Vishay MCU-0805 Professional thin film chip resistor Datasheet

MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
Professional Thin Film Chip Resistors
FEATURES
• Approved to EN 140401-801
• Excellent overall stability: class 0.5
• Professional tolerance of resistance: ± 0.5 %
and ± 1 %
• Rated dissipation P70 up to 0.4 W for size 1206
• Sulfur resistance verified according to ASTM B 809
MCS 0402, MCT 0603, MCU 0805, and MCA 1206
professional thin film flat chip resistors are the perfect
choice for most fields of modern professional electronics
where reliability and stability are of major concern. Typical
applications
include
telecommunication,
medical
equipment, high-end computer and audio / video
electronics.
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
• Automotive
• Telecommunication
• Medical equipment
• Industrial equipment
TECHNICAL SPECIFICATIONS
DESCRIPTION
MCS 0402
MCT 0603
MCU 0805
MCA 1206
0402
0603
0805
1206
Metric size code
RR1005M
RR1608M
RR2012M
RR3216M
Resistance range
10  to 4.99 M; 0 
1  to 10 M; 0 
1  to 10 M; 0 
1  to 2 M; 0 
Imperial size
Resistance tolerance
± 1 %; ± 0.5 %
Temperature coefficient
± 50 ppm/K; ± 25 ppm/K
Rated dissipation, P70 (1)
Operating voltage, Umax. ACRMS/DC
0.100 W
0.125 W
0.200 W
0.400 W
50 V
75 V
150 V
200 V
200 V
300 V
Permissible film temperature, F max. (1)
155 °C
Operating temperature range
-55 °C to 155 °C
Permissible voltage against ambient
(insulation):
1 min; Uins
75 V
Failure rate: FITobserved
100 V
 0.1 x 10-9/h
Note
(1) Please refer to APPLICATION INFORMATION below.
APPLICATION INFORMATION
When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal
resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted
film temperature is not exceeded.
These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift
increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a
functional lifetime.
Revision: 16-Aug-16
Document Number: 28705
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION
OPERATION MODE
STANDARD
POWER
0.063 W
0.100 W
MCS 0402
Rated dissipation, P70
MCT 0603
0.100 W
0.125 W
MCU 0805
0.125 W
0.200 W
MCA 1206
Operating temperature range
0.250 W
0.400 W
-55 °C to 125 °C
-55 °C to 155 °C
Permissible film temperature, F max.
MCS 0402
Max. resistance change at P70 for resistance range,
|R/R| after:
125 °C
155 °C
10  to 4.99 M
10  to 4.99 M
MCT 0603
1  to 10 M
1  to 10 M
MCU 0805
1  to 10 M
1  to 10 M
MCA 1206
1  to 2 M
1  to 2 M
1000 h
 0.25 %
 0.5 %
8000 h
 0.5 %
 1.0 %
225 000 h
 1.5 %
-
Note
• The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to
different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the
circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please
consider the application note “Thermal Management in Surface-Mounted Resistor Applications” (www.vishay.com/doc?28844) for
information on the general nature of thermal resistance.
TEMPERATURE COEFFICIENT AND RESISTANCE RANGE
TYPE / SIZE
TCR
TOLERANCE
RESISTANCE
±1%
10  to 4.99 M
E24; E96
± 0.5 %
10  to 221 k
E24; E192
± 25 ppm/K
± 0.5 %
10  to 221 k
E24; E192
Jumper, Imax. = 0.63 A
 20 m
0
-
±1%
1  to 10 M
E24; E96
± 50 ppm/K
MCS 0402
± 50 ppm/K
MCT 0603
± 0.5 %
10  to 511 k
E24; E192
± 25 ppm/K
± 0.5 %
10  to 511 k
E24; E192
Jumper, Imax. = 1 A
 20 m
0
-
±1%
1  to 10 M
E24; E96
± 50 ppm/K
MCU 0805
± 0.5 %
10  to 1.5 M
E24; E192
± 25 ppm/K
± 0.5 %
10  to 1.5 M
E24; E192
Jumper, Imax. = 1.5 A
 20 m
0
-
±1%
1  to 2 M
E24; E96
± 50 ppm/K
MCA 1206
E-SERIES
± 0.5 %
10  to 2 M
E24; E192
± 25 ppm/K
± 0.5 %
10  to 2 M
E24; E192
Jumper, Imax. = 2 A
 20 m
0
-
Note
• Resistance ranges printed in bold are preferred TCR / tolerance combinations with optimized availability.
