.1%, 2VP-P Step
-
20
-
µs
To 0.01%, 2VP-P Step
-
70
-
µs
-
1.5
-
µs
-
140
-
dB
2.5V TRANSIENT RESPONSE INSTRUMENTATION AMPLIFIER
SR
trecover
Output Overload Recovery Time,
Recovery to 90% of output saturation
2.5V DC SPECIFICATIONS OPERATIONAL AMPLIFIER
AvOPEN
Open Loop Gain
VOS
Input Offset Voltage
TA = +25°C
-2.5
-0.2
2.5
µV
-3.475
-
3.475
µV
TA = -40°C to +125°C
-4
-
-4
µV
TA = -40°C to +85°C
TCVOS
Input Offset Voltage Temperature
Coefficient
TA = -40°C to +125°C
-15
-0.5
15
nV/°C
IB
Input Bias Current
TA = +25°C
-300
±15
300
pA
TA = -40°C to +85°C
-300
-
300
pA
TA = -40°C to +125°C
-550
-
550
pA
11
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C. (Continued)
PARAMETER
IOS
DESCRIPTION
Input Offset Current
Common Mode
Input Voltage
Range
CONDITIONS
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
TA = +25°C
-600
±50
600
pA
TA = -40°C to +85°C
-600
-
600
pA
TA = -40°C to +125°C
-1100
-
1100
pA
V+ = 2.5V, V- = 0V
Guaranteed by CMRR
0
-
2.5
V
135
-
dB
CMRR
Common Mode Rejection Ratio
VCM = 0V to 2.5V
110
97
-
-
dB
PSRR
Power Supply Rejection Ratio
Vs = 2.5V to 5.5V
120
135
-
dB
ISC
Short Circuit Output Source Current
RL = Short to V-
-
25
-
mA
Short Circuit Output Sink Current
RL = Short to V+
-
-25
-
mA
VOH
Output Voltage Swing, HIGH
From VOUT to V+
RL = 10kΩ to VCM
-
10
20
mV
RL = 10kΩ to VCM
-
-
25
mV
RL = 10kΩ to VCM
-
10
20
mV
RL = 10kΩ to VCM
-
-
25
mV
VOL
Output Voltage Swing, LOW
From V- to VOUT
2.5V AC SPECIFICATIONS OPERATIONAL AMPLIFIER
CIN
Input Capacitance
eN
Input Noise Voltage
IN
Input Noise Current
GBWP
Gain Bandwidth Product
Differential
-
5.2
-
pF
Common Mode
-
5.6
-
pF
f = 0.1Hz to 10Hz
-
0.25
-
µVP-P
f = 1kHz
-
10
-
nV/√Hz
f = 1kHz
-
200
-
fA/√Hz
-
3
-
MHz
NOTE:
6. Compliance to data sheet limits are assured by one or more methods: production test, characterization and/or design.
12
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified.
12
TA = -40°C TO +125°C
Vs = ± 2.5VDC
TA = -40°C to +125°C
10
NUMBER OF AMPLIFIERS
10
NUMBER OF AMPLIFIERS
12
Vs = ± 2.5VDC
8
6
4
2
8
6
4
2
0
-0.3
-0.2
-0.1
0
0.1
0.2
0
0.3
-0.3
-0.2
GAIN ERROR (%)
FIGURE 5. PGIA GAIN ERROR DISTRIBUTION, G = 1
-0.1
0
0.1
GAIN ERROR (%)
12
Vs = ± 2.5VDC
Vs = ± 2.5VDC
TA = -40°C to +125°C
8
6
4
TA = -40°C to +125°C
10
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
10
2
8
6
4
2
-0.3
-0.2
-0.1
0
0.1
GAIN ERROR (%)
0.2
0
0.3
FIGURE 7. PGIA GAIN ERROR DISTRIBUTION, G = 100
140
120
-0.3
-0.2
-0.1
0
0.1
GAIN ERROR (%)
0.2
0.3
FIGURE 8. PGIA GAIN ERROR DISTRIBUTION, G = 1,000
Vs = ± 2.5VDC
1.0
TA = +25°C
0.9
0.8
100
0.7
VOS (µV)
NUMBER OF AMPLIFIERS
0.3
FIGURE 6. PGIA GAIN ERROR DISTRIBUTION, G = 10
12
0
0.2
80
60
0.6
0.5
0.4
0.3
40
Vs = ± 2.5VDC
0.2
20
TA = +25°C
0.1
G = 1,000
0
0
-0.1 -0.075 -0.05 -0.025
0 -0.025 -0.05 -0.075 -0.1
GAIN ERROR (%)
FIGURE 9. PGIA GAIN ERROR DISTRIBUTION, G = 1 TO 1,000
13
0
10
20
30
40
50
60
TIME (DAYS)
FIGURE 10. PGIA LONG TERM DRIFT OFFSET VOLTAGE
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
