IRFB11N50A, SiHFB11N50A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and current • Lead (Pb)-free Available 500 RDS(on) (Ω) VGS = 10 V 0.52 Qg (Max.) (nC) 52 Qgs (nC) 13 Qgd (nC) 18 Configuration Single D Available RoHS* COMPLIANT APPLICATIONS TO-220 • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High Speed Power Switching G APPLICABLE OFF LINE SMPS TOPOLOGIES S G • Two Transistor Forward • Half and Full Bridge • Power Factor Correction Boost D S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFB11N50APbF SiHFB11N50A-E3 IRFB11N50A SiHFB11N50A Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 11 7.0 A IDM 44 1.3 W/°C Single Pulse Avalanche Energyb EAS 275 mJ Repetitive Avalanche Currenta IAR 11 A Repetitive Avalanche Energya EAR 17 mJ Linear Derating Factor Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 170 W dV/dt 6.9 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 4.5 mH, RG = 25 Ω, IAS = 11 A (see fig. 12). c. ISD ≤ 11 A, dI/dt ≤ 140 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91094 S-81243-Rev. B, 21-Jul-08 www.vishay.com 1 IRFB11N50A, SiHFB11N50A Vishay Siliconix THERMAL RESISTANCE PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.75 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V Static Drain-Source Breakdown Voltage VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage Gate-Source Threshold Voltage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 150 °C - - 250 - - 0.52 Ω S Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 6.6 Ab VGS = 10 V gfs VDS = 50 V, ID = 6.6 A 6.1 - - Input Capacitance Ciss VGS = 0 V, - 1423 - Output Capacitance Coss VDS = 25 V, - 208 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 µA Dynamic Output Capacitance Effective Output Capacitance Total Gate Charge Coss VGS = 0 V Coss eff. - 8.1 - VDS = 1.0 V, f = 1.0 MHz - 2000 - VDS = 400 V, f = 1.0 MHz - 55 - VDS = 0 V to 400 V - 97 - - - 52 - - 13 Qg VGS = 10 V ID = 11 A, VDS = 400 V pF Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 18 Turn-On Delay Time td(on) - 14 - VDD = 250 V, ID = 11 A - 35 - RG = 9.1 Ω, RD = 22 Ω, see fig. 10b - 32 - - 28 - - - 11 S - - 44 TJ = 25 °C, IS = 11 A, VGS = 0 Vb - - 1.5 V - 510 770 ns - 3.4 5.1 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b tf nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IF = 11 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss effective is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91094 S-81243-Rev. B, 21-Jul-08 IRFB11N50A, SiHFB11N50A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 1 4.5V 20µs PULSE WIDTH TJ = 25 °C 0.1 0.1 1 10 10 TJ = 150 ° C TJ = 25 ° C 1 0.1 4.0 100 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 10 20µs PULSE WIDTH TJ = 150 ° C 4.5V 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91094 S-81243-Rev. B, 21-Jul-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 V DS = 50V 20µs PULSE WIDTH ID = 11A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFB11N50A, SiHFB11N50A Vishay Siliconix 2400 ISD , Reverse Drain Current (A) 2000 C, Capacitance (pF) 100 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd iss 1600 oss 1200 800 rss 400 0 10 100 TJ = 150° C 1 TJ = 25 ° C 0.1 0.0 A 1 10 1000 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 0.8 OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 400V VDS = 250V VDS = 100V 16 12 8 100 10us 10 100us 1ms 1 4 FOR TEST CIRCUIT SEE FIGURE 13 0 10 20 30 40 50 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1.6 1000 ID = 6.6A 0 1.2 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 0.4 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) 20 V GS = 0 V 0.1 10ms TC = 25 ° C TJ = 150° C Single Pulse 10 100 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91094 S-81243-Rev. B, 21-Jul-08 IRFB11N50A, SiHFB11N50A Vishay Siliconix RD VDS 12 VGS ID , Drain Current (A) 10 D.U.T. RG + - VDD 8 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 6 Fig. 10a - Switching Time Test Circuit 4 VDS 90 % 2 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) 10 % VGS t d(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr t d(off) t f Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 t1 0.02 t2 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.01 0.00001 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case V DS tp 15 V L VDS D.U.T. RG IAS 20 V tp Driver + A - VDD A 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91094 S-81243-Rev. B, 21-Jul-08 I AS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFB11N50A, SiHFB11N50A EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 600 TOP 500 BOTTOM ID 4.9A 7.0A 11A QG 10 V 400 QGS 300 Q GD VG 200 Charge 100 Fig. 13a - Basic Gate Charge Waveform 0 25 50 75 100 125 150 Current regulator Same type as D.U.T. Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 50 kΩ 12 V 0.2 µF 0.3 µF 660 V DSav , Avalanche Voltage (V) D.U.T. + V - DS VGS 640 3 mA IG ID Current sampling resistors 620 Fig. 13b - Gate Charge Test Circuit 600 580 0.0 A 1.0 2.0 3.0 4.0 5.0 6.0 7.0 I av , Avalanche Current (A) Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current www.vishay.com 6 Document Number: 91094 S-81243-Rev. B, 21-Jul-08 IRFB11N50A, SiHFB11N50A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by R G Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91094. Document Number: 91094 S-81243-Rev. B, 21-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1