NSC LMH6639MA 190mhz rail-to-rail output amplifier with disable Datasheet

LMH6639
190MHz Rail-to-Rail Output Amplifier with Disable
General Description
Features
The LMH6639 is a voltage feedback operational amplifier
with a rail-to-rail output drive capability of 110mA. Employing
National’s patented VIP10 process, the LMH6639 delivers a
bandwidth of 190MHz at a current consumption of only
3.6mA. An input common mode voltage range extending to
0.2V below the V− and to within 1V of V+, makes the
LMH6639 a true single supply op-amp. The output voltage
range extends to within 30mV of either supply rail providing
the user with a dynamic range that is especially desirable in
low voltage applications.
The LMH6639 offers a slew rate of 172V/µs resulting in a full
power bandwidth of approximately 28MHz. The TON value of
83nsec combined with a settling time of 33nsec makes this
device ideally suited for multiplexing applications. Careful
attention has been paid to ensure device stability under all
operating voltages and modes. The result is a very well
behaved frequency response characteristic for any gain setting including +1, and excellent specifications for driving
video cables including harmonic distortion of −60dBc, differential gain of 0.12% and differential phase of 0.045˚
(VS = 5V, Typical values unless specified)
n Supply current (no load)
3.6mA
n Supply current (off mode)
400µA
n Output resistance (closed loop 1MHz)
0.186Ω
n −3dB BW (AV = 1)
190MHz
n Settling time
33nsec
n Input common mode voltage
−0.2V to 4V
n Output voltage swing
40mV from rails
n Linear output current
110mA
n Total harmonic distortion
−60dBc
n Fully characterized for 3V, 5V and ± 5V
n No output phase reversal with CMVR exceeded
n Excellent overdrive recovery
n Off Isolation 1MHz
−70dB
n Differential Gain
0.12%
n Differential Phase
0.045˚
Applications
n
n
n
n
n
Active filters
CD/DVD ROM
ADC buffer amplifier
Portable video
Current sense buffer
20030246
FIGURE 1. Typical Single Supply Schematic
© 2003 National Semiconductor Corporation
DS200302
www.national.com
LMH6639 190MHz Rail-to-Rail Output Amplifier with Disable
July 2003
LMH6639
Absolute Maximum Ratings
Junction Temperature (Note 4)
(Note 1)
Soldering Information
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
ESD Tolerance
+150˚C
Infrared or Convection (20 sec)
235˚C
Wave Soldering (10 sec)
260˚C
2KV (Note 2)
200V (Note 9)
Operating Ratings (Note 1)
± 2.5V
± 10mA
VIN Differential
Input Current
+
−
Supply Voltage (V – V )
Operating Temperature Range (Note 4)
13.5V
Voltage at Input/Output pins
V+ +0.8V, V− −0.8V
Storage Temperature Range
−65˚C to +150˚C
−40˚C to +85˚C
Package Thermal Resistance (θJA) (Note 4)
SOT23-6
265˚C/W
SOIC-8
190˚C/W
3V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for at TJ = 25˚C, V+ = 3V, V− = 0V, VO = VCM = V+/2, and RL = 2kΩ to V+/2.
Boldface limits apply at the temperature extremes.