18
30
Vs = ± 2.5VDC
NUMBER OF AMPLIFIERS
25
NUMBER OF AMPLIFIERS
Vs = ± 2.5VDC
16
20
15
10
5
14
12
10
8
6
4
2
0
-2.0 -1.6 -1.2 -0.8 -0.4
0
0.4
0.8
1.2
1.6
0
2.0
-10
-8
-6
-4
6
8
10
6
Vs = ± 1.25VDC
4
Vs = ± 2.5VDC
4
2
VOS (µV)
2
VOS (µV)
4
FIGURE 12. PGIA OUTPUT OFFSET VOLTAGE DISTRIBUTION
6
0
0
-2
-2
-4
-4
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
-6
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5
INPUT COMMOM MODE VOLTAGE(V)
200
180
150
100
IB+, VS = 5V
140
IB-, VS = 2.5V
IB-, VS = 5V
100
1.0
1.5
2.0
2.5
3.0
IB+, VS = 2.5V
80
IOS, VS = 5V
50
IOS (pA)
120
0.5
FIGURE 14. PGIA RTI VOS vs COMMON-MODE VOLTAGE
200
160
0
INPUT COMMON MODE VOLTAGE (V)
FIGURE 13. PGIA RTI VOS vs COMMON-MODE VOLTAGE
INPUT BIAS CURRENT (pA)
2
VOSO (µV)
FIGURE 11. PGIA INPUT OFFSET VOLTAGE DISTRIBUTION
-6
-2.0
0
-2
VOSI (µV)
IOS, VS = 2.5V
0
-50
60
-100
40
-150
20
0
-50
-25
0
25
50
75
100
125
150
TEMPERATURE (°C)
FIGURE 15. PGIA INPUT BIAS CURRENT vs TEMPERATURE
14
-200
-50
-25
0
25
50
75
100
125
150
TEMPERATURE (°C)
FIGURE 16. PGIA IOS vs TEMPERATURE
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
3
3
2
2
COMMON MODE VOLTAGE (V)
COMMON MODE VOLTAGE (V)
unless otherwise specified. (Continued)
1
Vs = ± 2. 5VDC
VREF = 0V
ISL2853x
0
-1
-2
-3
-3
-2
-1
0
1
2
Vs = ± 2. 5VDC
VREF = +2.5V
ISL2853x
1
0
-1
-2
-3
3
-3
-2
-1
OUTPUT VOLTAGE (V)
FIGURE 17. PGIA INPUT COMMON-MODE RANGE vs OUTPUT
VOLTAGE
Vs = ± 2. 5VDC
VREF = -2.5V
ISL2853x
2
COMMON MODE VOLTAGE (V)
COMMON MODE VOLTAGE (V)
2
3
3
1
0
-1
-2
-3
-2
-1
0
1
2
Vs = ± 2. 5VDC
VREF = 0V
ISL2863x
2
1
0
-1
-2
-3
3
-6
-4
-2
OUTPUT VOLTAGE (V)
2
4
6
FIGURE 20. PGIA INPUT COMMON-MODE RANGE vs DIFFERENTIAL
OUTPUT VOLTAGE
180
180
Vs = ± 2. 5VDC
160
140
140
120
120
PSRR (dB)
160
100
80
Vs = ± 2. 5VDC
100
80
60
60
40
20
0
-50
0
VOUT+ TO VOUT- (V)
FIGURE 19. PGIA INPUT COMMON-MODE RANGE vs OUTPUT
VOLTAGE
CMRR (dB)
1
FIGURE 18. PGIA INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE
3
-3
0
OUTPUT VOLTAGE (V)
-25
0
25
50
75
100
G = 1000
40
G = 100
G = 10
G=1
20
125
TEMPERATURE (°C)
FIGURE 21. PGIA CMRR vs TEMPERATURE
15
150
G = 1000
G = 100
G = 10
G=1
0
-50
-25
0
25
50
75
100
125
150
TEMPERATURE (°C)
FIGURE 22. PGIA PSRR vs TEMPERATURE
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
1
VOLTAGE DROP FROM RAIL (V)
VOLTAGE DROP FROM RAIL (V)
1
0.1
0.01
VOH
0.001
VOL
0.0001
Vs = +3V
0.01
0.1
1
10
0.1
0.01
VOH
0.1
LOAD CURRENT (mA)
1
Vs = +5V
VOLTAGE DROP FROM RAIL (V)
VOLTAGE DROP FROM RAIL (V)
Vs = +5V
0.1
VOL
0.01
VOH
10
1
FIGURE 25. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2853x
VOH
0.01
VOL
0.1
10
1
100
LOAD CURRENT (mA)
FIGURE 26. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2863x
12
4.0
VOH AND VOL VOLTAGE (mV)
3.8
3.6
SUPPLY CURRENT (mA)
0.1
0.001
0.01
100
LOAD CURRENT (mA)
3.4
3.2
3.0
2.8
2.6
T = -40°C
2.4
T = +25°C
T = +85°C
2.2
2.0
2.0
100
FIGURE 24. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2863x
1
0.1
10
1
LOAD CURRENT (mA)
