November 2006 HYS64T32000HM–[3S/3.7/5]–A HYS64T64020HM–[3S/3.7/5]–A 214-Pin Micro-DIMM-DDR2-SDRAM Modules MDIMM DDR2 SDRAM RoHS Compliant Internet Data Sheet Rev. 1.11 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules HYS64T32000HM–[3S/3.7/5]–A, HYS64T64020HM–[3S/3.7/5]–A Revision History: 2006-11, Rev. 1.11 Page Subjects (major changes since last revision) All Qimonda update All Adapted internet edition Previous Revision: 2005-10, Rev. 1.1 All Added -3S Previous Revision: 2004-10, 1.0 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 03062006-HT1R-Z2PY 2 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 1 Overview This chapter gives an overview of the 1.8 V 214-Pin Micro-DIMM-DDR2-SDRAM Modules product family and describes its main characteristics. 1.1 Features • 214-Pin PC2-5300, PC2-4200 and PC2-3200 DDR2 SDRAM memory modules for use as main memory when installed in systems such as mobile personal computers. • 32M × 64and 64M × 64 module organization, and 32M × 16 chip organization • Standard Double-Data-Rate-Two Synchronous DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power supply • 256MB and 512MB modules built with 512Mb DDR2 SDRAMs in P-TFBGA-84 chipsize packages • Programmable CAS Latencies (3, 4 and 5), Burst Length (8 & 4) and Burst Type • Burst Refresh, Distributed Refresh and Self Refresh • All inputs and outputs SSTL_1.8 compatible • Off-Chip Driver Impedance Adjustment (OCD) and On-Die Termination (ODT) • Serial Presence Detect with E2PROM • MDIMM Dimensions (nominal): 30 mm high, 54.0 mm wide • Based on standard reference layouts Raw Cards: “A” and “B” • 2-piece type Mezzanine Socket with 0,4 mm contact centers • RoHS Compliant Products1) TABLE 1 Performance Table Product Type Speed Code –3S –3.7 –5 Unit Speed Grade PC2–5300 5–5–5 PC2–4200 4–4–4 PC2–3200 3–3–3 — 333 266 200 MHz 266 266 200 MHz 200 200 200 MHz 15 15 15 ns 15 15 15 ns 45 45 40 ns 60 60 55 ns Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 3 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 1.2 Description The QIMONDA HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A module family are Unbuffered Micro-DIMM modules “MDIMMs” with 30 mm height based on DDR2 technology. DIMMs are available as non-ECC modules in 32M × 64 (256 MB) and 64M × 64 (512 MB) organization and density, intended for mounting into 214-pin mezzanine connector sockets. The memory array is designed with 512-Mbit Double-DataRate-Two (DDR2) Synchronous DRAMs. Decoupling capacitors are mounted on the PCB board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and are write protected; the second 128 bytes are available to the customer. TABLE 2 Ordering Informationfor RoHS Compliant Products Product Type1) Compliance Code2) Description SDRAM Technology PC2-5300 HYS64T32000HM-3S-A 256MB 1R×16 PC2–5300M–555–12–B1 1 rank, Non-ECC 512 Mbit (×16) HYS64T64020HM-3S-A 512MB 2R×16 PC2–5300M–555–12–A1 2 ranks, Non-ECC 512 Mbit (×16) HYS64T32000HM–3.7–A 256MB 1R×16 PC2–4200M–444–12–B1 1 rank, Non-ECC 512 