Rohm BD9110NV High-efficiency step-down switching regulators with built-in power mosfet Datasheet

Single-chip built-in FET type Switching Regulator Series
High-efficiency Step-down
Switching Regulators
with Built-in Power MOSFET
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
No.09027EAT33
●Description
ROHM’s high efficiency step-down switching regulators (BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN)
are the power supply designed to produce a low voltage including 1 volts from 5/3.3 volts power supply line. Offers high
efficiency with our original pulse skip control technology and synchronous rectifier. Employs a current mode control
system to provide faster transient response to sudden change in load.
●Features
1) Offers fast transient response with current mode PWM control system.
2) Offers highly efficiency for all load range with synchronous rectifier (Nch/Pch FET)
TM
and SLLM (Simple Light Load Mode)
3) Incorporates soft-start function.
4) Incorporates thermal protection and ULVO functions.
5) Incorporates short-current protection circuit with time delay function.
6) Incorporates shutdown function
7) Employs small surface mount package
MSOP8 (BD9106FVM,BD9107FVM,BD9109FVM), HSON8 (BD9120HFN), SON008V5060 (BD9110NV)
●Use
Power supply for LSI including DSP, Micro computer and ASIC
●Line up
Parameter
BD9106FVM
Input Voltage
BD9107FVM
BD9109FVM
BD9110NV
BD9120HFN
4.0~5.5V
4.0~5.5V
4.5~5.5V
4.5~5.5V
2.7~4.5V
Output Voltage
Adjustable
(1.0~2.5V)
Adjustable
(1.0~1.8V)
3.30±2%
Adjustable
(1.0~2.5V)
Adjustable
(1.0~1.5V)
Output Current
0.8A Max.
1.2A Max.
0.8A Max.
2.0A Max.
0.8A Max.
UVLO threshold Voltage
3.4V Typ.
2.7V Typ.
3.8V Typ.
3.7V Typ.
2.5V Typ.
-25~+105℃
-25~+85℃
SON008V5060
HSON8
Short-current protection
with time delay function
built-in
Soft start function
built-in
Standby current
0μA Typ.
Operating Temperature Range
-25~+85℃
-25~+85℃
Package
-25~+85℃
MSOP8
●Operating Conditions (Ta=25℃)
Parameter
VCC voltage
PVCC voltage
EN voltage
SW average output current
BD9106FVM
BD9107FVM
BD9109FVM
BD9110NV
BD9120HFN
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
VCC *1
4.0
5.5
4.0
5.5
4.5
5.5
4.5
5.5
2.7
4.5
V
PVCC *1
4.0
5.5
4.0
5.5
4.5
5.5
4.5
5.5
2.7
4.5
V
EN
0
VCC
0
VCC
0
VCC
0
VCC
0
VCC
V
Isw *1
-
0.8
-
1.2
-
0.8
-
2.0
-
0.8
A
Symbol
Unit
*1 Pd should not be exceeded.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Absolute Maximum Rating (Ta=25℃)
Parameter
VCC voltage
PVCC voltage
EN voltage
SW,ITH voltage
Power dissipation 1
Power dissipation 2
Operating temperature range
Storage temperature range
Maximum junction temperature
*2
*3
*4
*5
*6
*7
*8
Symbol
VCC
PVCC
EN
SW,ITH
Pd1
Pd2
Topr
Tstg
Tjmax
BD910□FVM
-0.3~+7 *2
-0.3~+7 *2
-0.3~+7
-0.3~+7
387.5*3
587.4*4
-25~+85
-55~+150
+150
Limits
BD9110NV
-0.3~+7 *2
-0.3~+7 *2
-0.3~+7
-0.3~+7
900*5
3900*6
-25~+105
-55~+150
+150
BD9120HFN
-0.3~+7 *2
-0.3~+7 *2
-0.3~+7
-0.3~+7
1350*7
1750*8
-25~+85
-55~+150
+150
Unit
V
V
V
V
mW
mW
℃
℃
℃
Pd should not be exceeded.
Derating in done 3.1mW/℃ for temperatures above Ta=25℃.
Derating in done 4.7mW/℃ for temperatures above Ta=25℃, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB.
Derating in done 7.2mW/℃ for temperatures above Ta=25℃, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB
which has 1 layer (3%) of copper on the back side).
Derating in done 31.2mW/℃ for temperatures above Ta=25℃, Mounted on a board according to JESD51-7.
Derating in done 10.8mW/℃ for temperatures above Ta=25℃, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB
which has 1 layer (7%) of copper on the back side).
Derating in done 14mW/℃ for temperatures above Ta=25℃, Mounted on 70mm×70mm×1.6mm Glass Epoxy PCB
which has 1 layer (65%) of copper on the back side).
●Electrical Characteristics
◎BD9106FVM (Ta=25℃, VCC=5V, EN=VCC, R1=20kΩ, R2=10kΩ unless otherwise specified.)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Standby current
ISTB
0
10
μA
Bias current
ICC
250
400
μA
EN Low voltage
VENL
GND
0.8
V
EN High voltage
VENH
2.0
VCC
V
EN input current
IEN
1
10
μA
Oscillation frequency
FOSC
0.8
1
1.2
MHz
Pch FET ON resistance *9
RONP
0.35
0.60
Ω
Nch FET ON resistance *9
RONN
0.25
0.50
Ω
ADJ Voltage
VADJ
0.780
0.800
0.820
V
*9
Output voltage
VOUT
1.200
V
ITH SInk current
ITHSI
10
20
μA
ITH Source Current
ITHSO
10
20
μA
UVLO threshold voltage
VUVLOTh
3.2
3.4
3.6
V
UVLO hysteresis voltage
VUVLOHys
50
100
200
mV
Soft start time
TSS
1.5
3
6
ms
Timer latch time
TLATCH
0.5
1
2
ms
Conditions
EN=GND
Standby mode
Active mode
VEN=5V
PVCC=5V
PVCC=5V
ADJ=H
ADJ=L
VCC=H→L
*9 Design Guarantee(Outgoing inspection is not done on all products)
◎BD9107FVM (Ta=25℃, VCC=5V, EN=VCC, R1=20kΩ, R2=10kΩ unless otherwise specified.)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Standby current
ISTB
0
10
μA
Bias current
ICC
250
400
μA
EN Low voltage
VENL
GND
0.8
V
EN High voltage
VENH
2.0
VCC
V
EN input current
IEN
1
10
μA
Oscillation frequency
FOSC
0.8
1
1.2
MHz
Pch FET ON resistance *9
RONP
0.35
0.60
Ω
Nch FET ON resistance *9
RONN
0.25
0.50
Ω
ADJ Voltage
VADJ
0.780
0.800
0.820
V
*9
Output voltage
VOUT
1.200
V
ITH SInk current
ITHSI
10
20
μA
ITH Source Current
ITHSO
10
20
μA
UVLO threshold voltage
VUVLOTh
2.6
2.7
2.8
V
UVLO hysteresis voltage
VUVLOHys
150
300
600
mV
Soft start time
TSS
0.5
1
2
ms
Timer latch time
TLATCH
0.5
1
2
ms
Conditions
EN=GND
Standby mode
Active mode
VEN=5V
PVCC=5V
PVCC=5V
VOUT =H
VOUT =L
VCC=H→L
*9 Design Guarantee(Outgoing inspection is not done on all products)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
2/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
●Electrical Characteristics
◎BD9109FVM (Ta=25℃, VCC=PVCC=5V, EN= VCC unless otherwise specified.)
Parameter
Symbol
Min.