PACKAGING
TYPE / SIZE
MCS 0402
MCT 0603
MCU 0805
MCA 1206
Revision: 16-Aug-16
CODE
QUANTITY
E5
5000
E0
10 000
P5
5000
PW
20 000
PACKAGING STYLE
WIDTH
PITCH
PACKAGING
DIMENSIONS
2 mm
Ø 180 mm/7"
Ø 180 mm/7"
Paper tape acc.
IEC 60286-3, Type 1a
8 mm
Ø 330 mm/13"
P5
5000
PW
20 000
4 mm
Ø 330 mm/13"
Ø 180 mm/7"
P5
5000
Ø 180 mm/7"
Document Number: 28705
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
PART NUMBER AND PRODUCT DESCRIPTION
Part Number: MCT06030D4641DPW00
Part Number: MCT06030Z0000ZP500
M
C
T
0
6
0
3
0
D
4
6
4
1
D
P
W
0
TYPE / SIZE
VERSION
TCR
RESISTANCE
TOLERANCE
PACKAGING
MCS0402
MCT0603
MCU0805
MCA1206
0 = neutral
D = ± 25 ppm/K
C = ± 50 ppm/K
Z = jumper
3 digit value
1 digit
multiplier
D = ± 0.5 %
F=±1%
Z = jumper
E5
E0
P5
PW
0
Multiplier
8 = *10-2
9 = *10-1
0 = *100
1 = *101
2 = *102
3 = *103
4 = *104
5 = *105
0000 = jumper
Product Description: MCT 0603-25 0.5 % PW 4K64
Product Description: MCT 0603 P5 0R0
MCT
0603
-25
0.5 %
PW
4K64
TYPE
SIZE
TCR
TOLERANCE
PACKAGING
RESISTANCE
MCS
MCT
MCU
MCA
0402
0603
0805
1206
± 25 ppm/K
± 50 ppm/K
± 0.5 %
±1%
E5
E0
P5
PW
4K64 = 4.64 k
50R1 = 50.1 
0R0 = jumper
Note
• Products can be ordered using either the PART NUMBER or PRODUCT DESCRIPTION.
Revision: 16-Aug-16
Document Number: 28705
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
DESCRIPTION
Production is strictly controlled and follows an extensive
set of instructions established for reproducibility. A
homogeneous film of metal alloy is deposited on a high
grade ceramic substrate (Al2O3) and conditioned to achieve
the desired temperature coefficient. Specially designed
inner contacts are deposited on both sides. A special laser
is used to achieve the target value by smoothly cutting a
meander groove in the resistive layer without damaging the
ceramics. For the high and low ohmic range, optimized
Cermet products provide comparable properties. The
resistor elements are covered by a protective coating
designed for electrical, mechanical and climatic protection.
The terminations receive a final pure tin on nickel plating.
The result of the determined production is verified by an
extensive testing procedure and optical inspection
performed on 100 % of the individual chip resistors. This
includes full screening for the elimination of products with
potential risk of early field failures (feasible for R  10 ).
Only accepted products are laid directly into the paper tape
in accordance with IEC 60286-3 Type 1a (1).
ASSEMBLY
The resistors are suitable for processing on automatic SMD
assembly systems. They are suitable for automatic
soldering using wave, reflow or vapor phase as shown in
IEC 61760-1. The encapsulation is resistant to all cleaning
solvents commonly used in the electronics industry,
including alcohols, esters and aqueous solutions. The
suitability of conformal coatings, potting compounds and
their processes, if applied, shall be qualified by appropriate
means to ensure the long-term stability of the whole system.