FIGURE 23. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2853x
0.001
0.01
Vs = +3V
VOL
0.001
0.01
100
10
8
6
4
VOL 5V
VOH 5V
VOH 2.5V
VOL 2.5V
2
T = +125°C
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
SUPPLY VOLTAGE VS (V)
FIGURE 27. SUPPLY CURRENT vs SUPPLY VOLTAGE vs TEMPERATURE
16
0
-50
-25
0
25
50
75
100
125
150
TEMPERATURE (°C)
FIGURE 28. PGIA VOH AND VOL vs TEMPERATURE
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
4
0.5
3
0.4
VOLTAGE NOISE PK TO PK (µV)
VOLTAGE NOISE PK TO PK (µV)
unless otherwise specified. (Continued)
2
1
0
-1
-2
Vs = ±2.5V
G=1
-3
1
2
3
4
5
6
7
8
0.2
0.1
0
-0.1
-0.2
-0.3
Vs = ±2.5V
G = 1000
-0.4
-4
0
0.3
9
-0.5
10
0
1
2
3
4
TIME (s)
FIGURE 29. PGIA 0.1Hz TO 10Hz NOISE
8
9
10
Vs = ±2.5V
ISL2863x
10k
10k
VOLTAGE NOISE (nV/√Hz)
VOLTAGE NOISE (nV/√Hz)
7
100k
Vs = ±2.5V
ISL2853x
1k
G=1
100
10
G = 100
1
10
100
1000
10k
1k
G=1
100
10
1
100k
G = 100
1
10
FREQUENCY (Hz)
100
1000
10k
100k
FREQUENCY (Hz)
FIGURE 31. PGIA VOLTAGE NOISE SPECTRAL DENSITY vs
FREQUENCY, 1Hz TO 100kHz
FIGURE 32. PGIA VOLTAGE NOISE SPECTRAL DENSITY vs
FREQUENCY, 1Hz TO 100kHz
10k
10k
CURRENT NOISE (fA/√Hz)
CURRENT NOISE (fA/√Hz)
6
FIGURE 30. PGIA 0.1Hz TO 10Hz NOISE
100k
1
5
TIME (s)
1k
G=1
100
G = 100
10
ISL2853x
VS = ±2.5V
RS = 5MΩ
1
1k
G=1
100
10
ISL2863x
VS = ±2.5V
RS = 5MΩ
1
Roll off from CSOURCE
Roll off from CSOURCE
0.1
1
10
100
1k
10k
100k
FREQUENCY (Hz)
FIGURE 33. PGIA CURRENT NOISE SPECTRAL DENSITY 1Hz TO
100kHz, ISL2853x
17
G = 100
0.1
1
10
100
1k
10k
100k
FREQUENCY (Hz)
FIGURE 34. PGIA CURRENT NOISE SPECTRAL DENSITY 1Hz TO
100kHz, ISL2863x
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
70
160
60
1000
500
300
200
100
50
20
10
4
2
1
50
GAIN (dB)
40
30
20
Vs = ± 2. 5VDC
140
G = 1000
120
CMRR (dB)
Vs = ± 2. 5V
RL = 10kΩ
100
80
60
10
40
0
20
-10
10
100
1k
10k
100k
1M
G = 100
0
10
10M
G = 10
G=1
100
1k
FREQUENCY (Hz)
FIGURE 35. PGIA GAIN VS FREQUENCY vs GAIN SETTINGS
140
120
NEGATIVE PSRR (dB)
POSITIVE PSRR (dB)
Vs = ± 2. 5VDC
Vs = ± 2. 5VDC
140
120
G = 100
100
80
60
G = 10
40
G=1
20
10
100
G = 100
100
80
60
G = 10
40
G=1
20
1k
10k
0
10
10M
1M
100k
100
1k
FREQUENCY (Hz)
11
Vs = ± 2. 5VDC
AV = 1V
RL = 10k
VOUT = 100mVP-P
4700pF
Vs = ± 2. 5VDC
AV = 1V
RL = 10k
VOUT = 10mVP-P
9
7
3300pF
4700pF
3300pF
2200pF
5
1000pF
3
470pF
1
GAIN (dB)
GAIN (dB)
7
-3
1M
FREQUENCY (Hz)
FIGURE 39. PGIA GAIN vs FREQUENCY vs CL, ISL2853x
18
10M
470pF
1
-3
100k
1000pF
3
-1
10k
2200pF
5
-1
-5
1k
10M
1M
100k
FIGURE 38. PGIA NEGATIVE PSRR vs FREQUENCY
13
9
10k
FREQUENCY (Hz)
FIGURE 37. PGIA POSITIVE PSRR vs FREQUENCY
11
10M
1M
100k
FIGURE 36. PGIA CMRR vs FREQUENCY
160
0
10k
FREQUENCY (Hz)
-5
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 40. PGIA GAIN vs FREQUENCY vs CL, ISL2863x
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
0.06
0.1
0.08
0.04
0.06
VOUT+ TO VOUT- (V)
VOLTAGE (V)
0.04
0.02
0
-0.02
-0.04
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 100mVP-P
-0.06
-0.08
-0.1
0
-10
0.02
0
-0.02