Typ.
Max.
Standby current
ISTB
0
10
Bias current
ICC
250
400
EN Low voltage
VENL
GND
0.8
EN High voltage
VENH
2.0
VCC
EN input current
IEN
1
10
Oscillation frequency
FOSC
0.8
1
1.2
Pch FET ON resistance *9
RONP
0.35
0.60
Nch FET ON resistance *9
RONN
0.25
0.50
Output voltage
VOUT
3.234
3.300
3.366
ITH SInk current
ITHSI
10
20
ITH Source Current
ITHSO
10
20
UVLO threshold voltage
VUVLO1
3.6
3.8
4.0
UVLO hysteresis voltage
VUVLO2
3.65
3.9
4.2
Soft start time
TSS
0.5
1
2
Timer latch time
TLATCH
1
2
3
Output Short circuit
VSCP
2
2.7
Threshold Voltage
Technical Note
Unit
μA
μA
V
V
μA
MHz
Ω
Ω
V
μA
μA
V
V
ms
ms
V
Conditions
EN=GND
Standby mode
Active mode
VEN=5V
PVCC=5V
PVCC=5V
VOUT =H
VOUT =L
VCC=H→L
VCC=L→H
SCP/TSD operated
VOUT =H→L
*9 Design Guarantee(Outgoing inspection is not done on all products)
◎BD9110NV (Ta=25℃, VCC=PVCC=5V, EN=VCC, R1=10kΩ,R2=5kΩ unless otherwise specified.)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Standby current
ISTB
0
10
μA
Bias current
ICC
250
350
μA
EN Low voltage
VENL
GND
0.8
V
EN High voltage
VENH
2.0
VCC
V
EN input current
IEN
1
10
μA
Oscillation frequency
FOSC
0.8
1
1.2
MHz
Pch FET ON resistance *9
RONP
200
320
mΩ
Nch FET ON resistance *9
RONN
150
270
mΩ
ADJ Voltage
VADJ
0.780
0.800
0.820
V
*9
Output voltage
VOUT
1.200
V
ITH SInk current
ITHSI
10
20
μA
ITH Source Current
ITHSO
10
20
μA
UVLO threshold voltage
VUVLOTh
3.5
3.7
3.9
V
UVLO hysteresis voltage
VUVLOHys
50
100
200
mV
Soft start time
TSS
2.5
5
10
ms
Timer latch time
TLATCH
0.5
1
2
ms
Conditions
EN=GND
Standby mode
Active mode
VEN=5V
PVCC=5V
PVCC=5V
VOUT =H
VOUT =L
VCC=H→L
*9 Design Guarantee(Outgoing inspection is not done on all products)
◎BD9120HFN (Ta=25℃, VCC=PVCC=3.3V, EN=VCC, R1=20kΩ, R2=10kΩ unless otherwise specified.)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Standby current
ISTB
0
10
μA
EN=GND
Bias current
ICC
200
400
μA
EN Low voltage
VENL
GND
0.8
V
Standby mode
EN High voltage
VENH
2.0
VCC
V
Active mode
EN input current
IEN
1
10
μA
VEN=3.3V
Oscillation frequency
FOSC
0.8
1
1.2
MHz
Pch FET ON resistance *9
RONP
0.35
0.60
Ω
PVCC=3.3V
Nch FET ON resistance *9
RONN
0.25
0.50
Ω
PVCC=3.3V
ADJ Voltage
VADJ
0.780
0.800
0.820
V
*9
Output voltage
VOUT
1.200
V
ITH SInk current
ITHSI
10
20
μA
VOUT =H
ITH Source Current
ITHSO
10
20
μA
VOUT =L
UVLO threshold voltage
VUVLO1
2.400
2.500
2.600
V
VCC=H→L
UVLO hysteresis voltage
VUVLO2
2.425
2.550
2.700
V
VCC=L→H
Soft start time
TSS
0.5
1
2
ms
Timer latch time
TLATCH
1
2
3
ms
SCP/TSD operated
Output Short circuit
VOUT×0.5 VOUT×0.7
V
VOUT =H→L
VSCP
Threshold Voltage
*9 Design Guarantee(Outgoing inspection is not done on all products)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Characteristics data【BD9106FVM】
2.0
2.0
1.0
0.5
0.0
1.5
1.0
VCC=5V
Ta=25℃
Io=0A
0.5
1
2
3
4
INPUT VOLTAGE:VCC[V]
0
5
VCC=5V
Io=0A
4
1.79
1.78
0
1.15
40
30
10
VCC=5V
Ta=25℃
TEMPERATURE:Ta[℃]
Fig.4 Ta-Vout
Fig.5 Efficiency
55 65
75
1
85
0.40
2.0
0.35
1.8
EN VOLTAGE:VEN[V]
PMOS
0.20
NMOS
0.15
0.10
-25 -15
-5
5
15
25 35
45
55
65
75
85
TEMPERATURE:Ta[℃]
Fig.7 Ta-Ronn, Ronp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0.90
5
15
25 35
45 55
65 75
85
65
85
TEMPERATURE:Ta[℃]
VCC=5V
1.4
1.2
1.0
0.8
0.6
0.0
0.00
0.95
350
0.2
VCC=5V
1.00
-25 -15 -5
VCC=5V
0.4
0.05
1.05
Fig.6 Ta-Fosc
1.6
0.25
1.10
1000
CIRCUIT CURRENT:I CC [μA]
45
VCC=5V
0.80
10
100
OUTPUT CURRENT:IOUT[mA]
35
3
0.85
0
25
2
1.20
50
1.76
15
1
Fig.3 Iout-Vout
60
20
5
VCC=5V
Ta=25℃
OUTPUT CURRENT:IOUT [A]
70
1.77
-5
0.5
5
80
1.80
-25 -15
ON [Ω]
3
【VOUT=1.8V】
90
1.75
ON RESISTANCE:R
2
100
【VOUT=1.8V】
1.81
0.30
1
FREQUENCY:FOSC[MHz]
1.82
1.0
Fig.2 Ven-Vout
EFFICIENCY:η[%]
OUTPUT VOLTAGE:VOUT[V]
1.83
1.5
EN VOLTAGE:VEN[V]
Fig.1 Vcc-Vout
1.84
【VOUT=1.8V】
0.0
0.0
0
1.85
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
Ta=25℃
Io=0A
1.5
2.0
【VOUT=1.8V】
【VOUT=1.8V】
300
250
200
150
100
50
0
-25 -15 -5
5
15
25
35 45
55 65 75
TEMPERATURE:Ta[℃]
Fig.8 Ta-Ven
4/28
85
-25 -15
-5
5
15
25 35
45
55
75
TEMPERATURE:Ta[℃]
Fig.9 Ta-Icc
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
FREQUENCY:FOSC[MHz]
1.2
【VOUT=1.8V】
VCC=PVCC
=EN
1.1
【SLLM control
VOUT=1.8V】
SW
1
VOUT
VOUT
0.9
VCC=5V
Ta=25℃
Io=0A
0.8
4
4.5
5
INPUT VOLTAGE:VCC [V]
5.5
Fig.10 Vcc-Fosc
【PWM control
VCC=5V