Mbit (×16) HYS64T64020HM–3.7–A 512MB 2R×16 PC2–4200M–444–12–A1 2 ranks, Non-ECC 512 Mbit (×16) HYS64T32000HM–5–A 256MB 1R×16 PC2–3200M–333–12–B1 1 rank, Non-ECC 512 Mbit (×16) HYS64T64020HM–5–A 512MB 2R×16 PC2–3200M–333–12–A1 2 ranks, Non-ECC 512 Mbit (×16) PC2–4200 PC2–3200 1) All Product Type numbers end with a place code, designating the silicon die revision. Example: HYS64T32000HM–3.7–A, indicating Rev. “A” dies are used for DDR2 SDRAM components. For all QIMONDA DDR2 module and component nomenclature see Chapter 6 of this data sheet. 2) The Compliance Code is printed on the module label and describes the speed grade, for example “PC2–4200M–444–12–B1”, where 4200M means Unbuffered Micro-DIMM modules with 4.26 GB/sec Module Bandwidth and “444-11” means Column Address Strobe (CAS) latency = 4, Row Column Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.2 and produced on the Raw Card “B”. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 4 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 3 Address Format DIMM Density Module Organization Memory Ranks ECC/ Non-ECC # of SDRAMs # of row/bank/columns bits Raw Card 256 MByte 32M ×64 1 Non-ECC 4 13/2/10 B 512 MByte 64M ×64 2 Non-ECC 8 13/2/10 A TABLE 4 Components on Modules Product Type1) DRAM Components1) DRAM Density DRAM Organisation Note2) HYS64T32000HM HYB18T512160AF 512 Mbit 32M ×16 HYS64T64020HM HYB18T512160AF 512 Mbit 32M ×16 1) Green Product 2) For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 5 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 2 Pin Configuration This chapter contains the pin configuration. 2.1 Pin Configuration The pin configuration of the DDR2 SDRAM Micro-DIMM is listed by function in Table 5 (214 pins). The abbreviations used in columns Pin and Buffer Type are explained in Table 6 and Table 7 respectively. The pin numbering is depicted in Figure 1. TABLE 5 Pin Configuration of MDIMM Ball No. Name Pin Type Buffer Type Function 122 CK0 I SSTL Clock Signal CK 1:0, Complementary Clock Signal CK 1:0 194 CK1 I SSTL 123 CK0 I SSTL 195 CK1 I SSTL 43 CKE0 I SSTL 147 CKE1 I SSTL NC NC S0 I SSTL SSTL Clock Signals Clock Enables 1:0 Note: 2-rank module Not Connected Note: 1-rank module Control Signals 165 62 Chip Select Rank 1:0 Note: 2-rank module. S1 I NC NC Not Connected Note: 1-rank module 163 RAS I 60 CAS I SSTL Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) 56 WE I SSTL Address Signals 55 BA0 I SSTL 162 BA1 I SSTL 46 BA2 I SSTL Bank Address Bus 2 Note: Greater than 512Mb DDR2 SDRAMS NC NC – Not Connected Note: Less than 1Gb DDR2 SDRAMS Rev. 1.11, 2006-11 03062006-HT1R-Z2PY Bank Address Bus 1:0 6 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 161 A0 I SSTL Address Inputs 12:0, Address Input 10/Autoprecharge 159 A1 I SSTL 52 A2 I SSTL 158 A3 I SSTL 51 A4 I SSTL 50 A5 I SSTL 157 A6 I SSTL 48 A7 I SSTL 155 A8 I SSTL 154 A9 I SSTL 54 A10 I SSTL AP I SSTL 47 A11 I SSTL 153 A12 I SSTL 167 A13 I SSTL Address Input 13 Note: Modules based on ×4/×8 component NC NC – Not Connected