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 100mVP-P
-0.04
20
10
30
-0.06
-10
40
5
0
-5
10
TIME (µs)
FIGURE 41. PGIA SMALL SIGNAL PULSE RESPONSE, G = 1, ISL2853x
40
AV = 1
2
VOUT+ TO VOUT- (V)
2
VOLTAGE (V)
35
3
G=1
G=2
1
G = 10
0
-1
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
-2
0
-10
AV = 10
0
-1
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
-2
20
10
AV = 2
1
30
-3
40
-20
0
-10
TIME (µs)
2.0
2.0
1.5
1.5
VOUT+ TO VOUT- (V)
2.5
1.0
0.5
0
-0.5
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
-1.5
40
1.0
0.5
0
-0.5
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
-1.0
-1.5
-2.0
-2.0
-2.5
-400
30
FIGURE 44. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1, 2, 10
ISL2863x
2.5
-1.0
20
10
TIME (µs)
FIGURE 43. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1, 2, 10
ISL2853x
VOLTAGE (V)
30
FIGURE 42. PGIA SMALL SIGNAL PULSE RESPONSE, G = 1, ISL2863x
3
-3
25
20
15
TIME (µs)
-200
0
200
400
600
800
TIME (µs)
FIGURE 45. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1000,
ISL2853x
19
1000
-2.5
-400
-200
0
200
400
600
800
1000
TIME (µs)
FIGURE 46. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1000,
ISL2863x
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
0.06
0.1
0pF
100pF
300pF
500pF
800pF
1000pF
OUTPUT VOLTAGE (V)
0.06
0.04
0.04
0.02
OUTPUT VOLTAGE (V)
0.08
0.02
0
-0.02
-0.04
0pF OUT+
0pF OUT100pF OUT+
100pF OUT300pF OUT+
300pF OUT500pF OUT+
500pF OUT800pF OUT+
800pF OUT1nF OUT+
1nF OUT-
0
-0.02
-0.04
-0.06
-0.08
-0.1
-0.12
-0.06
-0.14
-0.08
-10
0
10
20
30
40
50
-0.16
-10
0
10
20
FIGURE 47. CAPACITIVE LOAD OVERSHOOT; ISL2853x
6
VIN
2
G = 100
G = 10
1
G=1
0
-1
-2
-3
0
2
4
6
8
10
12
14
16
18
4
60
G = 100
G = 10
2
G=1
0
-2
-4
-6
20
0
20
40
60
80
100
120
140
160
180
TIME (µs)
FIGURE 49. POSITIVE OVERLOAD RECOVERY TIME, ISL2853x
FIGURE 50. POSITIVE OVERLOAD RECOVERY TIME, ISL2863x
6
2
VIN
INPUT AND OUTPUT VOLTAGE (V)
3
INPUT AND OUTPUT VOLTAGE (V)
50
VIN
TIME (µs)
G=1
1
0
-1
G = 10
-2
-3
40
FIGURE 48. CAPACITIVE LOAD OVERSHOOT; ISL2863x
INPUT AND OUTPUT VOLTAGE (V)
INPUT AND OUTPUT VOLTAGE (V)
3
30
TIME (µs)
TIME (µs)
G = 100
0
2
4
6
8
10
12
14
TIME (µs)
FIGURE 51. NEGATIVE OVERLOAD RECOVERY TIME, ISL2853x
20
4
VIN
2
G=1
0
G = 10
-2
G = 100
-4
-6
0
20
40
60
80
100
120
140
160
180
TIME (µs)
FIGURE 52. NEGATIVE OVERLOAD RECOVERY TIME, ISL2863x
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Instrumentation Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
140
140
INA G = 1
120
OpAmp AV = 1
CHANNEL SEPARATION (dB)
CHANNEL SEPARATION (dB)
120
100
80
60
40
20
0
INA G = 10
INA G = 100
100
80
60
40
20
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 53. CHANNEL SEPARATION vs FREQUENCY, HOSTILE INA,
MONITOR OPAMP
21
0
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 54. CHANNEL SEPARATION vs FREQUENCY, HOSTILE
OPAMP, MONITOR INA
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Operational Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply, unless
otherwise specified.