Ta=25℃
Fig.11 Soft start waveform
VOUT=1.8V】
Fig.12 SW waveform Io=10mA
【VOUT=1.8V】
【VOUT=1.8V】
VOUT
VOUT
SW
VOUT
IOUT
IOUT
VCC=5V
Ta=25℃
VCC=5V
Ta=25℃
Fig.13 SW waveform Io=200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 14 Transient response
Io=100→600mA(10μs)
5/28
VCC=5V
Ta=25℃
Fig.15 Transient response
Io=600→100mA(10μs)
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Characteristics data【BD9107FVM】
2.0
1.0
0.5
0.0
1.5
1.0
0.5
VCC=5V
Ta=25℃
Io=0A
1
2
3
4
INPUT VOLTAGE:VCC[V]
5
0
Fig.16 Vcc-Vout
4
0
1.51
1.50
1.49
1.48
1.15
50
40
30
1.46
10
VCC=5V
Ta=25℃
5
15
25
35
45
55
65
75
1
85
TEMPERATURE:Ta[℃]
Fig.19 Ta-Vout
0.35
PMOS
EN VOLTAGE:VEN[V]
0.25
NMOS
0.15
VCC=5V
0.05
5
15
25
35
45
55
65
1.4
1.2
1.0
0.8
0.6
0.2
0.0
0.00
-5
VCC=5V
0.4
Fig.22 温度-NMOS FET ON 抵抗
-25 -15
0.95
0.90
-25 -15 -5
75
TEMPERATURE:Ta[℃]
Fig.22 Ta-RONN, RONP
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
85
5
15
25 35
45 55
65 75
85
TEMPERATURE:Ta[℃]
Fig.21 Ta-Fosc
350
1.6
0.10
1.00
10000
CIRCUIT CURRENT:ICC[μA]
1.8
0.20
1.05
0.80
10
100
1000
OUTPUT CURRENT:IOUT[mA]
2.0
0.30
1.10
Fig.20 Efficiency
0.40
VCC=5V
0.85
0
-5
3
1.20
60
20
2
Fig.18 Iout-Vout
70
1.47
1
OUTPUT CURRENT:IOUT [A]
FREQUENCY:FOSC[MHz]
1.52
-25 -15
0.5
5
80
EFFICIENCY:η[%]
OUTPUT VOLTAGE:VOUT[V]
2
3
EN VOLTAGE:VEN[V]
【VOUT=1.5V】
90
1.45
ON RESISTANCE:RON[Ω]
1
100
【VOUT=1.5V】
VCC=5V
Io=0A
1.53
1.0
Fig.17 Ven-Vout
1.55
1.54
1.5
0.0
0.0
0
VCC=5V
Ta=25℃
【VOUT=1.5V】
OUTPUT VOLTAGE:VOUT[V]
1.5
2.0
【VOUT=1.5V】
【VOUT=1.5V】
Ta=25℃
Io=0A
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
2.0
300
VCC=5V
250
200
150
100
50
0
-25 -15 -5
5
15 25 35 45 55 65 75 85
TEMPERATURE:Ta[℃]
Fig.23 Ta-VEN
6/28
-25 -15 -5
5
15 25 35 45 55 65 75 85
TEMPERATURE:Ta[℃]
Fig.24 Ta-ICC
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
FREQUENCY:FOSC[MHz]
1.2
Technical Note
【VOUT=1.5V】
VCC=PVCC
=EN
1.1
【SLLM control
VOUT=1.5V】
SW
1
VOUT
0.9
VOUT
VCC=5V
Ta=25℃
Io=0A
VCC=5V
Ta=25℃
0.8
4
4.5
5
INPUT VOLTAGE:VCC [V]
5.5
Fig.25 Vcc-Fosc
【PWM control
Fig.26 Soft start waveform
Fig.27 SW waveform Io=10mA
【VOUT=1.5V】
【VOUT=1.5V】
VOUT=1.5V】
VOUT
VOUT
SW
VOUT
IOUT
IOUT
VCC=5V
Ta=25℃
VCC=5V
Ta=25℃
Fig.28 SW waveform Io=500mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 29 Transient response
Io=100→600mA(10μs)
7/28
VCC=5V
Ta=25℃
Fig.30 Transient response
Io=600→100mA(10μs)
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Characteristics data【BD9109FVM】
4.0
4.0
4.0
3.0
2.0
1.0
0.0
3.0
2.0
1.0
VCC=5V
Ta=25℃
Io=0A
0.0
0
1
2
3
4
INPUT VOLTAGE:VCC[V]
5
0
Fig.31 Vcc-Vout
3.20
3.15
1.15
50
40
30
3.05
10
3.00
VCC=5V
Ta=25℃
25 35
45
55
65
75
85
10
100
OUTPUT CURRENT:IOUT[mA]
NMOS
0.15
0.10
EN VOLTAGE:VEN[V]
0.20
1.4
1.2
1.0
0.8
0.6
0.05
0.2
0.00
0.0
5
15 25 35 45 55 65 75 85
TEMPERATURE:Ta[℃]
Fig.37 Ta-Ronn, Ronp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0.90
5
15
25 35
45 55
65 75
85
Fig.36 Ta-Fosc
350
0.4
-25 -15 -5
0.95
TEMPERATURE:Ta[℃]
VCC=5V
1.6
PMOS
1.00
-25 -15 -5
CIRCUIT CURRENT:ICC[μA]
1.8
0.25
1.05
1000
2.0
VCC=5V
VCC=5V
1.10
Fig.35 Efficiency
0.40
3
0.80
1
Fig. 34 Ta-Vout
1
2
OUTPUT CURRENT:IOUT [A]
0.85
0
15
TEMPERATURE:Ta[℃]
ON RESISTANCE:RON[Ω]
0
1.20
60
20
5
VCC=5V
Ta=25℃
Fig.33 Iout-Vout
70
3.10
-5
1.0
0.0
FREQUENCY:FOSC[MHz]
3.25
-25 -15
2.0
5
80
3.30
0.30
4
90
3.35
0.35
2
3
EN VOLTAGE:VEN[V]
100
VCC=5V
Io=0A
EFFICIENCY:η[%]
OUTPUT VOLTAGE:VOUT[V]
3.40
1
3.0
Fig.32 Ven-Vout
3.50
3.45
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
Ta=25℃
Io=0A
300
VCC=5V
250
200
150
100
50
0
-25 -15 -5
5
15 25 35 45 55 65 75 85
TEMPERATURE:Ta[℃]
Fig.38 Ta-Ven
8/28
-25 -15 -5
5
15 25 35 45 55 65 75 85
TEMPERATURE:Ta[℃]
Fig.39 Ta-Icc
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
FREQUENCY:FOSC[MHz]
1.2
【SLLM control】
VCC=PVCC
=EN
1.1
SW
1
VOUT
VOUT
0.9
VCC=5V
Ta=25℃
Io=0A
0.8
4
4.5
5
INPUT VOLTAGE:VCC[V]
VCC=5V
Ta=25℃
5.5
Fig.40 Vcc-Fosc
Fig.41 Soft start waveform
Fig.42 SW waveform Io=10mA
【PWM control】
VOUT
VOUT
SW
IOUT
VOUT
VCC=5V
Ta=25℃
Fig.43 SW waveform Io=500mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
VCC=5V
Ta=25℃
IOUT
Fig. 44 Transient response
Io=100→600mA(10μs)
9/28
VCC=5V
Ta=25℃
Fig.45 Transient response
Io=600→100mA(10μs)
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Characteristics data【BD9110NV】