Symbol
BW
Parameter
−3dB BW
Conditions
AV = +1
Min
(Note 6)
Typ
(Note 5)
120
170
AV = −1
0.1dB Gain Flatness
RF = 2.65kΩ , RL = 1kΩ,
FPBW
Full Power Bandwidth
AV = +1, VOUT = 2VPP, −1dB
V+ = 1.8V, V− = 1.2V
GBW
Gain Bandwidth product
AV = +1
en
Input-Referred Voltage Noise
RF = 33kΩ
Input-Referred Current Noise
RF = 1MΩ
16.4
MHz
21
MHz
83
MHz
f = 10kHz
19
f = 1MHz
16
f = 10kHz
1.30
f = 1MHz
0.36
THD
Total Harmonic Distortion
f = 5MHz, VO = 2VPP, AV = +2,
RL = 1kΩ to V+/2
TS
Settling Time
VO = 2VPP, ± 0.1%
SR
Slew Rate
AV = −1 (Note 8)
VOS
Input Offset Voltage
nV/
pA/
−50
120
Units
MHz
63
BW0.1dB
in
Max
(Note 6)
dBc
37
ns
167
V/µs
1.01
5
7
mV
TC VOS
Input Offset Average Drift
(Note 11)
8
IB
Input Bias Current
(Note 7)
−1.02
−2.6
−3.5
µA
IOS
Input Offset Current
20
800
1000
nA
RIN
Common Mode Input
Resistance
AV = +1, f = 1kHz, RS = 1MΩ
6.1
MΩ
CIN
Common Mode Input
Capacitance
AV = +1, RS = 100kΩ
1.35
pF
CMVR
Input Common-Mode Voltage
Range
CMRR ≥ 50dB
−0.3
1.8
1.6
2
CMRR
Common Mode Rejection
Ratio
(Note 12)
72
93
AVOL
Large Signal Voltage Gain
VO = 2VPP, RL = 2kΩ to V+/2
80
76
100
VO = 2VPP, RL = 150Ω to V+/2
74
70
78
www.national.com
2
µV/˚C
−0.2
−0.1
V
dB
dB
(Continued)
Unless otherwise specified, all limits guaranteed for at TJ = 25˚C, V+ = 3V, V− = 0V, VO = VCM = V+/2, and RL = 2kΩ to V+/2.
Boldface limits apply at the temperature extremes.
Symbol
VO
Parameter
Output Swing
High
Output Swing
Low
ISC
Output Short Circuit Current
Conditions
Min
(Note 6)
Typ
(Note 5)
RL = 2kΩ to V+/2, VID = 200mV
2.90
2.98
+
RL = 150Ω to V /2, VID = 200mV
2.75
2.93
RL = 50Ω to V+/2, VID = 200mV
2.6
2.85
RL = 2kΩ to V+/2, VID = −200mV
25
Max
(Note 6)
V
75
+
RL = 150Ω to V /2, VID = −200mV
75
200
RL = 50Ω to V+/2, VID = −200mV
130
300
Sourcing to V+/2, (Note 10)
50
35
120
Sinking to V+/2, (Note 10)
67
40
140
72
96
IOUT
Output Current
VO = 0.5V from either supply
PSRR
Power Supply Rejection Ratio
(Note 12)
IS
Supply Current (Enabled)
No Load
mV
mA
99
Supply Current (Disabled)
Units
mA
dB
3.5
5.6
7.5
0.3
0.5
0.7
mA
V+−1.59
V
−13
µA
On Time After Shutdown
83
nsec
Off Time to Shutdown
160
nsec
TH_SD
Threshold Voltage for
Shutdown Mode
I_SD PIN
Shutdown Pin Input Current
TON
TOFF
ROUT
Output Resistance Closed
Loop
SD Pin Connect to 0V (Note 7)
RF = 10kΩ, f = 1kHz, AV = −1
27
RF = 10kΩ, f = 1MHz, AV = −1
266
mΩ
5V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for at TJ = 25˚C, V+ = 5V, V− = 0V, VO = VCM = V+/2, and RL = 2kΩ to V+/2.
Boldface limits apply at the temperature extremes.
Symbol
BW
Parameter
−3dB BW
Conditions
AV = +1
Min
(Note 6)
Typ
(Note 5)
130
190
AV = −1
Max
(Note 6)
Units
MHz
64
BW0.1dB
0.1dB Gain Flatness
RF = 2.51kΩ, RL = 1kΩ,
16.4
MHz
FPBW
Full Power Bandwidth
AV = +1, VOUT = 2VPP, −1dB
28
MHz
GBW
Gain Bandwidth Product
AV = +1
86
MHz
en
Input-Referred Voltage Noise
RF = 33kΩ
in
Input-Referred Current Noise
RF = 1MΩ
f = 10kHz
19
f = 1MHz
16
f = 10KHz
1.35
f = 1MHz
0.35
nV/
pA/
THD
Total Harmonic Distortion
f = 5MHz, VO = 2VPP, AV = +2
RL = 1kΩ to V+/2
−60
dBc
DG
Differential Gain
NTSC, AV = +2
RL = 150Ω to V+/2
0.12
%
DP
Differential Phase
NTSC, AV = +2
RL = 150Ω to V+/2
0.045
deg
TS
Settling Time
VO = 2VPP, ± 0.1%
SR
Slew Rate
AV = −1, (Note 8)
VOS
Input Offset Voltage
130
33
ns
172
V/µs
1.02
3
5
7
mV
www.national.com
LMH6639
3V Electrical Characteristics
LMH6639
5V Electrical Characteristics
(Continued)
Unless otherwise specified, all limits guaranteed for at TJ = 25˚C, V+ = 5V, V− = 0V, VO = VCM = V+/2, and RL = 2kΩ to V+/2.