The resistors are RoHS-compliant, the pure tin plating
provides
compatibility
with
lead
(Pb)-free
and
lead-containing soldering processes. Solderability is
specified for 2 years after production or requalification. The
permitted storage time is 20 years. The immunity of the
plating against tin whisker growth has been proven under
extensive testing.
MATERIALS
Vishay acknowledges the following systems for the
regulation of hazardous substances:
• IEC 62474, Material Declaration for Products of and for the
Electrotechnical Industry, with the list of declarable
substances given therein (2)
• The Global Automotive Declarable Substance List
(GADSL) (3)
• The REACH regulation (1907/2006/EC) and the related list
of substances with very high concern (SVHC) (4) for its
supply chain
Vishay Beyschlag
The products do not contain any of the banned substances
as per IEC 62474, GADSL, or the SVHC list, see
www.vishay.com/how/leadfree.
Hence the products fully comply with the following
directives:
• 2000/53/EC End-of-Life Vehicle Directive (ELV) and
Annex II (ELV II)
• 2011/65/EU Restriction of the Use of Hazardous
Substances
Directive
(RoHS)
with
amendment
2015/863/EU
• 2012/19/EU Waste Electrical and Electronic Equipment
Directive (WEEE)
Vishay pursues the elimination of conflict minerals from its
supply chain, see the Conflict Minerals Policy at
www.vishay.com/doc?49037.
APPROVALS
The resistors are approved within the IECQ-CECC Quality
Assessment System for Electronic Components to the detail
specification EN 140401-801 which refers to EN 60115-1,
EN 60115-8 and the variety of environmental test
procedures of the IEC 60068 (1) series. The detail
specification refers to the climatic category 55/125/56,
which relates to the “standard operation mode” of this
datasheet.
Conformity is attested by the use of the CECC logo (
the mark of conformity on the package label.
) as
Vishay
Beyschlag
has
achieved
“Approval
of
Manufacturer” in accordance with IECQ 03-1. The release
certificate for “Technology Approval Schedule” in
accordance with CECC 240001 based on IECQ 03-3-1 is
granted for the Vishay BEYSCHLAG manufacturing
process.
RELATED PRODUCTS
For more information about products with better TCR and
tighter tolerance please refer to the Precision Thin Film Chip
Resistors datasheet (www.vishay.com/doc?28700).
Resistors are available with established reliability in
accordance with EN 140401-801 version E. Please refer to
the special datasheet (www.vishay.com/doc?28744) for
information on failure rate level, available resistance ranges
and order codes.
Precision chip resistor arrays may be used in voltage divider
applications or precision amplifiers where close matching
between multiple resistors is necessary. ACAS 0612 chip
arrays are specified by the following datasheets:
• Professional type (www.vishay.com/doc?28754)
• Precision type (www.vishay.com/doc?28751)
Notes
(1) The quoted IEC standards are also released as EN standards with the same number and identical contents.
(2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474.
(3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at
www.gadsl.org.
(4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table.
Revision: 16-Aug-16
Document Number: 28705
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
FUNCTIONAL PERFORMANCE
Power Dissipation P
0.3
MCS 0402
MCT 0603
MCU 0805
0.2
MCA 1206
W
0.1
0
-50
0
50
70
100
°C
150
Ambient Temperature ϑamb
Derating - Standard Operation
Power Dissipation P
0.5
MCS 0402
MCT 0603
0.4
MCU 0805
MCA 1206
0.3
W
0.2
0.1
-50
0
50
70
100
°C
150
Ambient Temperature ϑ amb
MCS 0402
^
Pulse Load Pmax.