2.0
2.0
1.5
1.0
0.5
0.0
【VOUT=1.4V】
1.5
1.0
0.5
1
2
3
4
INPUT VOLTAGE:VCC[V]
5
1
VCC=5V
Io=0A
1.41
1.40
1.39
1.38
30
TEMPERATURE:Ta[℃]
Fig. 49 Ta-Vout
Fig.50 Efficiency
45
55
65 75
85
10
95 105
1.05
1.00
0.95
0.90
0.80
100
1000
OUTPUT CURRENT:IOUT[mA]
35
1.10
0.85
0
25
10000
-25 -15
EN VOLTAGE:VEN[V]
0.25
0.20
PMOS
0.15
NMOS
0.10
350
1.4
1.2
1.0
0.8
0.6
0.4
0.05
0.2
0.00
0.0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105
TEMPERATURE:Ta[℃]
Fig.52 Ta-Ronn, Ronp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
15
25
35
45
55
65
75
85
95 105
75
85
95 105
400
VCC=5V
1.6
0.30
5
Fig.51 Ta-Fosc
CIRCUIT CURRENT:I CC [μA]
1.8
-5
TEMPERATURE:Ta[℃]
2.0
VCC=5V
4
VCC=5V
1.15
40
10
15
1
2
3
OUTPUT CURRENT:IOUT [A]
1.20
50
1.36
5
0
Fig.48 Iout-Vout
60
20
0.40
ON [Ω]
5
70
1.37
1.35
ON RESISTANCE:R
4
FREQUENCY:FOSC[MHz]
80
1.42
0.35
2
3
EN VOLTAGE:VEN[V]
【VOUT=1.4V】
VCC=5V
Ta=25℃
90
EFFICIENCY:η[%]
OUTPUT VOLTAGE:VOUT[V]
100
【VOUT=1.4V】
-5
0.5
Fig.47 Ven-Vout
1.45
-25 -15
1.0
0.0
0
Fig.46 Vcc-Vout
1.43
1.5
VCC=5V
Ta=25℃
0.0
0
1.44
【VOUT=1.4V】
VCC=5V
Ta=25℃
Io=0A
OUTPUT VOLTAGE:VOUT[V]
【VOUT=1.4V】
Ta=25℃
Io=0A
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
2.0
VCC=5V
300
250
200
150
100
50
0
-25 -15
-5
5
15
25
35 45
55
65
75
85
95 105
-25 -15
-5
5
15
25
35
45
55
65
TEMPERATURE:Ta[℃]
TEMPERATURE:Ta[℃]
Fig.53 Ta-Ven
Fig.54 Ta-Icc
10/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
1.2
FREQUENCY:FOSC[MHz]
Ta=25℃
【VOUT=1.4V】
VCC=PVCC
=EN
1.1
【SLLM control
VOUT=1.4V】
SW
1
VOUT
VOUT
0.9
0.8
4.5
5
INPUT VOLTAGE:VCC [V]
VCC=5V
Ta=25℃
5.5
Fig.55 Vcc-Fosc
【PWM control
VCC=5V
Ta=25℃
Io=0A
Fig.56 Soft start waveform
Fig.57 SW waveform Io=10mA
【VOUT=1.4V】
VOUT=1.4V】
【VOUT=1.4V】
VOUT
VOUT
SW
IOUT
VOUT
VCC=5V
Ta=25℃
Fig.58 SW waveform Io=500mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
IOUT
VCC=5V
Ta=25℃
Fig. 59 Transient response
Io=100→600mA(10μs)
11/28
VCC=5V
Ta=25℃
Fig.60 Transient response
Io=600→100mA(10μs)
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Characteristics data【BD9120HFN】
2.0
2.0
【VOUT=1.5V】
Ta=25℃
Io=0A
1.0
0.5
0.0
1.5
1.0
0.5
VCC=3.3V
Ta=25℃
Io=0A
1
2
3
4
INPUT VOLTAGE:VCC[V]
5
0
1
Fig.61 Vcc-Vout
1.15
1.50
1.49
1.48
FREQUENCY:FOSC[MHz]
1.51
70
60
50
40
30
1.47
20
1.46
10
VCC=3.3V
Ta=25℃
5
15
25
35
45
55
65
75
10
100
OUTPUT CURRENT:IOUT[mA]
Fig. 64 Ta-Vout
Fig. 64 Ta-VOUT
1.8
0.20
NMOS
0.10
0.05
0.00
25
35
45
55
65
75
85
TEMPERATURE:Ta[℃]
Fig.67 Ta-Ronn, Ronp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
-5
5
15
25
35
45
55
65
75
85
TEMPERATURE:Ta[℃]
300
270
1.4
1.2
1.0
0.8
0.6
VCC=3.3V
240
210
180
150
120
90
60
30
0
0.0
15
-25 -15
VCC=3.3V
0.2
5
0.90
Fig.66 Ta-Fosc
0.4
-5
0.95
CIRCUIT CURRENT:I CC [μA]
EN VOLTAGE:VEN[V]
PMOS
-25 -15
1.00
1000
1.6
0.30
0.15
1.05
2.0
0.35
0.25
1.10
Fig.65 Efficiency
VCC=3.3V
VCC=3.3V
0.80
1
85
3
0.85
0
-5
1
2
OUTPUT CURRENT:IOUT [A]
1.20
TEMPERATURE:Ta[℃]
ON [Ω]
0
Fig.63 Iout-Vout
80
1.45
ON RESISTANCE:R
0.0
【VOUT=1.5V】
90
1.52
-25 -15
0.5
5
100
【VOUT=1.5V】
VCC=3.3V
Io=0A
EFFICIENCY:η[%]
OUTPUT VOLTAGE:VOUT[V]
1.53
4
1.0
Fig.62 Ven-Vout
1.55
1.54
2
3
EN VOLTAGE:VEN[V]
1.5
VCC=3.3V
Ta=25℃
0.0
0
0.40
OUTPUT VOLTAGE:VOUT[V]
1.5
【VOUT=1.5V】
【VOUT=1.5V】
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
2.0
-25 -15
-5
5
15
25
35
45
55
TEMPERATURE:Ta[℃]
Fig.68 Ta-Ven
12/28
65
75
85
-25 -15
-5
5
15
25
35
45
55
65
75
85
TEMPERATURE:Ta[℃]
Fig.69 Ta-Icc
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
1.2
FREQUENCY:FOSC[MHz]
Ta=25℃
【VOUT=1.5V】
VCC=PVCC
=EN
1.1
Technical Note
【SLLM control
VOUT=1.5V】
SW
1
VOUT
0.9
VOUT
0.8
2.7
3.6
VCC=3.3V
Ta=25℃
Io=0A
4.5
VCC=3.3V
Ta=25℃
INPUT VOLTAGE:VCC [V]
Fig.70 Vcc-Fosc
【PWM control
Fig.71 Soft start waveform
VOUT=1.5V】
Fig.72 SW waveform Io=10mA
【VOUT=1.5V】
【VOUT=1.5V】
VOUT
SW
VOUT
IOUT
VOUT
VCC=3.3V
Ta=25℃
Fig.73 SW waveform Io=200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
IOUT
VCC=3.3V
Ta=25℃
Fig. 74 Transient response
Io=100→600mA(10μs)
13/28
VCC=3.3V
Ta=25℃
Fig.75 Transient response
Io=600→100mA(10µs)
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
●Block Diagram, Application Circuit
【BD9106FVM, BD9107FVM】
Technical Note
VCC
EN
3
8
VREF
7
1
2
ADJ
VCC
ITH
PVCC
Current
Comp.
8
R Q
7
Gm Amp.