Boldface limits apply at the temperature extremes.
Symbol
Parameter
Conditions
Min
(Note 6)
Typ
(Note 5)
Max
(Note 6)
Units
TC VOS
Input Offset Average Drift
(Note 11)
8
IB
Input Bias Current
(Note 7)
−1.2
−2.6
−3.25
µA
IOS
Input Offset Current
20
800
1000
nA
RIN
Common Mode Input
Resistance
AV = +1, f = 1kHz, RS = 1MΩ
6.88
MΩ
CIN
Common Mode Input
Capacitance
AV = +1, RS = 100kΩ
1.32
pF
CMVR
Common-Mode Input Voltage
Range
CMRR ≥ 50dB
−0.3
−0.2
−0.1
4
3.8
3.6
CMRR
Common Mode Rejection
Ratio
(Note 12)
72
95
AVOL
Large Signal Voltage Gain
VO = 4VPP
RL = 2kΩ to V+/2
86
82
100
VO = 3.75VPP
RL = 150Ω to V+/2
74
70
77
4.90
4.97
VO
Output Swing
High
Output Swing
Low
RL = 2kΩ to V+/2, VID = 200mV
+
RL = 150Ω to V /2, VID = 200mV
4.65
4.90
RL = 50Ω to V+/2, VID = 200mV
4.40
4.77
100
85
200
190
400
Sourcing to V+/2, (Note 10)
100
79
160
Sinking from V+/2, (Note 10)
120
85
190
IOUT
Output Current
VO = 0.5V from either supply
Power Supply Rejection Ratio
(Note 12)
IS
Supply Current (Enabled)
No Load
I_SD PIN
Shutdown Pin Input Current
TON
On Time after Shutdown
TOFF
Off Time to Shutdown
ROUT
Output Resistance Closed
Loop
www.national.com
SD Pin Connected to 0V (Note 7)
dB
3.6
5.8
8.0
0.40
0.8
1.0
mA
V
−30
µA
83
nsec
160
nsec
RF = 10kΩ, f = 1kHz, AV = −1
29
RF = 10kΩ, f = 1MHz, AV = −1
253
4
mA
96
V+ −1.65
mV
mA
110
72
Supply Current (Disabled)
Threshold Voltage for
Shutdown Mode
V
25
PSRR
TH_SD
dB
RL = 150Ω to V+/2, VID = −200mV
RL = 50Ω to V /2, VID = −200mV
Output Short Circuit Current
V
dB
RL = 2kΩ to V+/2, VID = −200mV
+
ISC
µV/˚C
mΩ
Symbol
BW
BW0.1dB
Parameter
−3dB BW
0.1dB Gain Flatness
Conditions
AV = +1
Min
(Note 6)
Typ
(Note 5)
150
228
Max
(Note 6)
Units
MHz
AV = −1
65
RF = 2.26kΩ, RL = 1kΩ
18
MHz
FPBW
Full Power Bandwidth
AV = +1, VOUT = 2VPP, −1dB
29
MHz
GBW
Gain Bandwidth Product
AV = +1
90
MHz
en
Input-Referred Voltage Noise
RF = 33kΩ
in
Input-Referred Current Noise
RF = 1MΩ
f = 10kHz
19
f = 1MHz
16
f = 10kHz
1.13
f = 1MHz
0.34
nV/
pA/
THD
Total Harmonic Distortion
f = 5MHz, VO = 2VPP, AV = +2,
RL = 1kΩ
−71.2
dBc
DG
Differential Gain
NTSC, AV = +2
RL = 150Ω
0.11
%
DP
Differential Phase
NTSC, AV = +2
RL = 150Ω
0.053
deg
TS
Settling Time
VO = 2VPP, ± 0.1%
33
ns
AV = −1 (Note 8)
SR
Slew Rate
VOS
Input Offset Voltage
140
200
1.03
V/µs
5
7
mV
TC VOS
Input Offset Voltage Drift
(Note 11)
8
IB
Input Bias Current
(Note 7)
−1.40
−2.6
−3.25
µA
IOS
Input Offset Current
20
800
1000
nA
RIN
Common Mode Input
Resistance
AV +1, f = 1kHz, RS = 1MΩ
7.5
MΩ
CIN
Common Mode Input
Capacitance
AV = +1, RS = 100kΩ
1.28
pF
CMVR
Common Mode Input Voltage
Range
CMRR ≥ 50dB
−5.3
3.8
3.6
4.0
CMRR
Common Mode Rejection
Ratio
(Note 12)
72
95
AVOL
Large Signal Voltage Gain