Derating - Power Operation
100
MCT 0603
MCU 0805
W
MCA 1206
10
1
0.1
10 µs
100 µs
1 ms
10 ms
100 ms
1s
10 s
Pulse Duration t i
Maximum pulse load, single pulse; applicable if P  0 and n  1000 and Û  Ûmax.;
for permissible resistance change equivalent to 8000 h operation in standard operation mode
Single Pulse
Revision: 16-Aug-16
Document Number: 28705
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
Vishay Beyschlag
MCS 0402
^
Continuous Pulse Load Pmax.
www.vishay.com
100
MCT 0603
MCU 0805
W
MCA 1206
10
1
0.1
10 µs
100 µs
1 ms
10 ms
100 ms
1s
10 s
Pulse Duration t i
Maximum pulse load, continuous pulses; applicable if P  P (amb) and Û  Ûmax.;
for permissible resistance change equivalent to 8000 h operation in standard operation mode
Pulse Voltage Ûmax.
Continuous Pulse
1 kV
100 V
MCS 0402
MCT 0603
MCU 0805
MCA 1206
10 V
10 µs
100 µs
1 ms
10 ms
100 ms
1s
10 s
Pulse Duration t i
Maximum pulse voltage, single and continuous pulses; applicable if Pˆ  Pˆ max.;
for permissible resistance change equivalent to 8000 h operation in standard operation mode
Test Voltage
Pulse Voltage
MCS 0402
10 kV
MCT 0603
MCU 0805
MCA 1206
1 kV
100 V
10 V
10 Ω
100 Ω
1 kΩ
10 kΩ
100 kΩ
1 MΩ
10 MΩ
Resistance Value R
Pulse load rating in accordance with EN 60115-1 clause 4.27; 1.2 µs/50 µs; 5 pulses at 12 s interval;
for permissible resistance change ± (0.5 % R + 0.05 )
1.2/50 Pulse
Revision: 16-Aug-16
Document Number: 28705
6
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
Test Voltage
www.vishay.com
Vishay Beyschlag
MCS 0402
10 kV
MCT 0603
MCU 0805
MCA 1206
1 kV
100 V
10 V
10 Ω
100 Ω
1 kΩ
10 kΩ
100 kΩ
1 MΩ
10 MΩ
Resistance Value R
Pulse load rating in accordance with EN 60115-1 clause 4.27; 10 µs/700 µs;
10 pulses at 1 min intervals; for permissible resistance change ± (0.5 % R + 0.05 )
10/700 Pulse
Current Noise Voltage Ratio
10
µV/V
1
0.1
MCS 0402
MCT 0603
MCU 0805
MCA 1206
0.01
100 Ω
1 kΩ
10 kΩ
100 kΩ
1 MΩ
Resistance Value R
In accordance with IEC 60195
|Z |/R
Current Noise Voltage Ratio
2.0
1.5
1.0
MCT 0603
MCU 0805
0.5
0.1
0.3
1
3
10 GHz 20
Frequency f
Relative impedance for 49.9  chip resistor
RF-Behavior
Revision: 16-Aug-16
Document Number: 28705
7
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
TESTS AND REQUIREMENTS
All tests are carried out in accordance with the following
specifications:
EN 60115-1, generic specification
EN 60115-8 (successor of EN 140400), sectional
specification
EN 140401-801, detail specification
The testing also covers most of the requirements specified
by EIA/ECA-703 and JIS-C-5201-1.
The tests are carried out under standard atmospheric
conditions in accordance with IEC 60068-1, 4.3, whereupon
the following values are applied:
IEC 60068-2-xx, test methods
The components are approved under the IECQ-CECC
quality assessment system for electronic components.
The parameters stated in the Test Procedures and
Requirements table are based on the required tests and
permitted limits of EN 140401-801. The table presents only
the most important tests, for the full test schedule refer to
the documents listed above. However, some additional
tests and a number of improvements against those
minimum requirements have been included.
Relative humidity: 25 % to 75 %
Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar)
A climatic category LCT / UCT / 56 is applied, defined by the
lower category temperature (LCT), the upper category
temperature (UCT), and the duration of exposure in the
damp heat, steady state test (56 days).
The components are mounted for testing on printed circuit
boards in accordance with EN 60115-8, 2.4.2, unless
otherwise specified.