Note: Modules based on ×16 component 3 DQ0 I/O SSTL 4 DQ1 I/O SSTL Data Bus 0:38 Note: Data Input/Output pins 9 DQ2 I/O SSTL 10 DQ3 I/O SSTL 109 DQ4 I/O SSTL 110 DQ5 I/O SSTL 114 DQ6 I/O SSTL 115 DQ7 I/O SSTL 12 DQ8 I/O SSTL Data Signals Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 7 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 13 DQ9 I/O SSTL 21 DQ10 I/O SSTL Data Bus 0:38 Note: Data Input/Output pins 22 DQ11 I/O SSTL 117 DQ12 I/O SSTL 118 DQ13 I/O SSTL 125 DQ14 I/O SSTL 126 DQ15 I/O SSTL 24 DQ16 I/O SSTL 25 DQ17 I/O SSTL 30 DQ18 I/O SSTL 31 DQ19 I/O SSTL 128 DQ20 I/O SSTL 129 DQ21 I/O SSTL 133 DQ22 I/O SSTL 134 DQ23 I/O SSTL 33 DQ24 I/O SSTL 34 DQ25 I/O SSTL 38 DQ26 I/O SSTL 39 DQ27 I/O SSTL 136 DQ28 I/O SSTL 137 DQ29 I/O SSTL 142 DQ30 I/O SSTL 143 DQ31 I/O SSTL 67 DQ32 I/O SSTL 68 DQ33 I/O SSTL 73 DQ34 I/O SSTL 74 DQ35 I/O SSTL 174 DQ36 I/O SSTL 175 DQ37 I/O SSTL 179 DQ38 I/O SSTL 180 DQ39 I/O SSTL 76 DQ40 I/O SSTL 77 DQ41 I/O SSTL 81 DQ42 I/O SSTL 82 DQ43 I/O SSTL 182 DQ44 I/O SSTL 183 DQ45 I/O SSTL 188 DQ46 I/O SSTL 189 DQ47 I/O SSTL 84 DQ48 I/O SSTL Rev. 1.11, 2006-11 03062006-HT1R-Z2PY Data Bus 39:57 8 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 85 DQ49 I/O SSTL Data Bus 39:57 92 DQ50 I/O SSTL 93 DQ51 I/O SSTL 191 DQ52 I/O SSTL 192 DQ53 I/O SSTL 200 DQ54 I/O SSTL 201 DQ55 I/O SSTL 95 DQ56 I/O SSTL 96 DQ57 I/O SSTL 101 DQ58 I/O SSTL 102 DQ59 I/O SSTL 203 DQ60 I/O SSTL 204 DQ61 I/O SSTL 208 DQ62 I/O SSTL 209 DQ63 I/O SSTL 7 DQS0 I/O SSTL 6 DQS0 I/O SSTL 19 DQS1 I/O SSTL 18 DQS1 I/O SSTL 28 DQS2 I/O SSTL 27 DQS2 I/O SSTL 140 DQS3 I/O SSTL 139 DQS3 I/O SSTL 71 DQS4 I/O SSTL 70 DQS4 I/O SSTL 186 DQS5 I/O SSTL 185 DQS5 I/O SSTL 198 DQS6 I/O SSTL 197 DQS6 I/O SSTL 99 DQS7 I/O SSTL 98 DQS7 I/O SSTL 112 DM0 I SSTL 120 DM1 I SSTL 131 DM2 I SSTL 36 DM3 I SSTL 177 DM4 I SSTL 79 DM5 I SSTL 90 DM6 I SSTL 206 DM7 I SSTL Rev. 1.11, 2006-11 03062006-HT1R-Z2PY Data Strobes 7:0 Data Masks 7:0 Note: ×8 based module 9 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function EEPROM 105 SCL I CMOS Serial Bus Clock 104 SDA I/O OD Serial Bus Data 211 SA0 I CMOS Serial Address Select Bus 1:0 213 SA1 I CMOS VREF VDD AI – I/O Reference Voltage PWR – Power Supply VDDSPD VSS PWR – EEPROM Power Supply GND – Ground Plane 166 ODT0 I SSTL On-Die Termination Control 1:0 Note: 2-rank module 63 ODT1 I SSTL On-Die Termination Control 1:0 Note: 2-rank module Power Supplies 1 42, 45, 49, 53, 57, 61, 64, 146, 149, 152, 156, 160, 164, 168, 171 107 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 37, 40, 66, 69, 72, 75, 78, 80, 83, 86, 89, 91, 94, 97, 100, 103, 108, 111, 113, 116, 119, 121, 124, 127, 130, 132, 135, 138, 141, 144, 173, 176, 178, 181, 184, 187, 190, 193, 196, 205, 199, 202, 207, 210 Other Pins NC 15, 16, 41, 44, 46, 58, 59, 65, 87, 88, 106, 145, 148, 150, 151, 167, 169, 170, 172, 212, 214 NC Rev. 1.11, 2006-11 03062006-HT1R-Z2PY Not Connected Note: 1-rank module NC Not connected 10 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 6 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected TABLE 7 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 11 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules FIGURE 1 Pin Configuration for Two-Piece Mezzanine Socket on MDIMM (214 pins) 95() 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ 1& 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 966 3LQ '4 3LQ 1& 3LQ &.