VO = 9VPP, RL = 2kΩ
88
84
100
VO = 8VPP, RL = 150Ω
74
70
77
VO
Output Swing
High
Output Swing
Low
ISC
Output Short Circuit Current
RL = 2kΩ, VID = 200mV
4.85
4.96
RL = 150Ω, VID = 200mV
4.55
4.80
RL = 50Ω, VID = 200mV
3.60
µV/˚C
−5.2
−5.1
dB
dB
V
4.55
RL = 2kΩ, VID = −200mV
−4.97
RL = 150Ω, VID = −200mV
−4.85
−4.55
RL = 50Ω, VID = −200mV
−4.65
−4.30
Sourcing to Ground, (Note 10)
100
80
168
Sinking to Ground, (Note 10)
110
85
190
5
V
−4.90
V
mA
www.national.com
LMH6639
± 5V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for at TJ = 25˚C, VSUPPLY = ± 5V, VO = VCM = GND, and RL = 2kΩ to V+/2.
Boldface limits apply at the temperature extremes.
LMH6639
± 5V Electrical Characteristics
(Continued)
Unless otherwise specified, all limits guaranteed for at TJ = 25˚C, VSUPPLY = ± 5V, VO = VCM = GND, and RL = 2kΩ to V+/2.
Boldface limits apply at the temperature extremes.
Symbol
Parameter
Conditions
IOUT
Output Current
VO = 0.5V from either supply
PSRR
Power Supply Rejection Ratio
(Note 12)
IS
Supply Current (Enabled)
No Load
Min
(Note 6)
Typ
(Note 5)
Max
(Note 6)
Units
112
72
Supply Current (Disabled)
mA
96
dB
4.18
6.5
8.5
0.758
1.0
1.3
mA
V+ − 1.67
V
TH_SD
Threshold Voltage for
Shutdown Mode
I_SD PIN
Shutdown Pin Input Current
−84
µA
TON
On Time after Shutdown
83
nsec
TOFF
Off Time to Shutdown
160
nsec
ROUT
Output Resistance Closed
Loop
SD Pin Connected to −5V (Note 7)
RF = 10kΩ, f = 1kHz, AV = −1
32
RF = 10kΩ, f = 1MHz, AV = −1
226
mΩ
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, 1.5kΩ in series with 100pF.
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150˚C.
Note 4: The maximum power dissipation is a function of TJ(MAX), θJA, and TA. The maximum allowable power dissipation at any ambient temperature is
PD = (TJ(MAX) - TA)/ θJA . All numbers apply for packages soldered directly onto a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Positive current corresponds to current flowing into the device.
Note 8: Slew rate is the average of the rising and falling slew rates.
Note 9: Machine Model, 0Ω in series with 200pF.
Note 10: Short circuit test is a momentary test.
Note 11: Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.
Note 12: f ≤ 1kHz (see typical performance Characteristics)
Connection Diagrams
SOT23-6
SOIC-8
20030202
20030201
Top View
Top View
Ordering Information
Package
6-Pin SOT-23
Part Number
Package Marking
Transport Media
NSC Drawing
LMH6639MF
A81A
1k Units Tape and Reel
MF06A
LMH6639MFX
8-Pin SOIC
LMH6639MA
3k Units Tape and Reel
LMH6639MA
LMH6639MAX
www.national.com
Rails
2.5k Units Tape and Reel
6
M08A
At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
RF = 1kΩ for AV = −1. Unless otherwise specified.