Temperature: 15 °C to 35 °C
TEST PROCEDURES AND REQUIREMENTS
EN
60 115-1
CLAUSE
IEC
60 068-2 (1)
TEST
METHOD
TEST
PROCEDURE
REQUIREMENTS
PERMISSIBLE CHANGE (R)
STABILITY CLASS 0.5
STABILITY CLASS 1
MCS 0402
10  to 33.2 k
> 33.2 kto 4.99 M
MCT 0603
10  to 100 k
1  to < 10 ;
> 100 k to 10 M
MCU 0805
10  to 221 k
1  to < 10 ;
> 221 k to 10 M
MCA 1206
10  to 332 k
1  to < 10 ;
> 332 k to 2 M
Stability for product types:
4.5
-
Resistance
-
± 1 % R; ±0.5 % R
4.8
-
Temperature
coefficient
At (20 / -55 / 20) °C and
(20 / 125 / 20) °C
± 50 ppm/K; ± 25 ppm/K
Endurance
at 70 °C:
standard
operation mode
4.25.1
Endurance
at 70 °C:
power
operation mode
70 °C; 1000 h
± (0.25 % R + 0.05 )
70 °C; 8000 h
±(0.5 % R + 0.05 )
U = P 70 x R or U = Umax.;
whichever is the less
severe;
1.5 h on; 0.5 h off;
70 °C; 1000 h
± (0.5 % R + 0.05 )
70 °C; 8000 h
±(1 % R + 0.05 )
Endurance at
upper category
temperature
125 °C; 1000 h
±(0.25 % R + 0.05 )
± (0.5 % R + 0.05 )
-
155 °C; 1000 h
± (0.5 % R + 0.05 )
±(1 % R + 0.05 )
78 (Cab)
Damp heat,
steady state
(40 ± 2) °C; 56 days;
(93 ± 3) % RH
± (0.5 % R + 0.05 )
±(1 % R + 0.05 )
4.25.3
4.24
U = P 70 x R or U = Umax.;
whichever is the less
severe;
1.5 h on; 0.5 h off;
Revision: 16-Aug-16
Document Number: 28705
8
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
TEST PROCEDURES AND REQUIREMENTS
EN
60 115-1
CLAUSE
IEC
60 068-2 (1)
TEST
METHOD
TEST
PROCEDURE
REQUIREMENTS
PERMISSIBLE CHANGE (R)
STABILITY CLASS 0.5
STABILITY CLASS 1
MCS 0402
10  to 33.2 k
> 33.2 kto 4.99 M
MCT 0603
10  to 100 k
1  to < 10 ;
> 100 k to 10 M
MCU 0805
10  to 221 k
1  to < 10 ;
> 221 k to 10 M
MCA 1206
10  to 332 k
1  to < 10 ;
> 332 k to 2 M
± (0.5 % R + 0.05 )
± (1 % R + 0.05 )
± (0.1 % R + 0.01 )
± (0.25 % R + 0.05 )
Stability for product types:
Climatic
sequence:
standard
operation mode:
4.23
4.23.2
2 (Bb)
dry heat
125 °C; 16 h
4.23.3
30 (Db)
damp heat,
cyclic
55 °C; 24 h; > 90 % RH;
1 cycle
4.23.4
1 (Ab)
cold
-55 °C; 2 h
4.23.5
13 (M)
low air pressure
8.5 kPa; 2 h; (25 ± 10) °C
4.23.6
30 (Db)
damp heat,
cyclic
55 °C; 24 h; > 90 % RH;
5 cycles
4.23.7
-
DC load
1 (Aa)
Cold
-55 °C; 2 h
Rapid change
of temperature
30 min at LCT and
30 min at UCT;
LCT = -55 °C;
UCT = 125 °C;
5 cycles
± (0.1 % R + 0.01 )
no visible damage
LCT = -55 °C;
UCT = 125 °C;
1000 cycles
± (0.25 % R + 0.05 )
no visible damage
-
4.19
14 (Na)
4.13
4.27
4.39
Revision: 16-Aug-16
-
-
U=
P 70 x R Umax.;
1 min.