3
4
EN
SW
GND
PGND
6
VCC
5
OSC
10µF
5
TOP View
Fig.76 BD9106FVM,BD9107FVM TOP View
2
Output
SW
TSD
ADJ
10µF
6
4
1
PVCC
4.7µH
+
Driver
Logic
UVLO
Soft
Start
5V
Input
Current
Sense/
Protect
S
CLK
SLOPE
VCC
PGND
GND
ITH
Fig.77 BD9106FVM,BD9107FVM Block Diagram
【BD9109FVM】
VCC
EN
3
8
VREF
VCC
1
VOUT
2
ITH
PVCC
7
3
EN
SW
6
4
GND
PGND
5
7
8
Current
Comp.
R Q
Gm Amp.
S
SLOPE
VCC
CLK
OSC
UVLO
Soft
Start
VOUT
Fig.78 BD9109FVM TOP View
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
2
PVCC
4.7µH
+
6
10µF
Output
SW
Driver
Logic
SCP
1
5V
Input
Current
Sense/
Protect
TSD
TOP View
VCC
10µF
5
4
PGND
GND
ITH
Fig.79. BD9109FVM Block Diagram
14/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
【BD9110NV】
VCC
EN
ADJ 1
8
VCC 2
7 PVCC
ITH 3
EN
8
Current
Comp
6 SW
GND 4
R Q
+
5 PGND
SLOPE
Gm Amp.
TOP View
VCC
2
VREF
S
+
CLK
Driver
Logic
OSC
+
Current
Sense/
Protect
5V
Input
7
PVCC
2.2µH
10µF
Output
6
SW
22µF
VCC
UVLO
Soft
Start
5
TSD
PGND
4
1
GND
3
ADJ
ITH
RITH
R1
CITH
R2
Fig.80 BD9110NV TOP View
Fig.81 BD9110NV Block Diagram
【BD9120HFN】
VCC
EN
3
8
VREF
1
ADJ
VCC
8
2
ITH
PVCC
7
3
EN
SW
6
4
GND
PGND
5
VCC
PVCC
7
10µF
Current
Comp
+
TOP View
R
S
Gm Amp.
SLOPE
CLK
OSC
+
VCC
Q
3.3V
Input
Current
Sense/
Protect
+
4.7µH
6
Driver
Logic
Output
SW
10µF
UVLO
Soft
Start
TSD
SCP
5
PGND
4
GND
1
2
ADJ
ITH
RITH
R1
R2
Fig.82 BD9120HFN TOP View
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
CITH
Fig.83 BD9120HFN Block Diagram
15/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
●Pin number and function
【BD9106FVM, BD9107FVM, BD9109FVM】
Pin No.
Pin name
1
ADJ/VOUT
2
ITH
3
EN
4
GND
5
PGND
6
SW
7
PVCC
8
VCC
Technical Note
PIN function
Output voltage detect pin/ ADJ for BD9106・07FVM
GmAmp output pin/Connected phase compensation capacitor
Enable pin(Active High)
Ground
Nch FET source pin
Pch/Nch FET drain output pin
Pch FET source pin
VCC power supply input pin
【BD9110NV】
Pin No.
1
2
3
4
5
6
7
8
Pin name
ADJ
VCC
ITH
GND
PGND
SW
PVCC
EN
PIN function
Output voltage adjust pin
VCC power supply input pin
GmAmp output pin/Connected phase compensation capacitor
Ground
Nch FET source pin
Pch/Nch FET drain output pin
Pch FET source pin
Enable pin(Active High)
【BD9120HFN】
Pin No.
1
2
3
4
5
6
7
8
Pin name
ADJ
ITH
EN
GND
PGND
SW
PVCC
VCC
PIN function
Output voltage adjust pin
GmAmp output pin/Connected phase compensation capacitor
Enable pin(Active High)
Ground
Nch FET source pin
Pch/Nch FET drain output pin
Pch FET source pin
VCC power supply input pin
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
16/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Information on advantages
Advantage 1:Offers fast transient response with current mode control system.
Conventional product (VOUT of which is 3.3 volts)
BD9109FVM (Load response IO=100mA→600mA)
VOUT
VOUT
228mV
140mV
IOUT
IOUT
Voltage drop due to sudden change in load was reduced by about 40%.
Fig.84 Comparison of transient response
Advantage 2: Offers high efficiency for all load range.
・For lighter load:
TM
Utilizes the current mode control mode called SLLM for lighter load, which reduces various dissipation such as
switching dissipation (PSW), gate charge/discharge dissipation, ESR dissipation of output capacitor (PESR) and
on-resistance dissipation (PRON) that may otherwise cause degradation in efficiency for lighter load.
Achieves efficiency improvement for lighter load.
Efficiency η[%]
100
・For heavier load:
Utilizes the synchronous rectifying mode and the low on-resistance
MOS FETs incorporated as power transistor.
ON resistance of P-channel MOS FET: 0.2~0.35 Ω (Typ.)
ON resistance of N-channel MOS FET: 0.15~0.25 Ω (Typ.)
SLLMTM
②
50
①
PWM
①inprovement by SLLM system
②improvement by synchronous rectifier
0
0.001
0.01
0.1
Output current Io[A]
1
Fig.85 Efficiency
Achieves efficiency improvement for heavier load.
Offers high efficiency for all load range with the improvements mentioned above.
Advantage 3:・Supplied in smaller package due to small-sized power MOS FET incorporated.
(3 package like MOSP8, HSON8, SON008V5060)
・Allows reduction in size of application products
・Output capacitor Co required for current mode control: 10 μF ceramic capacitor
・Inductance L required for the operating frequency of 1 MHz: 4.7 μH inductor
(BD9110NV:Co=22µF, L=2.2µH)
Reduces a mounting area required.
VCC
15mm
Cin
CIN
DC/DC
Convertor
Controller
RITH
L
RITH
L
VOUT
10mm
CITH
Co
CO
CITH
Fig.86 Example application
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
17/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Operation
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN are a synchronous rectifying step-down switching
regulator that achieves faster transient response by employing current mode PWM control system. It utilizes switching
TM
operation in PWM (Pulse Width Modulation) mode for heavier load, while it utilizes SLLM (Simple Light Load Mode)
operation for lighter load to improve efficiency.
○Synchronous rectifier
It does not require the power to be dissipated by a rectifier externally connected to a conventional DC/DC converter IC,
and its P.N junction shoot-through protection circuit limits the shoot-through current during operation, by which the
power dissipation of the set is reduced.
○Current mode PWM control
Synthesizes a PWM control signal with a inductor current feedback loop added to the voltage feedback.
・PWM (Pulse Width Modulation) control
The oscillation frequency for PWM is 1 MHz. SET signal form OSC turns ON a P-channel MOS FET (while a
N-channel MOS FET is turned OFF), and an inductor current IL increases. The current comparator (Current Comp)
receives two signals, a current feedback control signal (SENSE: Voltage converted from IL) and a voltage feedback
control signal (FB), and issues a RESET signal if both input signals are identical to each other, and turns OFF the
P-channel MOS FET (while a N-channel MOS FET is turned ON) for the rest of the fixed period. The PWM control
repeat this operation.
TM
・SLLM (Simple Light Load Mode) control
When the control mode is shifted from PWM for heavier load to the one for lighter load or vise versa, the switching
pulse is designed to turn OFF with the device held operated in normal PWM control loop, which allows linear
operation without voltage drop or deterioration in transient response during the mode switching from light load to
heavy load or vise versa.
Although the PWM control loop continues to operate with a SET signal from OSC and a RESET signal from Current
Comp, it is so designed that the RESET signal is held issued if shifted to the light load mode, with which the switching
is tuned OFF and the switching pulses are thinned out under control. Activating the switching intermittently reduces
the switching dissipation and improves the efficiency.