10
10
8
6
AV= 100
4
4
2
2
VOS (µV)
VOS (µV)
6
0
-2
0
-2
-4
-4
-6
-6
-8
-8
-10
-2
-1.5
-1
-0.5
0
0.5
1
1.5
Vs = ± 2.5VDC
AV= 100
8
Vs = ± 1.25VDC
-10
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5
2
INPUT COMMON MODE VOLTAGE (V)
FIGURE 55. OP AMP VOS vs COMMON MODE
35
300
IB+, VS = 2.5V
IB+, VS = 5V
200
VOH AND VOL VOLTAGE (mV)
INPUT BIAS CURRENT (pA)
0.5 1.0 1.5 2.0 2.5 3.0
FIGURE 56. OP AMP VOS vs COMMON MODE
400
IB-, VS = 2.5V
IB-, VS = 5V
100
0
-100
-200
30
25
-400
-50
-25
0
25
50
75
100
125
VOL 5V
VOH 5V
VOH 2.5V
VOL 2.5V
20
15
10
5
-300
0
-50
150
0
50
TEMPERATURE (°C)
1
100
150
TEMPERATURE (°C)
FIGURE 57. OP AMP BIAS CURRENT vs TEMPERATURE
FIGURE 58. OP AMP VOH AND VOL vs TEMPERATURE
1
Vs = +5VDC
Vs = +3VDC
VOLTAGE DROP FROM RAIL (V)
VOLTAGE DROP FROM RAIL (V)
0
INPUT COMMON MODE VOLTAGE (V)
0.1
0.01
VOL
0.1
0.01
VOL
0.001
VOH
VOH
0.001
0.01
0.1
1
10
100
LOAD CURRENT (mA)
FIGURE 59. OP AMP OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
22
0.0001
0.01
0.1
1
10
100
LOAD CURRENT (mA)
FIGURE 60. OP AMP OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Operational Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply, unless
otherwise specified. (Continued)
14
80
Vs = ± 2. 5V
RL = 10kΩ
70
AV = 1000 RG = 100, RF = 100k
60
10
GAIN (dB)
AV = 100 RG = 1k, RF = 100k
40
30
AV = 10
20
470pF
6
4
RG = 10k, RF = 100k
0
AV = 1
0
-10
10
100
1k
0pF
-2
RG = OPEN, RF = 0
-4
10k
100k
1M
-6
10M
1k
10k
FREQUENCY (Hz)
100k
10M
1M
FREQUENCY (Hz)
FIGURE 61. OP AMP GAIN vs FREQUENCY
FIGURE 62. OP AMP CAPACITIVE LOAD vs FREQUENCY
120
140
Vs = ± 2. 5VDC
AV = 1
Vs = ± 2. 5VDC
A V= 1
120
100
POSITIVE PSRR (dB)
100
NEGATIVE PSRR (dB)
47pF
100pF
2
10
80
60
40
80
60
40
20
0
1000pF
8
50
GAIN (dB)
Vs = ± 2. 5V
RL = 10kΩ
AV = 1
12
20
10
100
1k
10k
100k
1M
0
10M
10
100
1k
FREQUENCY (Hz)
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 63. OP AMP POWER SUPPLY REJECTION RATIO
FIGURE 64. OP AMP POWER SUPPLY REJECTION RATIO
1.5
0.10
0.08
1.0
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
0.06
0.04
0.02
0
-0.02
-0.04
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 100mVP-P
-0.06
-0.08
-0.10
-1
0
2
1
AV = 10
0
-0.5
Vs = ± 1.25VDC
RL = OPEN
VOUT = 2VP-P
-1.0
3
TIME (µs)
FIGURE 65. OP AMP SMALL SIGNAL TRANSIENT RESPONSE
23
AV = 1
0.5
4
-1.5
-10
0
10
20
30
40
TIME (µs)
FIGURE 66. OP AMP LARGE SIGNAL TRANSIENT RESPONSE
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Typical Operational Amplifier Performance Curves
TA = +25°C, VCM = Mid Supply, unless
otherwise specified. (Continued)
0.5
Vs = ±2.5V
AV = 100
10k
Vs = ±2.5V
AV = 100
0.4
VOLTAGE NOISE PK TO PK (µV)
VOLTAGE NOISE (nV/√Hz)
100k
1000
100
10
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
1
1
10
100
1000
-0.5
100k
10k
0
1
2
3
4
FREQUENCY (Hz)
FIGURE 67. OP AMP VOLTAGE NOISE SPECTRAL DENSITY vs
FREQUENCY
GAIN
OUTPUT VOLTAGE (V)
GAIN (dB)/PHASE (°)
PHASE
140
120
100
80
60
Vs = 5V
CL = 50pF
SIMULATION
-20
0.001 0.01
0.1
10
100
1k
10k 100k
1M
10M
FREQUENCY (Hz)
FIGURE 69. OP AMP OPEN-LOOP GAIN AND PHASE vs FREQUENCY
24
9
10
0.05
0
0pF
100pF
300pF
500pF
800pF
1000pF
-0.05
-0.10
1
8
Vs = ±2.5VDC
AV = 1
0.10
160
0
7
0.15
180
20
6
FIGURE 68. OP AMP 0.1Hz TO 10Hz PEAK-TO-PEAK VOLTAGE NOISE
200
40
5
TIME (s)
-0.15
-10
0
10
20
30
40
50
TIME (µs)
FIGURE 70. OP AMP CAPACITIVE LOAD OVERSHOOT
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Applications Information
(Figure 72). With the integrated gain resistors and the
programmable gains, these instrumentation amplifiers require
no external components for gain setting and operation.
The ISL28533, ISL28534 and ISL28535 family of parts are
differential input, single ended output instrumentation amplifiers
using a three op amp architecture (Figure 71). The first stage is
differential input/differential output and is used to set the gain.
The second stage is a difference amplifier which is used to
remove the common mode voltage from the differential signal.
With the integrated gain resistors and the programmable gains,
these instrumentation amplifiers require no external
components for gain setting and operation.
There is an additional uncommitted zero drift operational
amplifier included on the chip. This can be used to drive the REF
pin if needed to provide a low impedance to REF. The REF pin is
used to shift the output DC reference. Note that on this device the
REF input is a resistor that is part of the difference amplifier noninverting input. To ensure good common mode rejection in the
output stage the REF pin should be driven by a low impedance
source, such as the output of amplifier A4. Any parasitic
resistance added to the REF pin degrades the common mode
rejection of the difference amplifier.