Short time
overload:
standard
operation mode
U = 2.5 x P 70 x R
or U = 2 x Umax.;
whichever is the less severe;
5s
±(0.1 % R + 0.01 )
±(0.25 % R + 0.05 )
Short time
overload:
power
operation mode
U = 2.5 x P 70 x R
or U = 2 x Umax.;
whichever is the less severe;
5s
±(0.25 % R + 0.05 )
±(0.5 % R + 0.05 )
Severity no. 4:
Single pulse high
U = 10 x P 70 x R
voltage overload:
or U = 2 x Umax.;
standard
whichever is the less severe;
operation mode
10 pulses 10 μs/700 μs
± (0.5 % R + 0.05 )
no visible damage
Periodic electric
overload:
standard
operation mode
U = 15 x P 70 x R
or U = 2 x Umax.;
0.1 s on; 2.5 s off;
whichever is the less severe;
1000 cycles
± (0.5 % R + 0.05 )
no visible damage
Periodic electric
overload:
power
operation mode
U = 15 x P 70 x R
or U = 2 x Umax.;
0.1 s on; 2.5 s off;
whichever is the less severe;
1000 cycles
± (1 % R + 0.05 )
no visible damage
-
Document Number: 28705
9
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
TEST PROCEDURES AND REQUIREMENTS
EN
60 115-1
CLAUSE
IEC
60 068-2 (1)
TEST
METHOD
TEST
PROCEDURE
REQUIREMENTS
PERMISSIBLE CHANGE (R)
STABILITY CLASS 0.5
STABILITY CLASS 1
MCS 0402
10  to 33.2 k
> 33.2 kto 4.99 M
MCT 0603
10  to 100 k
1  to < 10 ;
> 100 k to 10 M
MCU 0805
10  to 221 k
1  to < 10 ;
> 221 k to 10 M
MCA 1206
10  to 332 k
1  to < 10 ;
> 332 k to 2 M
Stability for product types:
4.38
4.22
4.17
-
6 (Fc)
58 (Td)
Electro static
discharge
(human body
model)
IEC 61340-3-1 (1);
3 pos. + 3 neg.
(equivalent to MIL-STD-883,
method 3015)
MCS 0402: 500 V
MCT 0603: 1000 V
MCU 0805: 1500 V
MCA 1206: 2000 V
±(0.5 % R + 0.05 )
Vibration
Endurance by sweeping;
10 Hz to 2000 Hz;
no resonance; amplitude
1.5 mm or  200 m/s2;
7.5 h
± (0.1 % R + 0.01 )
no visible damage
Solder bath method;
SnPb40; non-activated flux;
(215 ± 3) °C; (3 ± 0.3) s
Good tinning ( 95 % covered);
no visible damage
Solder bath method;
SnAg3Cu0.5 or SnAg3.5;
non-activated flux;
(235 ± 3) °C; (2 ± 0.2) s
Good tinning ( 95 % covered);
no visible damage
Solderability
4.18
58 (Td)
Resistance to
soldering heat
Solder bath method;
(260 ± 5) °C; (10 ± 1) s
4.29
45 (XA)
Component
solvent
resistance
Isopropyl alcohol +50 °C;
method 2
4.32
21 (Ue3)
Shear
(adhesion)
±(0.1 % R + 0.01 )
no visible damage
±(0.25 % R + 0.05 )
no visible damage
No visible damage
MCS 0402 and MCT 0603:
9N
No visible damage
MCU 0805 and MCA 1206:
45 N
4.33
21 (Ue1)
Substrate
bending
Depth 2 mm, 3 times
±(0.1 % R + 0.01 )
no visible damage, no open circuit in bent position
4.7
-
Voltage proof
URMS = Uins; (60 ± 5) s
No flashover or breakdown
4.35
-
Flammability
IEC 60695-11-5 (1),
needle flame test; 10 s
No burning after 30 s
Note
(1) The quoted IEC standards are also released as EN standards with the same number and identical contents.