SENSE
Current
Comp
VOUT
Level
Shift
FB
RESET
SET
Gm Amp.
ITH
R Q
IL
S
Driver
Logic
VOUT
SW
Load
OSC
Fig.87 Diagram of current mode PWM control
PVCC
Current
Comp
SENSE
PVCC
SENSE
Current
Comp
FB
FB
SET
GND
SET
GND
RESET
GND
RESET
GND
SW
GND
SW
IL
GND
IL(AVE)
IL
0A
VOUT
VOUT
VOUT(AVE)
VOUT(AVE)
Not switching
Fig.88 PWM switching timing chart
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.89 SLLM switching timing chart
18/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Description of operations
・Soft-start function
EN terminal shifted to “High” activates a soft-starter to gradually establish the output voltage with the current limited
during startup, by which it is possible to prevent an overshoot of output voltage and an inrush current.
・Shutdown function
With EN terminal shifted to “Low”, the device turns to Standby Mode, and all the function blocks including reference
voltage circuit, internal oscillator and drivers are turned to OFF. Circuit current during standby is 0 μF (Typ.).
・UVLO function
Detects whether the input voltage sufficient to secure the output voltage of this IC is supplied. And the hysteresis width
of 50~300 mV (Typ.) is provided to prevent output chattering.
Hysteresis 50~300mV
VCC
EN
VOUT
Tss
Tss
Tss
Soft start
Standby mode
Operating mode
Standby
mode
Standby
mode
Operating mode
UVLO
UVLO
Operating mode
EN
Standby mode
UVLO
*Soft Start time(typ.)
Fig.90 Soft start, Shutdown, UVLO timing chart
Tss
BD9106FVM
3
BD9107FVM
1
BD9109FVM
1
BD9110NV
5
BD9120HFN
1
Unit
msec
・Short-current protection circuit with time delay function
Turns OFF the output to protect the IC from breakdown when the incorporated current limiter is activated continuously for the
fixed time(TLATCH) or more. The output thus held tuned OFF may be recovered by restarting EN or by re-unlocking UVLO.
EN
Output OFF
latch
VOUT
Limit
IL
1msec
Standby
mode
Standby
mode
Operating mode
Timer latch
*Timer Latch time (typ.) EN
Operating mode
EN
Fig.91 Short-current protection circuit with time delay timing chart
TLATCH
※
BD9106FVM
1
BD9107FVM
1
BD9109FVM
2
BD9110NV
1
BD9120HFN
2
Unit
msec
In addition to current limit circuit, output short detect circuit is built in on BD9109FVM and BD9120HFN. If output voltage fall below
2V(typ, BD9109FVM) or Vout×0.5(typ,BD9120HFN), output voltage will hold turned OFF.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
19/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Switching regulator efficiency
Efficiency ŋ may be expressed by the equation shown below:
VOUT×IOUT
η=
Vin×Iin
POUT
×100[%]=
Pin
×100[%]=
POUT
POUT+PDα
×100[%]
Efficiency may be improved by reducing the switching regulator power dissipation factors PDα as follows:
Dissipation factors:
2
1) ON resistance dissipation of inductor and FET:PD(I R)
2) Gate charge/discharge dissipation:PD(Gate)
3) Switching dissipation:PD(SW)
4) ESR dissipation of capacitor:PD(ESR)
5) Operating current dissipation of IC:PD(IC)
2
2
1)PD(I R)=IOUT ×(RCOIL+RON) (RCOIL[Ω]:DC resistance of inductor, RON[Ω]:ON resistance of FETIOUT[A]:Output current.)
2)PD(Gate)=Cgs×f×V (Cgs[F]:Gate capacitance of FET,f[H]:Switching frequency,V[V]:Gate driving voltage of FET)
3)PD(SW)=
Vin2×CRSS×IOUT×f
IDRIVE
(CRSS[F]:Reverse transfer capacitance of FET、IDRIVE[A]:Peak current of gate.)
2
4)PD(ESR)=IRMS ×ESR (IRMS[A]:Ripple current of capacitor,ESR[Ω]:Equivalent series resistance.)
5)PD(IC)=Vin×ICC (ICC[A]:Circuit current.)
●Consideration on permissible dissipation and heat generation
As this IC functions with high efficiency without significant heat generation in most applications, no special consideration is
needed on permissible dissipation or heat generation. In case of extreme conditions, however, including lower input
voltage, higher output voltage, heavier load, and/or higher temperature, the permissible dissipation and/or heat generation
must be carefully considered.
For dissipation, only conduction losses due to DC resistance of inductor and ON resistance of FET are considered.
Because the conduction losses are considered to play the leading role among other dissipation mentioned above including
gate charge/discharge dissipation and switching dissipation.
400
①587.4mW
②387.5mW
1.5
① mounted on glass epoxy PCB
θj-a=133.0℃/W
② Using an IC alone
θj-a=195.3℃/W
①1.15W
Power dissipation:Pd [W]
800
600
1.5
①mounted on glass epoxy PCB
θj-a=212.8℃/W
②Using an IC alone
θj-a=322.6℃/W
Power dissipation:Pd [W]
Power dissipation:Pd [mW]
1000
1.0
②0.63W
0.5
① for SON008V5060
ROHM standard 1layer board
θj-a=138.9℃/W
② Using an IC alone
θj-a=195.3℃/W
①0.90W
1.0
②0.64W
0.5
200
0
0
0
25
50
75 85 100
125
Ambient temperature:Ta [℃]
Fig.92 Thermal derating curve
(MSOP8)
150
0
0
25
50
75 85 100
125
150
Ambient temperature:Ta [℃]
Fig.93 Thermal derating curve
(HSON8)
If VCC=5V, VOUT=3.3V, RCOIL=0.15Ω, RONP=0.35Ω, RONN=0.25Ω
IOUT=0.8A, for example,
D=VOUT/VCC=3.3/5=0.66
RON=0.66×0.35+(1-0.66)×0.25
=0.231+0.085
=0.316[Ω]
P=0.82×(0.15+0.316)
≒298[mV]
0
25
50
75
100105 125
150
Ambient temperature:Ta [℃]
Fig.94 Thermal derating curve
(SON008V5060)
P=IOUT2×(RCOIL+RON)
RON=D×RONP+(1-D)×RONN
D:ON duty (=VOUT/VCC)
RCOIL:DC resistance of coil
RONP:ON resistance of P-channel MOS FET
RONN:ON resistance of N-channel MOS FET
IOUT:Output current
As RONP is greater than RONN in this IC, the dissipation increases as the ON duty becomes greater. With the
consideration on the dissipation as above, thermal design must be carried out with sufficient margin allowed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
20/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Selection of components externally connected
1. Selection of inductor (L)
IL
ΔIL
VCC
The inductance significantly depends on output ripple current.
As seen in the equation (1), the ripple current decreases as the
inductor and/or switching frequency increases.
ΔIL=
IL
VOUT
(VCC-VOUT)×VOUT
L×VCC×f
[A]・・・(1)
Appropriate ripple current at output should be 30% more or less of the
maximum output current.
ΔIL=0.3×IOUTmax. [A]・・・(2)
L
L=
Co
(VCC-VOUT)×VOUT
ΔIL×VCC×f
[H]・・・(3)
(ΔIL: Output ripple current, and f: Switching frequency)
Fig.95 Output ripple current
* Current exceeding the current rating of the inductor results in magnetic saturation of the inductor, which decreases efficiency.
The inductor must be selected allowing sufficient margin with which the peak current may not exceed its current rating.