+
20kΩ
20kΩ
A1
-
A3
+
RG
OUTA+
1MΩ
VAVA+
REF
+
RG
1MΩ
OUTA-
-
20kΩ
A4
20kΩ
A2
INA+
+
3-STATE LOGIC FOR
RG GAIN CONTROL
G0
20kΩ
20kΩ
FIGURE 72. ISL2863x BLOCK DIAGRAM
The first stage amplifier is identical to the first stage in the
ISL2853x family. The output stage is a difference amplifier which
is configured to provide differential output drive. The REF pin is
also available on this device and can be used to provide a DC
shift of the output signal. On this device the REF pin is a high
impedance input of an operational amplifier. The voltage used to
drive this pin can be developed using a resistor divider without
the need of an additional buffer without penalty of CMRR
degradation.
RFI FILTER
The instrumentation amplifier inputs of the ISL2853x and
ISL2863x have RFI filters for Electro Magnetic Interference (EMI)
reduction. In EMI sensitive applications, the high frequency RF
signal can appear as a rectified DC offset at the output of
precision amplifiers. Because the gain of the precision front end
can be 100 or greater it is critical not to amplify any conducted or
radiated noise that may be present at the amplifier inputs. The
RFI input is a 1kΩ, 3pF LPF with a corner frequency of
approximately 50MHz (See Figure 73).
A1
-
INA-
RG
VAVA+
-
+
A1
-
OUTA
A3
-
RFI Filter
Fc = 50MHz
RG
+
RG
INA+
+
G1
SINGLE-ENDED OUTPUT
INA-
INA-
-
The ISL2853x and ISL2863x are a family of ultra high precision
instrumentation amplifiers. These amplifiers feature zero drift
circuitry that provides auto offset voltage correction and noise
reduction, delivering very low offset voltage drift of 5nV/°C and a
low 1/F noise frequency corner down in the sub Hz range. The
instrumentation amplifier integrates precision matched resistors
for the front gain stage and the differential second stage,
providing very high gain accuracy and excellent CMRR. The
precision performance makes these amplifiers ideal for analog
sensor front end, instrumentation and data acquisition
applications such as weigh scales, flow sensors and shunt
current sensing that require very low noise and high dynamic
range.
+
Precision Sensor Amplifier
20kΩ
RG
20kΩ
REF
A2
-
+
OUT
3-STATE LOGIC FOR
RG GAIN CONTROL
G0
G1
A4
+
IN-
A2
RFI Filter
Fc = 50MHz
+
IN+
FIGURE 71. ISL2853x BLOCK DIAGRAM
DIFFERENTIAL OUTPUT
The ISL28633, ISL28634 and ISL28635 family of parts are
differential input, differential output instrumentation amplifiers
and are ideal as a pre-amplifier/driver for differential input ADCs
25
INA+
FIGURE 73. RFI FILTER INPUTS
GAIN STAGE OUTPUT VA+/VA- PINS
The ISL2853x and ISL2863x instrumentation amplifiers include
pinouts for the output of the differential gain stage. VA+ is
referenced to the non-inverting input of the difference amplifier
while VA- is referenced to the inverting input. These pins can be
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
used for measuring the input common mode voltage for sensor
feedback and health monitoring. The differential gain stage
output pins VA+ and VA- buffers the input common mode voltage
while amplifying differential voltage. By tying two resistor across
VA+ and VA-, the buffered input common mode voltage is
extracted at the midpoint of the resistors (see Figure 74). This
voltage can be sent to an ADC for sensor monitoring or feedback
control, improving the precision and accuracy of the sensor.
INA+
-
+
-VDM
2
-
TABLE 1. LOGIC THRESHOLD VALUES
G0/G1
PARAMETER
THRESHOLD
VOLTAGE
+5VDC
+3VDC
1
VIH_1MIN
0.8*Vs
4V
2.4V
VIH_ZMAX
0.6*Vs
3V
1.8V
VOC_H
0.55*Vs
2.75V
1.65V
VOC_L
0.45*Vs
2.5V
1.35V
VIL_ZMIN
0.4*Vs
2V
1.2V
VIL_0MAX
0.2*Vs
1V
0.6V
VAVA+
Vx
+
-
It is important to note that logic threshold levels are referenced
to the V- negative supply rail of the amplifier. For dual supply
operation of the instrumentation amplifier logic threshold levels
are shifted by the magnitude of V-. Externally driven logic signals
require level shifting to properly set amplifier gain.
RG
10kΩ
VCM
A1
See Table 1 for logic threshold levels.
Z
RG
10kΩ
-
+VDM
2
INA+
A2
+
-
+
0
Vs = (V+) - (V-)
VA+ = Vcm + Vdm/2
VA- = Vcm - Vdm/2
Vx = [(VA+) + (VA-)] / 2
Vx = Vcm
TABLE 2. PROGRAMMABLE GAIN SETTINGS
GAIN (V/V)
FIGURE 74. COMMON MODE SENSING WITH VA+/VA- PINS
PROGRAMMABLE GAIN LOGIC
The ISL2853x and ISL2863x feature a three-state logic interface
for digital programming of the amplifier gain. This allows the
PGIA’s gain to be changed without an external gain setting
resistors, improving the gain accuracy and reducing component
count.