Revision: 16-Aug-16
Document Number: 28705
10
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
DIMENSIONS
Tt
W
WT
H
Tb
L
DIMENSIONS AND MASS
H
(mm)
TYPE / SIZE
L
(mm)
W
(mm)
WT
(mm)
Tt
(mm)
Tb
(mm)
MASS
(mg)
MCS 0402
0.32 ± 0.05
1.0 ± 0.05
0.5 ± 0.05
> 75 % of W
0.2 + 0.1 / - 0.15
0.2 ± 0.1
0.6
MCT 0603
0.45 + 0.1 / - 0.05
1.55 ± 0.05
0.85 ± 0.1
> 75 % of W
0.3 + 0.15 / - 0.2
0.3 + 0.15 / - 0.2
1.9
MCU 0805
0.45 + 0.1 / - 0.05
2.0 ± 0.1
1.25 ± 0.15
> 75 % of W
0.4 + 0.1 / - 0.2
0.4 + 0.1 / - 0.2
4.6
MCA 1206
0.55 ± 0.1
3.2 + 0.1 / - 0.2
1.6 ± 0.15
> 75 % of W
0.5 ± 0.25
0.5 ± 0.25
9.2
SOLDER PAD DIMENSIONS
X
G
Y
Z
RECOMMENDED SOLDER PAD DIMENSIONS
WAVE SOLDERING
TYPE / SIZE
G
(mm)
Y
(mm)
X
(mm)
REFLOW SOLDERING
Z
(mm)
G
(mm)
Y
(mm)
X
(mm)
Z
(mm)
MCS 0402
-
-
-
-
0.35
0.55
0.55
1.45
MCT 0603
0.55
1.10
1.10
2.75
0.65
0.70
0.95
2.05
MCU 0805
0.80
1.25
1.50
3.30
0.90
0.90
1.40
2.70
MCA 1206
1.40
1.50
1.90
4.40
1.50
1.15
1.75
3.80
Notes
• The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x (1),
or in publication IPC-7351.
(1)
The quoted IEC standards are also released as EN standards with the same number and identical contents.
Revision: 16-Aug-16
Document Number: 28705
11
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional
www.vishay.com
Vishay Beyschlag
HISTORICAL 12NC INFORMATION
• The resistors had a 12-digit numeric code starting with
2312.
Last Digit of 12NC Indicating Resistance Decade
RESISTANCE DECADE
LAST DIGIT
1  to 9.99 
8
10  to 99.9 
9
- The first 3 digits indicated the resistance value.
100  to 999 
1
- The last digit indicated the resistance decade in
accordance with the last digit of 12NC indicating
resistance decade table.
1 k to 9.99 k
2
• The subsequent 4 digits indicated the resistor type,
specification and packaging; see the 12NC table.
• The remaining 4 digits indicated the resistance value:
10 k to 99.9 k
3
100 k to 999 k
4
1 M to 9.99 M
5
10 M to 99.9 M
6
Historical 12NC example
The 12NC of a MCT 0603 resistor, value 47 k and TCR 50
with ± 1 % tolerance, supplied in cardboard tape of
5000 units per reel was: 2312 215 14703.
HISTORICAL 12NC - Resistor type and packaging
2312... .....
DESCRIPTION
CARDBOARD TAPE ON REEL
TYPE
TOL.
P5
(5000 UNITS)
E0
(10 000 UNITS)
PW
(20 000 UNITS)
±1%
-
275 1....
-
± 0.5 %
-
275 5....
-
± 25 ppm/K
± 0.5 %
-
276 5....
-
Jumper
-
-
275 90001
-
±1%
215 1....
-
205 1..
± 0.5 %
215 5....
-
205 5....
± 25 ppm/K
± 0.5 %
216 5....
-
206 5....
Jumper
-
215 90001
-
205 90001
± 50 ppm/K
± 0.5 %
255 5....
-
245 5....
± 25 ppm/K
± 0.5 %
256 5....
-
246 5....
Jumper
-
255 90001
-
245 90001
TCR
± 50 ppm/K
MCS 0402
± 50 ppm/K
MCT 0603
MCU 0805
Revision: 16-Aug-16
Document Number: 28705
12
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Revision: 13-Jun-16
1
Document Number: 91000
Similar pages