If VCC=5V, VOUT=3.3V, f=1MHz, ΔIL=0.3×0.8A=0.24A, for example,(BD9109FVM)
(5-3.3)×3.3
L=
=4.675μ → 4.7[μH]
0.24×5×1M
* Select the inductor of low resistance component (such as DCR and ACR) to minimize dissipation in the inductor for
better efficiency.
2. Selection of output capacitor (CO)
VCC
Output capacitor should be selected with the consideration on the stability region
and the equivalent series resistance required to smooth ripple voltage.
Output ripple voltage is determined by the equation (4):
VOUT
L
ESR
Co
ΔVOUT=ΔIL×ESR [V]・・・(4)
(ΔIL: Output ripple current, ESR: Equivalent series resistance of output capacitor)
*Rating of the capacitor should be determined allowing sufficient margin
against output voltage. Less ESR allows reduction in output ripple voltage.
Fig.96 Output capacitor
As the output rise time must be designed to fall within the soft-start time, the capacitance of output capacitor should be
determined with consideration on the requirements of equation (5):
TSS×(Ilimit-IOUT)
Tss: Soft-start time
Co≦
・・・(5)
Ilimit: Over current detection level, 2A(Typ)
VOUT
In case of BD9109FVM, for instance, and if VOUT=3.3V, IOUT=0.8A, and TSS=1ms,
1m×(2-0.8)
Co≦
≒364 [μF]
3.3
Inappropriate capacitance may cause problem in startup. A 10 μF to 100 μF ceramic capacitor is recommended.
3. Selection of input capacitor (Cin)
VCC
Cin
VOUT
L
Co
Input capacitor to select must be a low ESR capacitor of the capacitance
sufficient to cope with high ripple current to prevent high transient voltage. The
ripple current IRMS is given by the equation (6):
√VOUT(VCC-VOUT)
IRMS=IOUT×
[A]・・・(6)
VCC
< Worst case > IRMS(max.)
IOUT
When VCC is twice the Vout, IRMS=
2
If VCC=5V, VOUT=3.3V, and IOUTmax.=0.8A, (BD9109FVM)
√3.3(5-3.3)
IRMS=0.8×
=0.38[ARMS]
5
A low ESR 10μF/10V ceramic capacitor is recommended to reduce ESR dissipation of input capacitor for better efficiency.
Fig.97 Input capacitor
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
21/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
4. Determination of RITH, CITH that works as a phase compensator
As the Current Mode Control is designed to limit a inductor current, a pole (phase lag) appears in the low frequency
area due to a CR filter consisting of a output capacitor and a load resistance, while a zero (phase lead) appears in the
high frequency area due to the output capacitor and its ESR. So, the phases are easily compensated by adding a zero
to the power amplifier output with C and R as described below to cancel a pole at the power amplifier.
fp(Min.)
1
2π×RO×CO
1
fz(ESR)=
2π×ESR×CO
A
Gain
[dB]
0
fz(ESR)
IOUTMin.
Phase
[deg]
fp=
fp(Max.)
IOUTMax.
Pole at power amplifier
When the output current decreases, the load resistance Ro
increases and the pole frequency lowers.
0
-90
fp(Min.)=
1
2π×ROMax.×CO
[Hz]←with lighter load
fp(Max.)=
1
2π×ROMin.×CO
[Hz]←with heavier load
Fig.98 Open loop gain characteristics
A
fz(Amp.)
Zero at power amplifier
Increasing capacitance of the output capacitor lowers the pole
frequency while the zero frequency does not change. (This
is because when the capacitance is doubled, the capacitor
ESR reduces to half.)
Gain
[dB]
0
Phase
[deg]
0
fz(Amp.)=
-90
1
2π×RITH.×CITH
Fig.99 Error amp phase compensation characteristics
Cin
VCC
EN
VOUT
L
VCC,PVCC
SW
ESR
VOUT
ITH
VOUT
RO
CO
GND,PGND
RITH
CITH
Fig.100 Typical application
Stable feedback loop may be achieved by canceling the pole fp (Min.) produced by the output capacitor and the load
resistance with CR zero correction by the error amplifier.
fz(Amp.)= fp(Min.)
1
2π×RITH×CITH
=
1
2π×ROMax.×CO
5. Determination of output voltage
The output voltage VOUT is determined by the equation (7):
VOUT=(R2/R1+1)×VADJ・・・(7) VADJ: Voltage at ADJ terminal (0.8V Typ.)
With R1 and R2 adjusted, the output voltage may be determined as required.
Adjustable output voltage range: 1.0V~1.5V/ BD9107FVM, BD9120HFN
1.0V~2.5V/BD106FVM, BD9110NV
Use 1 kΩ~100 kΩ resistor for R1. If a resistor of the resistance higher than
100 kΩ is used, check the assembled set carefully for ripple voltage etc.
L
6
Output
SW
Co
R2
1
ADJ
R1
Fig.101 Determination of output voltage
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
22/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
●BD9106FVM, BD9107FVM, BD9109FVM, BD9120HFN
1
VOUT/ADJ
2
ITH
Cautions on PC Board layout
VCC
8
PVCC
7
VCC
RITH
CIN
EN
3
EN
4
GND
Technical Note
SW
6
PGND
5
①
L
VOUT
CITH
CO
GND
②
③
Fig.102 Layout diagram
●BD9110NV
Cautions on PC Board layout
VCC
R2
1
2
R1
3
RITH
③
CITH
4
ADJ
EN
VCC
PVCC
ITH
SW
GND
PGND
8
EN
7
L
6
5
①
VOUT
CIN
②
Co
GND
Fig.103 Layout diagram
For the sections drawn with heavy line, use thick conductor pattern as short as possible.
Lay out the input ceramic capacitor CIN closer to the pins PVCC and PGND, and the output capacitor Co closer to
the pin PGND.
Lay out CITH and RITH between the pins ITH and GND as neat as possible with least necessary wiring.
①
②
③
※
The package of HSON8 (BD9120HFN) and SON008V5050 (BD9110NV) has thermal FIN on the reverse of the package.
The package thermal performance may be enhanced by bonding the FIN to GND plane which take a large area of PCB.