The three-state logic pins have voltage levels for recognizing valid
logic states to set the gain of the amplifier (see Figure 75). With
three logic states per input, this allows nine gain settings with
just two digital input pins (see Table 2).
V+
VIH_1MIN
Min High Input for Logic “1”
Logic “1”
VIH_1MIN
Undefined
VIH_ZMAX
Max Input for Logic “Z”
VIH_ZMAX
VOC_H
Logic “Z”
VOC = Floating Pin Voltage
Established by Internal Resistors
VOC_L
VIL_ZMIN
Min Input for Logic “Z”
VIL_ZMIN
G1
G0
ISL28533
ISL28633
ISL28534
ISL28634
ISL28535
ISL28635
0
0
1
1
1
0
Z
2
2
100
0
1
4
10
120
Z
0
5
50
150
Z
Z
10
100
180
Z
1
20
200
200
1
0
40
300
300
1
Z
50
500
500
1
1
100
1000
1000
GAIN SETTING WITH DCP
For applications without a tri-state driver the alternative solution
for programmable switching the 9 gain settings is to use a DCP.
Using a Dual DCP implements the capability to select all 9 gains
with an I2C/SPI bus interface, saving valuable GPIO lines. The
ISL23328 is a Dual 128 tap DCP that can switch the G0 and G1
pins with an I2C interface (see Figure 76). The wiper of the DCP
can be swept from V+ to V- in 128 steps.
Undefined
VIL_0MAX
V+
VIL_0MAX
Max Low Input for Logic “0”
Logic “0”
V-
FIGURE 75. G0/G1 LOGIC THRESHOLD LEVELS
Logic states of the G0/G1 pins can be achieved by simple pinstrapping to the supply rails for logic HI/LOW, or may be left
floating for logic Z. Internal resistors on the G0/G1 pins set the
logic level to mid-supply for logic Z. Alternatively a
micro-controller can be used to drive the pins HI/LOW or they
may be left in a High-Z state. The VIH,VIL, and logic Z threshold
levels are TTL/CMOS compatible for single 5V and 3V supplies.
26
RHx
SCL
SDA
I2C Bus
V+
DUAL128 Tap
DCP
ISL23328
RW_0
G0
RW_1
G1
RLx
IN+
OUT+
ISL2853X
ISL2863X
REF
OUT-
IN-
VV-
FIGURE 76. GAIN SWITCHING WITH ISL23328 DCP
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
GAIN SWITCHING DELAY TIME
The G0 and G1 pins change the gain setting of the PGIA. For
applications that must switch gains at high frequency, consider
that there is a gain switching propagation delay of ~1µs before
output response. The total response time for a gain change must
also include the amplifier output settling time. See “Electrical
Specifications” starting on page 6 for output settling time.
DUAL SUPPLY OPERATION
ISL2853X and ISL2863X typical applications utilize single supply
operation. The single supply range is from 2.5V to 5V, but the
amplifiers can also operate with split supplies from ±1.25V to
±2.5V. The G0 and G1 logic thresholds are referenced to the
most negative supply rail (V-), therefore a logic level shifter is
needed in split supply applications when the G0 and G1 pins are
not strapped to the amplifier supply pins (i.e., when driven by a
single supply logic device).
POWER SUPPLY AND REF PIN SEQUENCING
As the REF pin in some applications is tied to a high accuracy
voltage reference VREF (such as the ISL21090), proper care
must be taken that the voltage at REF does not come up prior to
supply voltages V+ and V-. The REF pin ESD protection diodes will
be forward biased when the voltage at REF exceeds V+ or V- by
more than 0.3V. For applications where REF must be present
before V+ or V-, it is recommended to use the ISL2863x family of
PGIA. As the REF pin is an very high impedance input, having a
series resistance to limit the ESD diode current will not severely
impact CMRR performance. Typically a 1kΩ resistor will
adequately limit this current.
COMMON MODE INPUT RANGE
The 3-Op Amp Instrumentation Amplifier architecture amplifies
differential input voltage. The common mode voltage is removed
by the difference amplifier at the second stage. Consideration of
input common mode and differential voltage must be taken to
not saturate the output of the A1 and A2 amplifiers. This is a
common mistake when input differential voltages plus the input
VCM combined is large enough to saturate the output. The PGIA
features rail to rail output amplifiers to maximize output dynamic
range thus signals VA+, VA- and VOUT+/VOUT- can drive near the
supply rails. Figures 17 to 20 give the typical input common
mode voltage range vs output voltage for different REF voltages.
Application Circuits
Typical application circuits for bridge sensor health monitor and
active shield guard driver are shown in Figures 77 and 78.
Sensor Health Monitor
A bridge type sensor uses four matched resistive elements to
create a balanced differential circuit. The bridge can be a
combination of discrete resistors and resistive sensors for a
quarter, half and full bridge applications. The bridge is excited by a
low noise, high accuracy voltage reference or current source on
two legs. The other two legs are the differential signal whose
output voltage change is analogous to changes in the sensed
environment. In a bridge circuit, the common mode voltage of the
differential signal is at the mid point potential voltage of the bridge
27
excitation source. For example in a single supply system using a
+5V reference for excitation, the common mode voltage is +2.5V.
