MC10EP446, MC100EP446 3.3V/5V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter The MC10/100EP446 is an integrated 8−bit parallel to serial data converter. The device is designed with unique circuit topology to operate for NRZ data rates up to 3.2 Gb/s. The conversion sequence from parallel data into a serial data stream is from bit D0 to D7. The parallel input pins D0−D7 are configurable to be threshold controlled by CMOS, ECL, or TTL level signals. The serial data rate output can be selected at internal clock data rate or twice the internal clock data rate using the CKSEL pin. Control pins are provided to reset (SYNC) and disable internal clock circuitry (CKEN). In either CKSEL modes, the internal flip−flops are triggered on the rising edge for CLK and the multiplexers are switched on the falling edge of CLK, therefore, all associated specification limits are referenced to the negative edge of the clock input. Additionally, VBB pin is provided for single−ended input condition. The 100 Series devices contain temperature compensation network. • • • • • • http://onsemi.com MARKING DIAGRAM* MCXXX EP446 AWLYYWW LQFP−32 FA SUFFIX CASE 873A 1 XXX A WL YY WW 3.2 Gb/s Typical Data Rate Capability Differential Clock and Serial Outputs VBB Output for Single-ended Input Applications 32 = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week Asynchronous Data Reset (SYNC) PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −3.0 V to −5.5 V Open Input Default State *For additional marking information, refer to Application Note AND8002/D. • • Safety Clamp on Inputs • Parallel Interface Can Support PECL, TTL or CMOS Semiconductor Components Industries, LLC, 2004 June, 2004 − Rev. 5 ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet. 1 Publication Order Number: MC10EP446/D D1 D2 D3 D4 D5 D6 24 23 22 21 20 19 18 D7 D0 MC10EP446, MC100EP446 17 VCC 25 16 VEE VCF 26 15 PCLK VEF 27 14 PCLK VEE 28 13 VCC SYNC 29 12 SOUT SYNC 30 11 SOUT VBB2 31 10 VCC VCC 32 9 VCC 2 3 4 5 6 7 CKSEL CLK CLK VBB1 CKEN CKEN 8 VEE 1 VCC MC10EP446 MC100EP446 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. LQFP−32 Pinout (Top View) Table 1. PIN DESCRIPTION PIN FUNCTION D0*−D7* ECL, CMOS, or TTL Parallel Data Input SOUT, SOUT ECL Differential Serial Data Output CLK*, CLK* ECL Differential Clock Input PCLK, PCLK ECL Differential Parallel Clock Output SYNC*, SYNC** ECL Conversion Synchronizing Differential Input (Reset)*** CKSEL* ECL Clock Input Selector CKEN*, CKEN* ECL Clock Enable Differential Input VCF ECL, CMOS, or TTL Input Selector VEF ECL Reference Mode Connection VBB1, VBB2 Reference Voltage Output VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. **Pins will default HIGH when left open. ***The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK. http://onsemi.com 2 MC10EP446, MC100EP446 Table 2. TRUTH TABLE Function HIGH Pin CKSEL LOW SOUT: PCLK = 8:1 CLK: SOUT = 1:1 SOUT: PCLK = 8:1 CLK: SOUT = 1:2 CLK CLK SOUT SOUT CKEN Synchronously Disables Normal Parallel to Serial Conversion Synchronously Enables Normal Parallel to Serial Conversion SYNC Asynchronously Resets Internal Flip−Flops* Synchronous Enable *The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK. Table 3. INPUT VOLTAGE LEVEL SELECTION TABLE Input Function Connect To VCF Pin ECL Mode VEF Pin Table 4. DATA INPUT OPERATING VOLTAGE TABLE Power Supply (VCC,VEE) Data Inputs (D [0:7]) CMOS TTL PECL NECL CMOS Mode No Connect PECL N/A TTL Mode* 1.5 V 100 mV NECL N/A N/A N/A *For TTL Mode, if no external voltage can be provided, the reference voltage can be provided by connecting the appropriate resistor between VCF and VEE pins. Power Supply Resistor Value 10% (Tolerance) 3.3 V 1.5 k 5.0 V 500 http://onsemi.com 3 MC10EP446, MC100EP446 D0 D Q CR MUX 2:1 D Q CR D4 D Q CR MUX 2:1 D Q C R D2 D Q C R MUX 2:1 D Q CR D6 D Q CR D1 D MUX 2:1 SOUT SOUT Q CR MUX 2:1 D Q CR D5 D Q CR MUX 2:1 D Q CR D3 D Q CR MUX 2:1 D Q CR D7 D Q CR ÷2 ÷2 ÷2 CKEN CKEN CLK CLK D Q C R CKSEL SYNC SYNC VCC VEE VBB VCF VEF Figure 2. Logic Diagram http://onsemi.com 4 MUX 2:1 Control Logic PCLK PCLK MC10EP446, MC100EP446 Table 5. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor 37.5 k ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 100 V > 2 kV Moisture Sensitivity (Note 1) Flammability Rating Level 2 Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 962 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. Table 6. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Unit 6 V −6 V 6 −6 V V 50 100 mA mA ± 0.5 mA VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C JA Thermal Resistance (Junction−to−Ambient) 0 lfpm 500 lfpm LQFP−32 LQFP−32 80 55 °C/W °C/W JC Thermal Resistance (Junction−to−Case) Standard Board LQFP−32 12 to 17 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C VI ≤ VCC VI ≥ VEE Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. http://onsemi.com 5 MC10EP446, MC100EP446 Table 7. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 2) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 3) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 3) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single−Ended) CMOS PECL TTL 2000 2090 2000 3300 3300 3300 2000 2155 2000 3300 3300 3300 2000 2215 2000 3300 3300 3300 mV Input LOW Voltage (Single−Ended) CMOS PECL TTL 0 1365 0 800 1690 800 0 1460 0 800 1755 800 0 1490 0 800 1815 800 mV VBB Output Voltage Reference 1740 1940 1805 2005 1865 2065 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current VIL 1840 2.0 1905 150 0.5 1965 150 0.5 A 0.5 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 3. All loading with 50 to VCC − 2.0 V. 4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 8. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA Output HIGH Voltage (Note 6) 3865 3950 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 6) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single−Ended) CMOS PECL TTL 3500 3790 2000 5000 5000 5000 3500 3855 2000 5000 5000 5000 3500 3915 2000 5000 5000 5000 mV Input LOW Voltage (Single−Ended) CMOS PECL TTL 0 3065 0 1500 3390 800 0 3130 0 1500 3455 800 0 3190 0 1500 3915 800 mV VBB Output Voltage Reference 3440 3640 3505 3705 3565 3765 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IIL Input LOW Current Symbol Characteristic IEE Power Supply Current VOH VIL 3540 2.0 150 0.5 3605 150 0.5 0.5 3665 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 6. All loading with 50 to VCC − 2.0 V. 7. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 6 MC10EP446, MC100EP446 Table 9. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 8) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 9) −1135 −1010 −885 −1070 −945 −820 −1010 −885 −760 mV VOL Output LOW Voltage (Note 9) −1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560 mV VIH Input HIGH Voltage (Single−Ended) −1210 −885 −1145 −820 −1085 −760 mV VIL Input LOW Voltage (Single−Ended) −1935 −1610 −1870 −1545 −1810 −1485 mV VBB Output Voltage Reference −1560 −1360 −1495 −1295 −1435 −1235 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10) 0.0 V IIH Input HIGH Current 150 A IIL Input LOW Current −1460 VEE+2.0 0.0 −1395 VEE+2.0 150 0.5 0.0 −1335 VEE+2.0 150 0.5 A 0.5 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 8. Input and output parameters vary 1:1 with VCC. 9. All loading with 50 to VCC − 2.0 V. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 10. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 11) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA Output HIGH Voltage (Note 12) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 12) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single−Ended) CMOS PECL TTL 2000 2075 2000 3300 3300 3300 2000 2075 2000 3300 3300 3300 2000 2075 2000 3300 3300 3300 mV Input LOW Voltage (Single−Ended) CMOS PECL TTL 0 1355 0 800 1675 800 0 1355 0 800 1675 800 0 1355 0 800 1675 800 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current Symbol Characteristic IEE Power Supply Current VOH VIL 1875 2.0 150 0.5 1875 150 0.5 0.5 1875 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 12. All loading with 50 to VCC − 2.0 V. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 7 MC10EP446, MC100EP446 Table 11. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 14) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 15) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 15) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single−Ended) CMOS PECL TTL 3500 3775 2000 5000 5000 5000 3500 3775 2000 5000 5000 5000 3500 3775 2000 5000 5000 5000 mV Input LOW Voltage (Single−Ended) CMOS PECL TTL 0 3055 0 1500 3375 800 0 3055 0 1500 3375 800 0 3055 0 1500 3375 800 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 16) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IIL Input LOW Current VIL 3575 2.0 3575 150 0.5 3575 150 0.5 A 0.5 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 15. All loading with 50 to VCC − 2.0 V. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 12. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 17) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 18) −1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895 mV VOL Output LOW Voltage (Note 18) −1945 −1820 −1695 −1945 −1820 −1695 −1945 −1820 −1695 mV VIH Input HIGH Voltage (Single−Ended) −1225 −880 −1225 −880 −1225 −880 mV VIL Input LOW Voltage (Single−Ended) −1945 −1625 −1945 −1625 −1945 −1625 mV VBB Output Voltage Reference −1525 −1325 −1525 −1325 −1525 −1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19) 0.0 V IIH Input HIGH Current 150 A IIL Input LOW Current −1425 VEE+2.0 0.0 150 0.5 −1425 VEE+2.0 0.0 150 0.5 −1425 VEE+2.0 0.5 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 17. Input and output parameters vary 1:1 with VCC. 18. All loading with 50 to VCC − 2.0 V. 19. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 8 MC10EP446, MC100EP446 Table 13. AC CHARACTERISTICS VCC = 0 V; VEE = −3.0 V to −5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 20) −40°C Min Typ CKSEL High CKSEL Low 3.2 1.6 3.4 1.7 Propagation Delay to Output Differential CKSEL = 0 CLK TO SOUT, CLK TO PCLK 650 700 750 800 775 850 875 950 (Figure 3) (Figure 4) (Figure 5) −375 200 70 (Figure 3) −525 0 75 Symbol fmax tPLH, tPHL Characteristic th tpw Max Min Typ 3.2 1.6 3.4 1.7 850 900 700 750 800 850 975 1050 825 900 925 1000 −425 140 40 −400 200 70 −575 −550 0 75 85°C Max Min Typ Max 3.2 1.6 3.4 1.7 900 950 725 775 850 900 975 1025 ps 1025 1100 875 950 1000 1075 1125 1200 ps −450 140 40 −450 200 70 −500 140 40 ps −600 −600 0 75 −650 ps Unit Maximum Frequency (Figure 14) CKSEL = 1 tS 25°C CLK TO SOUT, CLK TO PCLK Setup Time D to CLK+ SYNC− to CLK− CKEN+ to CLK− Hold Time D to CLK+ SYNC− to CLK− CLK− to CKEN− (Figure 5) Minimum Pulse Width (Note 22) Data (D0−D7) SYNC CKEN tJITTER Random Clock Jitter (RMS) fmax Typ VPP Input Differential Voltage Swing (Note 21) tr tf Output Rise/Fall Times (20% − 80%) 45 150 200 145 SOUT 45 150 200 145 0.2 <1 150 800 1200 50 100 150 GHz 45 ps 150 200 145 0.2 <1 150 800 1200 70 120 170 0.2 <1 ps 150 800 1200 mV 90 140 190 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 20. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC − 2.0 V. 21. VPP(min) is the minimum input swing for which AC parameters are guaranteed. 