Through Hole Lamp Product Data Sheet LTL2P3TBU2KS Spec No.: DS20-2013-0092 Effective Date: 06/15/2013 Revision: - LITE-ON DCC RELEASE BNS-OD-FC001/A4 LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Features * High luminous intensity output. * Low power consumption. * High efficiency. * Versatile mounting on P.C. board or panel. * I.C. Compatible/low current requirements. * Popular T-13/4 diameter. * Lead (Pb) free product – RoHS compliant. Package Dimensions Part No. Lens Source Color LTL2P3TBU2KS Water clear InGaN Blue Notes: 1. All dimensions are in millimeters (inches). 2. Tolerance is ±0.25mm(.010") unless otherwise noted. 3. Lead spacing is measured where the leads emerge from the package. 4. Specifications are subject to change without notice. Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 1 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Absolute Maximum Ratings at TA=25°C Parameter Maximum Rating Unit 105 mW 100 mA 30 mA Derating Linear From 30°C 0.45 mA/°C Operating Temperature Range -30°C to + 85°C Storage Temperature Range -40°C to + 100°C Lead Soldering Temperature [2.0 mm(.078") From Body] 260°C for 5 Seconds Max. Power Dissipation Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width) DC Forward Current Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 2 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Electrical / Optical Characteristics at TA=25°C Parameter Luminous Intensity Symbol Min. IV 4200 Typ. Max. Unit 7200 mcd 2θ1/2 23 deg Peak Emission Wavelength λP 472 nm Dominant Wavelength λd Spectral Line Half-Width Δλ Forward Voltage VF Reverse Current IR Viewing Angle 464 472 26 2.75 Test Condition IF = 20mA Note 1,5 Note 2 (Fig.6) Measurement @Peak (Fig.1) nm Note 3 nm 3.5 V IF = 20mA 100 μA VR = 5V, Note 8 NOTE: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. 2. θ1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 3. The dominant wavelength, λd is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 4. Iv classification code is marked on each packing bag. 5. The Iv guarantee should be added ±15% tolerance. 6. Precautions in handling: ‧ When soldering, leave 2mm of minimum clearance from the resin to the soldering point. ‧ Dipping the resin to solder must be avoided. ‧ Correcting the soldered position after soldering must be avoided. ‧ In soldering, do not apply any stress to the lead frame particularly when heated. ‧ When forming a lead, make sure not to apply any stress inside the resin. ‧ Lead forming must be done before soldering. ‧ It is necessary to cut the lead frame at normal temperature. 7. Caution in ESD: Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded. Reverse voltage (VR) condition is applied for IR test only. The device is not designed for reverse operation 8. Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 3 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted) Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 4 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Packing Spec 500 or 250 pcs per packing bag 10 packing bags per inner carton total 5000 pcs per inner carton 8 Inner cartons per outer carton total 40000 pcs per outer carton In every shipping lot, only the last pack will be non-full packing Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 5 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Bin Table Specifications Luminous Intensity Unit : mcd @20mA Bin Code Min. Max. U 4200 5500 V 5500 7200 Note: Tolerance of each bin limit is ±15% Dominant Wavelength Unit : nm @20mA Bin Code Min. Max. B01 464 468 B02 468 472 Note: Tolerance of each bin limit is ±1nm Forward Voltage Vf (Volts) IF@20mA Bin Code Min. Max. 3 2.75 3.00 4 3.00 3.25 5 3.25 3.50 Note: Tolerance of each bin limit is ±0.1V Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 6 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only CAUTIONS 1. Application The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications).Consult Liteon’s Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices). 2. Storage The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in desiccators with nitrogen ambient. 3. Cleaning Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary. 4. Lead Forming & Assembly During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens. Do not use the base of the lead frame as a fulcrum during forming. Lead forming must be done before soldering, at normal temperature. During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress. 5. Soldering When soldering, leave a minimum of 2mm clearance from the base of the lens to the soldering point. Dipping the lens into the solder must be avoided. Do not apply any external stress to the lead frame during soldering while the LED is at high temperature. Recommended soldering conditions : Soldering iron Temperature Soldering time 300°C Max. 3 sec. Max. (one time only) Wave soldering Pre-heat Pre-heat time Solder wave Soldering time 100°C Max. 60 sec. Max. 260°C Max. 5 sec. Max. Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED. IR reflow is not suitable process for through hole type LED lamp product. Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 7 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 6. Drive Method An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below. Circuit model A LED Circuit model B LED (A) Recommended circuit (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs 7. ESD (Electrostatic Discharge) Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage: Use a conductive wrist band or anti- electrostatic glove when handling these LEDs All devices, equipment, and machinery must be properly grounded Work tables, storage racks, etc. should be properly grounded Use ion blower to neutralize the static charge which might have built up on surface of the LEDs plastic lens as a result of friction between LEDs during storage and handing Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 8 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Suggested checking list : Training and Certification 1. Everyone working in a static-safe area is ESD-certified? 2. Training records kept and re-certification dates monitored? Static-Safe Workstation & Work Areas 1. Static-safe workstation or work-areas have ESD signs? 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V? 3. All ionizer activated, positioned towards the units? 4. Each work surface mats grounding is good? Personnel Grounding 1. Every person (including visitors) handling ESD sensitive (ESDS) items wear wrist strap, heel strap or conductive shoes with conductive flooring? 2. If conductive footwear used, conductive flooring also present where operator stand or walk? 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*? 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs? 5. All wrist strap or heel strap checkers calibration up to date? Note: *50V for Blue LED. Device Handling 1. Every ESDS items identified by EIA-471 labels on item or packaging? 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation? 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items? 4. All flexible conductive and dissipative package materials inspected before reuse or recycle? Others 1. Audit result reported to entity ESD control coordinator? 2. Corrective action from previous audits completed? 3. Are audit records complete and on file? Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 9 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 8. Reliability Test Classification Test Item Test Condition Sample Size Ta = 25°C 45 PCS IF = 30mA *Test Time= 1000hrs (CL=90%; LTPD=5%) High Temperature/ Ta = 85°C 45 PCS High Humidity storage (THB) RH = 85% (CL=90%; LTPD=5%) Operation Life *Test Time= 1000hrs Steady state Ta = 85°C, RH= 85 % 76 PCS Operation Life of IF = 8 mA Endurance High Humidity Heat *Test Time= 500hrs (CL=90%; LTPD=3%) Test Low Temperature Operation Life of Ta = -30°C 45 PCS IF = 30mA (CL=90%; LTPD=5%) *Test Time= 1000hrs High Temperature Storage Ta= 105 ± 5°C *Test Time= 1000hrs (CL=90%; LTPD=5%) 100°C ~ 25°C ~ -40°C ~ 25°C 76 PCS 30mins (CL=90%; LTPD=3%) 5mins 30mins 5mins Thermal 15mins Shock *Test time: 200 Cycles 15mins (CL=90%; LTPD=3%) 11 PCS (CL=90%; LTPD=18.9%) 11 PCS (CL=90%; (Lead Free Solder, Coverage ≧95% of LTPD=18.9%) the dipped surface) Dwell Time= 3.5 ± 0.5 seconds MIL-STD-883G:1011 (2006) MIL-STD-202G:107G (2002) MIL-STD-750D:2031(1995) JEITA ED-4701: 300 302 (2001) MIL-STD-750D:2026 (1995) T. sol = 245 ± 5°C T. sol = 350 ± 5°C JEITA ED-4701:100 105 (2001) JESD22-A106B (2004) Dwell Time= 10±1 seconds Dwell Time= 5 ± 0.5 seconds MIL-STD-883G:1010 (2006) MIL-STD-750D:1056 (1995) 76 PCS T.sol = 260 ± 5°C 3mm from the base of the epoxy bulb JEITA ED-4701:200 202 (2001) JESD22-A104C (2005) (<20 secs transfer) Soldering Iron JEITA ED-4701:200 201 (2001) MIL-STD-750D:1051 (1995) 100 ± 5°C ~ -30°C ± 5°C Solderability JESD22-A101C (2009) MIL-STD-883G:1008 (2006) *Test Time= 1000hrs Resistance JEITA ED-4701:100 103 (2001) 45 PCS *Test time: 200 Cycles Test MIL-STD-202G:103B (2002) (CL=90%; LTPD=5%) Storage Solder MIL-STD-883G:1005 (2006) MIL-STD-750D:1031 (1995) Ta= -55 ± 5°C Temperature Environmental MIL-STD-750D:1026 (1995) 45 PCS Low Temperature Cycling Reference Standard 11 PCS (CL=90%; LTPD=18.9%) MIL-STD-883G:2003 (2006) MIL-STD-202G:208H (2002) IPC/EIA J-STD-002 (2004) MIL-STD-202G:208H (2002) JEITA ED-4701:300 302 (2001) 9. Others The appearance and specifications of the product may be modified for improvement, without prior notice. Part No. : LTL2P3TBU2KS BNS-OD-C131/A4 Page : 10 of 10