Output Sourcing Saturation Voltage vs. IOUT
for Various Temperature
Output Sinking Saturation Voltage vs. IOUT
for Various Temperature
20030237
20030239
Negative Output Saturation Voltage vs. VSUPPLY
for Various Temperature
Positive Output Saturation Voltage vs. VSUPPLY
for Various Temperature
20030234
20030233
VOUT from V+ vs. ISOURCE
VOUT from V− vs. ISINK
20030238
20030236
7
www.national.com
LMH6639
Typical Performance Characteristics
LMH6639
Typical Performance Characteristics At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
RF = 1kΩ for AV = −1. Unless otherwise specified. (Continued)
IOS vs. VS for Various Temperature
VOS vs. VS for 3 Representative Units
20030232
20030245
VOS vs. VS for 3 Representative Units
VOS vs. VS for 3 Representative Units
20030244
20030243
VOS vs. VS for 3 Representative Units
ISUPPLY vs. VCM for Various Temperature
20030242
www.national.com
20030240
8
RF = 1kΩ for AV = −1. Unless otherwise specified. (Continued)
ISUPPLY vs. VS for Various Temperature
IB vs. VS for Various Temperature
20030241
20030235
Bandwidth for Various VS
Bandwidth for Various VS
20030206
20030205
Gain vs. Frequency Normalized
Gain vs. Frequency Normalized
20030207
20030208
9
www.national.com
LMH6639
Typical Performance Characteristics At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
LMH6639
Typical Performance Characteristics At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
RF = 1kΩ for AV = −1. Unless otherwise specified. (Continued)
Gain and phase vs.
Frequency for Various Temperature
0.1dB Gain Flatness
20030209
20030204
Frequency Response vs. Temperature
Harmonic Distortion
20030210
20030269
Differential Gain/Phase
On-Off Switching DC Voltage
20030211
20030270
www.national.com
10
RF = 1kΩ for AV = −1. Unless otherwise specified. (Continued)
On-Off Switching 10MHz
Slew Rate (Positive)
20030212
20030214
Slew Rate (Negative)
On-Off Switching of Sinewave
20030213
20030215
Power Sweep
CMRR vs. Frequency
20030216
20030218
11
www.national.com
LMH6639
Typical Performance Characteristics At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
LMH6639
Typical Performance Characteristics At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
RF = 1kΩ for AV = −1. Unless otherwise specified. (Continued)
PSRR vs. Frequency
Current Noise
20030217
20030220
Voltage Noise
Closed Loop Output Resistance vs. Frequency
20030221
20030219
Off Isolation
Small Signal Pulse Response (AV = +1, RL = 2k )
20030250
20030222
www.national.com
12
RF = 1kΩ for AV = −1. Unless otherwise specified. (Continued)
Small Signal Pulse Response (AV = −1)
Large Signal Pulse Response (RL = 2k)
20030249
20030226
Large Signal Pulse Response
Large Signal Pulse Response
20030227
20030228
13
www.national.com
LMH6639
Typical Performance Characteristics At TJ = 25˚C, V+ = +2.5, V− = −2.5V, RF = 330Ω for AV = +2,
LMH6639
In the circuit of Figure 2, the outputs of IC1 and IC2 are tied
together such that their output impedances are placed in
parallel at the input of IC3. The output impedance of the
disabled amplifier is high compared both to the output impedance of the active amplifier and the 330Ω gain setting
resistors. The closed loop output resistance for the
LMH6639 is around 0.2Ω. Thus the active state amplifier
output impedance dominates the input node to IC3, while the
disabled amplifier is assured of a high level of suppression of
unwanted signals which might be present at the output.
Application Notes
MULTIPLEXING 5 AND 10MHz
The LMH6639 may be used to implement a circuit which
multiplexes two signals of different frequencies. Three
LMH6639 high speed op-amps are used in the circuit of
Figure 2 to accomplish the multiplexing function. Two
LMH6639 are used to provide gain for the input signals, and
the third device is used to provide output gain for the selected signal.