( 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ %$ 3LQ 9'' 3LQ 1& 3LQ 9'' 3LQ 2'7 1& 3LQ 1& 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ 1& 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ 6&/ 3LQ 9' '6 3' 3LQ 96 63LQ 3LQ ' 4 3LQ 9 6 6 '4 3LQ 6 3LQ 9 6 '46 3LQ 96 63LQ 3LQ ' 4 '4 3LQ 3LQ ' 4 '4 3LQ 6 3LQ 9 6 96 63LQ 6 3LQ 9 6 1&3LQ 3LQ & . '46 3LQ 4 3LQ ' 96 63LQ 6 3LQ 9 6 '4 3LQ 3LQ '4 '4 3LQ 3LQ '0 96 63LQ 3LQ '4 '46 3LQ 3LQ 96 6 '4 3LQ 3LQ '4 96 63LQ '4 3LQ 3LQ '46 '03LQ '4 3LQ 3LQ '4 6 3LQ 96 3LQ 1& 96 63LQ 3LQ &.( 1 & 9''3LQ 3LQ 9' ' 1&3LQ 1&% $ 3LQ 3LQ 1& $3LQ 3LQ $ $3LQ 3LQ $ $3LQ $ $ 3 3LQ :(3LQ 3LQ $ 1&3LQ &$63LQ 3LQ 6 3LQ $ 3LQ $ 3LQ 5$6 3LQ 1& 61& 3LQ 9''3LQ 3LQ 1& ' 3LQ 9' 96 63LQ '4 3LQ 3LQ 96 6 '46 3LQ 3LQ '0 96 63LQ '4 3LQ 6 3LQ 96 '4 3LQ 3LQ '4 96 63LQ 3LQ '46 3LQ '4 3LQ '4 96 63LQ '4 3LQ 6 3LQ 96 '4 3LQ 3LQ '4 3LQ '4 96 63LQ 6 3LQ 96 1&3LQ 3LQ &. '03LQ 3LQ '46 '4 3LQ 6 3LQ 96 96 63LQ 3LQ '4 '4 3LQ 3LQ '4 '46 3LQ 6 3LQ 96 96 63LQ 6 3LQ 96 '4 3LQ 3LQ '4 6'$ 3LQ 3LQ 6$ 1&3LQ 3LQ 6$ 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ &. 3LQ 966 3LQ '4 '4 3LQ 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ 9'' 3LQ 1& 3LQ 1& 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ %$ 3LQ 9'' 3LQ 2'7 3LQ 9'' 3LQ 1& 3LQ 1& 3LQ '4 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ &. 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ 1& 3LQ 1& 0337 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 12 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 3 Electrical Characteristics This chapter lists the electrical characteristics. 3.1 Absolute Maximum Ratings Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 8 at any time. TABLE 8 Absolute Maximum Ratings Symbol VDD VDDQ VDDL VIN, VOUT TSTG Parameter Rating Unit Note Min. Max. Voltage on VDD pin relative to VSS –1.0 +2.3 V 1) Voltage on VDDQ pin relative to VSS –0.5 +2.3 V 1)2) Voltage on VDDL pin relative to VSS –0.5 +2.3 V 1)2) Voltage on any pin relative to VSS –0.5 +2.3 V 1) °C 1)2) Storage Temperature –55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV. 2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. TABLE 9 DRAM Component Operating Temperature Range Symbol TOPER Parameter Rating Operating Temperature Min. Max. 0 95 Unit Note °C 1)2)3)4) 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters. 3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs 4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50% Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 13 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 3.2 DC Operating Conditions This chapter contains the DC operating conditions