22. The minimum pulse width is valid only if the setup and hold times are respected. http://onsemi.com 9 MC10EP446, MC100EP446 CLK Data Valid Data Setup Time ts th + 0 − Figure 3. Setup and Hold Time for Data SYNC CLK SYNC ts CLK CKEN tS CLK Figure 4. Setup Time for SYNC th Figure 5. Setup and Hold Time for CKEN http://onsemi.com 10 MC10EP446, MC100EP446 APPLICATION INFORMATION The MC10/100EP446 is an integrated 8:1 parallel to serial converter. An attribute for EP446 is that the parallel inputs D0–D7 (Pins 17 – 24) can be configured to accept either CMOS, ECL, or TTL level signals by a combination of interconnects between VEF (Pin 27) and VCF (Pin 26) pins. For CMOS input levels, leave VEF and VCF open. For ECL operation, short VCF and VEF (Pins 26 and 27). For TTL operation, connect a 1.5 V supply reference to VCF and leave the VEF pin open. The 1.5 V reference voltage to VCF pin can be accomplished by placing a 1.5 k or 500 between VCF and VEE for 3.3 V or 5.0 V power supplies, respectively. Note: all pins requiring ECL voltage inputs must have a 50 terminating resistor to VTT (VTT = VCC – 2.0 V). The CKSEL input (Pin 2) is provided to enable the user to select the serial data rate output between internal clock data rate or twice the internal clock data rate. For CKSEL LOW operation, the time from when the parallel data is latched to when the data is seen on the SOUT is on the falling edge of the 7th clock cycle plus internal propagation delay (Figure 6). Note the PCLK switches on the falling edge of CLK. Number of Clock Cycles from Data Latch to SOUT 1 2 3 4 5 6 7 CLK D0 D0−1 D0−2 D0−3 D0−4 D1 D1−1 D1−2 D1−3 D1−4 D2 D2−1 D2−2 D2−3 D2−4 D3 D3−1 D3−2 D3−3 D3−4 D4 D4−1 D4−2 D4−3 D4−4 D5 D5−1 D5−2 D5−3 D5−4 D6 D6−1 D6−2 D6−3 D6−4 D7 D7−1 D7−2 D7−3 D7−4 Data Latched Data Latched CKSEL PCLK Figure 6. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW http://onsemi.com 11 D6−2 D5−2 D4−2 D3−2 D2−2 D0−2 D1−2 D7−1 D6−1 Data Latched D5−1 D4−1 D3−1 D2−1 D1−1 SOUT D0−1 Data Latched MC10EP446, MC100EP446 Similarly, for CKSEL HIGH operation, the time from when the parallel data is latched to when the data is seen on the SOUT is on the rising edge of the 14th clock cycle plus internal propagation delay (Figure 7). Furthermore, the PCLK switches on the rising edge of CLK. Number of Clock Cycles from Data Latch to SOUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CLK D0 D0−1 D0−2 D0−3 D1 D1−1 D1−2 D1−3 D2 D2−1 D2−2 D2−3 D3 D3−1 D3−2 D3−3 D4 D4−1 D4−2 D4−3 D5 D5−1 D5−2 D5−3 D6 D6−1 D6−2 D6−3 D7 D7−1 D7−2 D7−3 CKSEL PCLK Figure 7. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH http://onsemi.com 12 D1−2 D0−2 D7−1 D6−1 D5−1 D4−1 D3−1 D2−1 SOUT D1−1 Data Latched Data Latched D0−1 Data Latched MC10EP446, MC100EP446 The device also features a differential SYNC input (Pins 29 and 30), which asynchronously reset all internal flip–flops and clock circuitry on the rising edge of SYNC. The release of SYNC is a synchronous process, which ensures that no runt serial data bits are generated. The falling edge of the SYNC followed by a falling edge of CLK initiates the start of the conversion process on the next rising edge of CLK (Figures 8 and 9). As shown in the figures below, the device will start to latch the parallel input data after the a falling edge of SYNC , followed by the falling edge CLK , on the next rising of edge of CLK for CKSEL LOW SYNC (Synchronous ENABLE) Number of Clock Cycles from Data Latch to SOUT 1 SYNC (Asynchronous RESET) SYNC 3 4 5 6 7 D0 D0−1 D0−2 D0−3 D0−4 D1 D1−1 D1−2 D1−3 D1−4 D2 D2−1 D2−2 D2−3 D2−4 D3 D3−1 D3−2 D3−3 D3−4 D4 D4−1 D4−2 D4−3 D4−4 D5 D5−1 D5−2 D5−3 D5−4 D6 D6−1 D6−2 D6−3 D6−4 D7 D7−1 D7−2 D7−3 D7−4 SOUT CKSEL PCLK Figure 8. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW and SYNC SYNC CLK Figure 9. Synchronous Release of SYNC for CKSEL LOW http://onsemi.com 13 D5−2 D4−2 D3−2 D2−2 D1−2 D0−2 D7−1 D6−1 Data Latched D5−1 Data Latched D4−1 Data Latched D0−1 D1−1 D2−1 D3−1 Data Latched D6−2 CLK 2 MC10EP446, MC100EP446 For CKSEL HIGH, as shown in the timing diagrams below, the device will start to latch the parallel input data after the falling edge of SYNC , followed by the falling edge CLK , on the second rising edge of CLK (Figures 10 and 11). SYNC (Synchronous ENABLE) Number of Clock Cycles from Data Latch to SOUT SYNC (Asynchronous RESET) CLK SYNC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D0 D0−1 D0−2 D0−3 D0−4 D1 D1−1 D1−2 D1−3 D1−4 D2 D2−1 D2−2 D2−3 D2−4 D3 D3−1 D3−2 D3−3 D3−4 D4 D4−1 D4−2 D4−3 D4−4 D5 D5−1 D5−2 D5−3 D5−4 D6 D6−1 D6−2 D6−3 D6−4 D7 D7−1 D7−2 D7−3 D7−4 Data Latched SOUT CKSEL PCLK Figure 10. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH and SYNC SYNC CLK Figure 11. Synchronous Release of SYNC for CKSEL HIGH http://onsemi.com 14 D1−2 D0−2 D7−1 D6−1 D5−1 D4−1 D3−1 D2−1 D1−1 Data Latched D0−1 Data Latched MC10EP446, MC100EP446 The differential synchronous CKEN inputs (Pins 6 and 7), disable the internal clock circuitry. The synchronous CKEN will suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN followed by the falling edge of CLK will suspend all activities. The falling edge of CKEN followed by the falling edge of CLK will resume all activities (Figure 12). Internal Clock Disabled Internal Clock Enabled CLK CKEN SOUT D0−1 D1−1 D2−1 D3−1 D4−1 D5−1 PCLK CKSEL Figure 12. Timing Diagram with CKEN with CKSEL HIGH The differential PCLK output (Pins 14 and 15) is a word framer and can help the user synchronize the serial data output, SOUT (Pins 11 and 12), in their applications. Furthermore, PCLK can be used as a trigger for input parallel data (Figure 13). An internally generated voltage supply, the VBB pin, is available to this device only. For single–ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Also, both outputs of the differential pair must be terminated (50 to VTT) even if only one output is used. CLK RESET CLK SYNC Pattern Generator Data Format Logic (FPGA, ASIC) PARALLEL DATA INPUT PARALLEL DATA OUTPUT TRIGGER EP446 SOUT PCLK Figure 13. PCLK as Trigger Application http://onsemi.com 15 SERIAL DATA MC10EP446, MC100EP446 800 CKSEL High 700 VOUTpp (mV) CKSEL Low 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 3500 INPUT CLOCK FREQUENCY (MHz) Figure 14. Typical VOUTPP versus Input Clock Frequency, 25C Figure 15. SOUT System Jitter Measurement (Condition: 3.4 GHz input frequency, CKSEL HIGH, BEOFE32 bit pattern on SOUT http://onsemi.com 16 MC10EP446, MC100EP446 Zo = 50 Q D Receiver Device Driver Device Zo = 50 Q D 50 50 VTT VTT = VCC − 2.0 V Figure 16. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) ORDERING INFORMATION Device Shipping† Package MC10EP446FA LQFP−32 250 Units / Tray MC10EP446FAR2 LQFP−32 2000 / Tape & Reel MC100EP446FA LQFP−32 250 Units / Tray MC100EP446FAR2 LQFP−32 2000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 17 MC10EP446, MC100EP446 Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPS I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1642/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices http://onsemi.com 18 MC10EP446, MC100EP446 PACKAGE DIMENSIONS A 32 A1 −T−, −U−, −Z− LQFP FA SUFFIX 32−LEAD PLASTIC PACKAGE CASE 873A−02 ISSUE B 4X 25 0.20 (0.008) AB T−U Z 1 AE −U− −T− B P V 17 8 BASE METAL DETAIL Y V1 ÉÉ ÉÉ ÉÉ ÉÉ −Z− 9 S1 4X 0.20 (0.008) AC T−U Z F S 8X M J R D DETAIL AD G SECTION AE−AE −AB− C E −AC− H W K X DETAIL AD NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE −AB− IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS −T−, −U−, AND −Z− TO BE DETERMINED AT DATUM PLANE −AB−. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE −AC−. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −AB−. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION. DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X http://onsemi.com 19 MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.500 0.700 12 REF 0.090 0.160 0.400 BSC 1 5 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.020 0.028 12 REF 0.004 0.006 0.016 BSC 1 5 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF Q 0.250 (0.010) 0.10 (0.004) AC GAUGE PLANE SEATING PLANE M N 9 0.20 (0.008) DETAIL Y AC T−U Z AE B1 MC10EP446, MC100EP446 ECLinPS is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 20 For additional information, please contact your local Sales Representative. MC10EP446/D