深圳市腾恩科技有限公司 SHENZHEN TENAND TECHNOLOGY CO.,LTD http://www.tenand.com !"# $ % $&'() () *$ + % " %,- !+ ." +$ - - - , /0+$"+ ( ' $ ,1 ! 2$ &'() ! "# ! $ % ! &" ! '" (% 3+" % " - 4 - !-% + ! 0 ! ", 0 &'() 深圳市腾恩科技有限公司 SHENZHEN TENAND TECHNOLOGY CO.,LTD http://www.tenand.com 0 ! 5 6 52'% ! % , % 27 , + % , 1 - " 1%8 # 9- %:- ( 1 - " - " 1% 0 &'() 0 ! 2 6 ) *+ $+-./01.2 -/3 1 %+1-4. 0.5-5 4%+1-4. 0.5-5 4--.5-5 4- 0 &'() , $ $ $ ± ± & &&± ± ± & 0 ! ( 6 )6&° ! * 7 4- & 5 8 ( # ( $ 5, 33 .-"5+-- (3-9 ( & ( 5+-- "33 .-(3-9 ( # ( 33 .-7 4- & 5 33 .-$* %+11+-+4 $ & 5, $-- 5, (+1 & (51 ! -+49) 5 -7 ) "&&:; ° -9 ) 5 -7 )1-9 "&&:;& ° )13 # ° $) 1 (3-9 $* %+11+-+4 !)$) )-3$* %+11+-+4 13-+4(3-9 3 +49) 5 -7 57 5 3;<= ! - " % !- # !- % 5.- "# % %, - % -$ + % %"#, , % - , % + % 2- ! # -> ', , , - " % (-# $$ % ! - " # 27 5., % 0 &'() 0 ! ; 6 )6&° $) ( < ( 65 8 1 7 4- < < µ (6( ) 5+43.+-4. < & (606 => < < 4 (6(6 33 .-"5+-- ? 2 *4(3-9 ?( & < < ( 65 6 5+-- "33 .- ? 2 *4(3-9 ?( # < < ( 6µ 6 33 .-7 4- & < 5 )8 & < # @ 33 .-"5+-- -7-+4(3-9 ( < < ( 65 65 13-+48 1+1-4. 8 < Ω %&( :#@8= 3-+49.+-4. < # (606=> 8 141 )+5 8+1 - < µ1 8 141 )+5 33 - < µ1 7 4-)410 8-+ )8 8 =8)8) = &× × 6&5 (6&( (6(65 86Ω × 5 0 &'() $ * (3-9 33 .-%27 4!)$) " " #" ! 0 ! 6 &'() ?<5= @ 5(<2= 2<; / (<= * <5 7 5<( @ / * 7 1 <= 7 * 2° 0 &'() 0 ! = 6 Fig.1 Forword Current vs. Ambient Temperatute Fig.2 Collector Power Dissiption vs. Ambient Temperature Collector Power dissipation Pc (mW) 60 Forward current I F(mA) 50 40 30 20 10 0 -55 0 25 50 75 100 125 200 150 100 50 0 -55 o 7mA 100 125 o 4 3 2 Ta= 75 C 50 C o 200 o 25 C 0C -25 C o 100 o 50 20 10 5 1 2 1 5 0 10 15 0 0.5 Forward current I F(mA) 1.0 1.5 2.0 2.5 3.0 Forward voltage VF(V) Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 200 50 VCE= 5V Ta= 25 C 180 IF= 30mA 160 140 120 100 80 60 40 o Ta= 25 C 25mA o Collector current Ic (mA) Current transfer ratio CTR (%) 75 500 O Ta= 25 C 0 40 20mA 30 15mA Pc(MAX.) 20 10mA 10 5mA 20 0 0 1 2 5 10 20 Forward current I F(mA) 0 &'() 50 Fig.4 Forward Current vs. Forward Voltage Forward current I F(mA) 1mA 3mA 5mA Ic= 0.5mA Collecotr-emitter saturation voltage VCE (sat) (V) 5 25 Ambient temperature Ta ( C) Fig.3 Collector-emitter Saturation Voltage vs. Forward Current 6 0 o Ambient temperature Ta ( C) 50 0 1 2 3 4 5 6 7 8 9 Collector-emitter voltage VCE(V) 0 ! ) 6 Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature 0.10 I F= 5mA VCE= 2V 100 50 Collector-emitter saturation voltage VCE (sat) (V) Relative current transfer ratio (%) 150 I F= 20mA I C= 1mA 0.08 0.06 0.04 0.02 0 0 20 40 60 80 100 20 40 o Collector dark current ICEO (nA) 100 Fig.10 Response Time vs. Load Resistance 500 VCE= 20V Response time ( s) 1000 100 10 200 100 VCE= 2V I C= 2mA Ta= 25 C o 50 tr 20 10 td tf 5 ts 2 1 0.5 1 20 40 60 80 0.2 0.05 100 o 0.1 0.2 0.5 1 2 5 Fig.11 Frequency Response Test Circuit for Response Time Vcc VCE= 2V I C= 2mA Ta= 25 C o 0 Input RD RL Input Output Output 10% 90% ts td 100Ω 10 RL= 10kΩ 10 Load resistance RL (k ) Ambient temperature Ta ( C) Voltage gain Av (dB) 80 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Ambient Temperature 10000 60 o Ambient temperature Ta ( C) 1kΩ tr tf Test Circuit for Frequency Response Vcc 20 0.5 1 RD 2 5 10 20 50 100 RL Output 500 Frequency f (kHz) 0 &'() 0 ! ? 6 5 A % ! # , %%# - -, % $ % $ - #" # 30 seconds 230 C 200 C 180 C 1 minute 25 C 2 minutes 1.5 minutes 1 minute 2 B- ! - % !- % ,- % + $-$ + $ + - % -% , C$-$ -$ ,1 ! -% ,# - -, % " 5 D 0 &'() 0 ! 6 6