Table1. [BD9106FVM]
Symbol
Part
L
Value
CMD6D11B
TDK
VLF5014AT-4R7M1R1
10μF
Kyocera
CM316X5R106K10A
10μF
Kyocera
CM316X5R106K10A
750pF
murata
GRM18series
4.7μH
CIN
Ceramic capacitor
CO
Ceramic capacitor
CITH
Ceramic capacitor
Resistance
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Series
Sumida
Coil
RITH
Manufacturer
VOUT=1.0V
18kΩ
ROHM
MCR10 1802
VOUT=1.2V
22kΩ
ROHM
MCR10 2202
VOUT=1.5V
22kΩ
ROHM
MCR10 2202
VOUT=1.8V
27kΩ
ROHM
MCR10 2702
VOUT=2.5V
36kΩ
ROHM
MCR10 3602
23/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Table2. [BD9107FVM]
Symbol
Part
L
Value
Technical Note
Manufacturer
Series
Sumida
CMD6D11B
Coil
4.7μH
TDK
VLF5014AT-4R7M1R1
CIN
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CO
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CITH
Ceramic capacitor
RITH
Resistance
Table3. [BD9109VM]
Symbol
Part
L
murata
GRM18series
VOUT=1.0V
1000pF
4.3kΩ
ROHM
MCR10 4301
VOUT=1.2V
6.8kΩ
ROHM
MCR10 6801
VOUT=1.5V
9.1kΩ
ROHM
MCR10 9101
VOUT=1.8V
12kΩ
ROHM
MCR10 1202
Manufacturer
Series
Sumida
CMD6D11B
Value
Coil
4.7μH
TDK
VLF5014AT-4R7M1R1
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CO
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CITH
Ceramic capacitor
330pF
murata
GRM18series
RITH
Resistance
30kΩ
ROHM
MCR10 3002
Value
Manufacturer
Series
TDK
LTF5022T-2R2N3R2
CIN
Table4. [BD9110NV]
Symbol
Part
L
Coil
2.2μH
CIN
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CO
Ceramic capacitor
22μF
Kyocera
CM316B226K06A
CITH
Ceramic capacitor
1000pF
murata
GRM18series
ROHM
MCR10 1202
Manufacturer
Series
Sumida
CMD6D11B
VOUT=1.0V
VOUT=1.2V
RITH
Resistance
VOUT=1.5V
12kΩ
VOUT=1.8V
VOUT=2.5V
Table5. [BD9120HFN]
Symbol
Part
Value
L
Coil
4.7μH
TDK
VLF5014AT-4R7M1R1
CIN
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CO
Ceramic capacitor
10μF
Kyocera
CM316X5R106K10A
CITH
Ceramic capacitor
RITH
Resistance
murata
GRM18series
VOUT=1.0V
680pF
8.2kΩ
ROHM
MCR10 8201
VOUT=1.2V
8.2kΩ
ROHM
MCR10 8201
VOUT=1.5V
4.7kΩ
ROHM
MCR10 4701
*The parts list presented above is an example of recommended parts. Although the parts are sound, actual circuit characteristics should be checked on
your application carefully before use. Be sure to allow sufficient margins to accommodate variations between external devices and this IC when employing
the depicted circuit with other circuit constants modified. Both static and transient characteristics should be considered in establishing these margins. When
switching noise is substantial and may impact the system, a low pass filter should be inserted between the VCC and PVCC pins, and a schottky barrier
diode established between the SW and PGND pins.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
24/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●I/O equivalence circuit
【BD9106FVM, BD9107FVM, BD9109FVM】
・EN pin
PVCC
・SW pin
PVCC
PVCC
VCC
10kΩ
SW
EN
・VOUT pin (BD9109FVM)
・ADJ pin (BD9106FVM, BD9107FVM)
VCC
VCC
10kΩ
10kΩ
VOUT
ADJ
・ITH pin
VCC
VCC
ITH
【BD9110NV, BD9120HFN】
・EN pin
PVCC
・SW pin
PVCC
PVCC
10kΩ
EN
SW
・ITH pin (BD9120HFN)
・ITH pin (BD9110NV)
VCC
VCC
ITH
ITH
・ADJ pin
10kΩ
ADJ
Fig.104 I/O equivalence circuit
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
25/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Notes for use
1. Absolute Maximum Ratings
While utmost care is taken to quality control of this product, any application that may exceed some of the absolute
maximum ratings including the voltage applied and the operating temperature range may result in breakage. If broken,
short-mode or open-mode may not be identified. So if it is expected to encounter with special mode that may exceed
the absolute maximum ratings, it is requested to take necessary safety measures physically including insertion of
fuses.
2. Electrical potential at GND
GND must be designed to have the lowest electrical potential In any operating conditions.
3. Short-circuiting between terminals, and mismounting
When mounting to pc board, care must be taken to avoid mistake in its orientation and alignment. Failure to do so may
result in IC breakdown. Short-circuiting due to foreign matters entered between output terminals, or between output
and power supply or GND may also cause breakdown.
4.Operation in Strong electromagnetic field}
Be noted that using the IC in the strong electromagnetic radiation can cause operation failures.
5. Thermal shutdown protection circuit
Thermal shutdown protection circuit is the circuit designed to isolate the IC from thermal runaway, and not intended to
protect and guarantee the IC. So, the IC the thermal shutdown protection circuit of which is once activated should not
be used thereafter for any operation originally intended.
6. Inspection with the IC set to a pc board
If a capacitor must be connected to the pin of lower impedance during inspection with the IC set to a pc board, the
capacitor must be discharged after each process to avoid stress to the IC. For electrostatic protection, provide proper
grounding to assembling processes with special care taken in handling and storage. When connecting to jigs in the
inspection process, be sure to turn OFF the power supply before it is connected and removed.
7. Input to IC terminals
+
This is a monolithic IC with P isolation between P-substrate and each element as illustrated below. This P-layer and
the N-layer of each element form a P-N junction, and various parasitic element are formed.
If a resistor is joined to a transistor terminal as shown in Fig 59:
○P-N junction works as a parasitic diode if the following relationship is satisfied; GND>Terminal A (at resistor side), or
GND>Terminal B (at transistor side); and
○if GND>Terminal B (at NPN transistor side),
a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode.
The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among
circuits, and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in
such manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in
(Pin A)
activation of parasitic elements.
Resistance
(Pin A)
Transistor (NPN)
B
(Pin B)
Parasitic diode
E
C
GND
GND
N
P+
P+
P
P
P+
N
P+
N
N
P substrate
(Pin B)
N
N
Parasitic diode
GND
C
N
P substrate
Parasitic diode or transistor
GND
B
E
GND
Parasitic diode or transistor
Fig.105 Simplified structure of monorisic IC
8. Ground wiring pattern
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of
the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
26/28
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
●Ordering part number
B
D
9
Part No.
BD
1
1
0
N
Part No.
9110
9120
9106 ,9107,9109
V
-
E
2
Packaging and forming specification
Package
NV : SON008V5060
HFN:MSOP8
FVM:HSON8
E2: Embossed tape and reel
(SON008V5060,)
TR: Embossed tape and reel
(MSOP8, HSON8)
MSOP8
<Tape and Reel information>
2.8±0.1
4.0±0.2
8 7 6 5
0.6±0.2
+6°
4° −4°
0.29±0.15
2.9±0.1
(MAX 3.25 include BURR)
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1 2 3 4
1PIN MARK
1pin
+0.05
0.145 –0.03
0.475
+0.05
0.22 –0.04
0.08±0.05
0.75±0.05
0.9MAX
S
0.08 S
Direction of feed
0.65
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
HSON8
<Tape and Reel information>
(0.05)
(0.3)
(0.2)
1234
5678
(0.45)
(0.2) (1.8)
8 765
2.8 ± 0.1
3.0 ± 0.2
0.475
(2.2)
(0.15)
2.9±0.1
(MAX 3.1 include BURR)
4321
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
+0.1
0.13 –0.05
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
1pin
1PIN MARK
S
+0.03
0.02 –0.02
0.6MAX
)
0.1
S
0.65
0.32±0.1
0.08
Direction of feed
M
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Reel
27/28
∗ Order quantity needs to be multiple of the minimum quantity.
2009.05 - Rev.A
BD9106FVM,BD9107FVM,BD9109FVM,BD9110NV,BD9120HFN
Technical Note
SON008V5060
<Tape and Reel information>
6.0 ± 0.15
5.0±0.15
4.2±0.1
1.27
2 3
4
0.59
8
7
5
2000pcs
Direction
of feed
S
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
3.6 ± 0.1
1
0.8 ± 0.1
C0.25
Embossed carrier tape
Quantity
(0.22)
0.08 S
+0.03
0.02 -0.02
1.0MAX
1PIN MARK
Tape
6
+0.05
0.4 -0.04
1pin
Reel
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
28/28
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2009.05 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R0039A
Similar pages