The concept of sensor health monitoring is to keep track of the
bridge impedance within the data acquisition system. Changes in
the environment, degradation over time or a faulty bridge
resistive element will imbalance the bridge, causing
measurement errors. Since the bridge differential output
common mode voltage is one-half the excitation voltage, by
measuring this common mode the sensor impedance health can
be monitored, for example through an ADC channel (see
Figure 77). While common mode voltage can be measured
directly off the bridge, this is not recommended because the
bridge impedance is highly sensitive to any additional loading.
Sensing off the legs directly can give an erroneous reading of the
analog signal being measured. Since the VA+ and VA- pins buffer
the input common mode voltage, this provides a low impedance
point to drive the ADC without using additional amplifiers. By
continuously monitoring the common mode voltage this gives an
indication of sensor health.
Active Shield Guard Drive
Sensors that operate at far distances from the signal
conditioning circuits are subject to noise environments that
reduce the signal to noise ratio into an amplifier. Differential
signaling and shielded cables are a few techniques that are used
to reduce noise from sensitive signal lines. Reducing noise that
the instrumentation amplifier cannot reject (high frequency noise
or common mode voltage levels beyond supply rail) improves
measuring accuracy. Shielded cables offer excellent rejection of
noise coupling into signal lines. However, cable impedance
mismatch to signal wires form a common mode error into the
amplifier. Driving the cable shield to a low impedance potential
reduces the impedance mismatch. The cable shield is usually
tied to chassis ground as it makes an excellent low impedance
point and is easily accessible. However, this may not always be
the best potential voltage to tie the shield to, in particular for
single supply amplifiers.
In some data acquisition systems the sensor signal amplifiers
are powered with dual supplies (±5V or ±12V). By tying the shield
to analog ground 0V, this places the common mode voltage of
the shield right at the middle of the supply bias - where the
amplifiers operate with the best CMR performance. With single
supply amplifiers becoming more popular choice as a sensor
amplifier, shield at 0V is now at the lower power supply rail of the
amplifier - typically a common mode voltage where the same
CMR performance degrades. Tying the shield at common mode
voltage of mid supply rail is most applicable for high impedance
sensor applications.
An alternative solution for an improved shield guard drive is to
use the VA+ and VA- pins for sensing common mode and driving
the shield to this voltage (see Figure 78). Using the VA+ and VApins generate a low impedance reference of the input common
mode voltage. Driving the shield to the input common mode
voltage reduces cable impedance mismatch and improves CMR
performance in single supply sensor applications. For further
buffering of the shield driver, the additional unused op amp on
the ISL2853x products can be used, reducing the need of adding
an external amplifier.
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
+5V
+5V
ISL28634
ISL21090
5V VREF
V+
VA-
INAFOIL STRAIN
GAUGE
+
20kΩ
20kΩ
A1
-
A3
+
RG
V+
10kΩ
35
0
0
35
VS+
REF+
OUTA+
VS-
REF
+
RG
10kΩ
+
INA+
20kΩ
-
0
35
V-
VAOUTA-
IN+
OUTA+
VA+
IN-
ISL26102
24-bit ADC
OUTA-
A4
REF-
20kΩ
A2
+
VA+
V-
FIGURE 77. APPLICATION CIRCUIT: SENSOR HEALTH MONITOR
+5V
ISL28533
V+
INA-
+
20kΩ
20kΩ
A1
RG
SHIELDED CABLE
VA-
+SIG
-
OUTA
A3
-SIG
+
RG
INA+
20kΩ
20kΩ
REF
A2
+
IN10kΩ
VCM
SENSE
IN+
+
A4
OUT
VA+
V-
10kΩ
100Ω
COMMON MODE DRIVER
FIGURE 78. APPLICATION CIRCUIT: ACTIVE SHIELD DRIVER
28
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that
you have the latest revision.
DATE
REVISION
September 24, 2013
FN8364.0
CHANGE
Initial Release
About Intersil
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at
http://www.intersil.com/en/support/qualandreliability.html#reliability
For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
29
FN8364.0
September 24, 2013
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
Package Outline Drawing
M14.173
14 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 3, 10/09
A
1
3
5.00 ±0.10
SEE
DETAIL "X"
8
14
6.40
PIN #1
I.D. MARK
4.40 ±0.10
2
3
1
0.20 C B A
7
B
0.65
0.09-0.20
TOP VIEW
END VIEW
1.00 REF
0.05
H
C
0.90 +0.15/-0.10
1.20 MAX
SEATING
PLANE
0.25 +0.05/-0.06
0.10 C
0.10
GAUGE
PLANE
0.25
5
0°-8°
0.05 MIN
0.15 MAX
CBA
SIDE VIEW
0.60 ±0.15
DETAIL "X"
(1.45)
NOTES:
1. Dimension does not include mold flash, protrusions or gate burrs.
(5.65)
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
2. Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
3. Dimensions are measured at datum plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.80mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead is 0.07mm.
(0.65 TYP)
(0.35 TYP)
TYPICAL RECOMMENDED LAND PATTERN
30
6. Dimension in ( ) are for reference only.
7. Conforms to JEDEC MO-153, variation AB-1.
FN8364.0
September 24, 2013
Similar pages