SHUTDOWN OPERATION
With SD pin left floating, the device enters normal operation.
However, since the SD pin has high input impedance, it is
best tied to V+ for normal operation. This will avoid inadvertent shutdown due to capacitive pick-up from nearby nodes.
LMH6639 will typically go into shutdown when SD pin is
more than 1.7V below V+, regardless of operating supplies.
The SD pin can be driven by push-pull or open collector
(open drain) output logic. Because the LMH6639’s shutdown
is referenced to V+, interfacing to the shutdown logic is
rather simple, for both single and dual supply operation, with
either form of logic used. Typical configurations are shown in
Figure 4 and Figure 5 below for push-pull output:
20030247
Note: Pin numbers pertain to SOIC-8 package
FIGURE 2. Multiplexer
Multiplexing signals “FREQ 1” and “FREQ 2” exhibit closed
loop non-inverting gain of +2 each based upon identical
330Ω resistors in the gain setting positions of IC1 and IC2.
The two multiplexing signals are combined at the input of
IC3, which is the third LMH6639. This amplifier may be used
as a unity gain buffer or may be used to set a particular gain
for the circuit.
20030271
FIGURE 4. Shutdown Interface (Single Supply)
20030248
FIGURE 3. Switching between 5 and 10MHz
1k resistors are used to set an inverting gain of −1 for IC3 in
the circuit of Figure 2. Figure 3 illustrates the waveforms
produced. The upper trace shows the switching waveform
used to switch between the 5MHz and 10MHz multiplex
signals. The lower trace shows the output waveform consisting of 5MHz and 10MHz signals corresponding to the high or
low state of the switching signal.
www.national.com
20030272
FIGURE 5. Shutdown Interface (Dual Supplies)
Common voltages for logic gates are +5V or +3V. To ensure
proper power on/off with these supplies, the logic should be
able to swing to 3.4V and 1.4V minimum, respectively.
14
PCB LAYOUT CONSIDERATION AND COMPONENTS
SELECTION
(Continued)
LMH6639’s shutdown pin can also be easily controlled in
applications where the analog and digital sections are operated at different supplies. Figure 6 shows a configuration
where a logic output, SD, can turn the LMH6639 on and off,
independent of what supplies are used for the analog and
the digital sections:
Care should be taken while placing components on a PCB.
All standard rules should be followed especially the ones for
high frequency and/ or high gain designs. Input and output
pins should be separated to reduce cross-talk, especially
under high gain conditions. A groundplane will be helpful to
avoid oscillations. In addition, a ground plane can be used to
create micro-strip transmission lines for matching purposes.
Power supply, as well as shutdown pin de-coupling will
reduce cross-talk and chances of oscillations.
Another important parameter in working with high speed
amplifiers is the component values selection. Choosing high
value resistances reduces the cut-off frequency because of
the influence of parasitic capacitances. On the other hand
choosing the resistor values too low could "load down" the
nodes and will contribute to higher overall power dissipation.
Keeping resistor values at several hundreds of ohms up to
several kΩ will offer good performance.
National Semiconductor suggests the following evaluation
boards as a guide for high frequency layout and as an aid in
device testing and characterization:
20030273
FIGURE 6. Shutdown Interface (Single Supply, Open
Collector Logic)
The LMH6639 has an internal pull-up resistor on SD such
that if left un-connected, the device will be in normal operation. Therefore, no pull-up resistor is needed on this pin.
Another common application is where the transistor in Figure
6 above, would be internal to an open collector (open drain)
logic gate; the basic connections will remain the same as
shown.
Device
Package
Evaluation
Board PN
LMH6639MA
8-Pin SOIC
CLC730027
LMH6639MF
SOT23-6
CLC730116
These free evaluation boards are shipped when a device
sample request is placed with National Semiconductor. For
normal operation, tie the SD pin to V+.
15
www.national.com
LMH6639
Application Notes
LMH6639
Physical Dimensions
inches (millimeters) unless otherwise noted
6-Pin SOT23
NS Package Number MF06A
8-Pin SOIC
NS Package Number M08A
www.national.com
16
LMH6639 190MHz Rail-to-Rail Output Amplifier with Disable
Notes
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
Similar pages