tables. TABLE 10 Operating Conditions Parameter Symbol Values Unit Min. Max. 0 +65 °C 0 +95 °C Storage Temperature TOPR TCASE TSTG – 50 +100 °C Barometric Pressure (operating & storage) PBar +69 +105 kPa Operating Humidity (relative) HOPR 10 90 % Operating temperature (ambient) DRAM Case Temperature Note 1)2)3)4) 5) 1) 2) 3) 4) DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs. Within the DRAM Component Case Temperature Range all DRAM specifications will be supported Above 85 °C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%. 5) Up to 3000 m. TABLE 11 Supply Voltage Levels and DC Operating Conditions Parameter Device Supply Voltage Output Supply Voltage Input Reference Voltage SPD Supply Voltage DC Input Logic High DC Input Logic Low Symbol VDD VDDQ VREF VDDSPD VIH(DC) VIL (DC) IL Values Unit Min. Typ. Max. 1.7 1.8 1.9 V 1.7 1.8 1.9 V 1) 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 2) 1.7 — 3.6 V VREF + 0.125 — V – 0.30 — VDDQ + 0.3 VREF – 0.125 V In / Output Leakage Current –5 — 5 µA 1) Under all conditions, VDDQ must be less than or equal to VDD 2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ. 3) Input voltage for any connector pin under test of 0 V ≤ VIN ≤ VDDQ + 0.3 V; all other pins at 0 V. Current is per pin Rev. 1.11, 2006-11 03062006-HT1R-Z2PY Note 14 3) Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 3.3 Timing Characteristics This chapter describes the AC characteristics. 3.3.1 Speed Grade Definitions This chapter contains the Speed Grade Definition tables. TABLE 12 Speed Grade Definition Speed Bins for DDR2-667D, DDR2–533C and DDR2–400B Speed Grade DDR2–667D DDR2–533C DDR2–400B QAG Sort Name –3S –3.7 –5 CAS-RCD-RP latencies 5–5–5 4–4–4 3–3–3 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 5 8 ns 1)2)3)4) 3.75 8 3.75 8 5 8 ns 1)2)3)4) 3 8 3.75 8 5 8 ns 1)2)3)4) 45 70000 45 70000 40 70000 ns 1)2)3)4)5) 60 — 60 — 55 — ns 1)2)3)4) 15 — 15 — 15 — ns 1)2)3)4) 15 — 15 — 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) only. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 15 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 3.3.2 Component AC Timing Parameters This chapter contains the AC Timing Parameters. TABLE 13 DRAM Component Timing Parameter by Speed Grade - DDR2–667 Parameter Symbol DDR2–667 Unit Note 1)2)3)4)5)6)7)8) tAC DQS output access time from CK / CK tDQSCK Average clock high pulse width tCH.AVG Average clock low pulse width tCL.AVG Average clock period tCK.AVG tDS.BASE DQ and DM input setup time DQ and DM input hold time tDH.BASE Control & address input pulse width for each input tIPW DQ and DM input pulse width for each input tDIPW Data-out high-impedance time from CK / CK tHZ DQS/DQS low-impedance time from CK / CK tLZ.DQS DQ low impedance time from CK/CK tLZ.DQ DQS-DQ skew for DQS & associated DQ signals tDQSQ CK half pulse width tHP DQ output access time from CK / CK Min. Max. –450 +450 ps –400 +400 ps 9) 10)11) 9) 0.48 0.52 0.48 0.52 tCK.AVG tCK.AVG 3000 8000 ps 100 –– ps 12)13)14) 175 –– ps 13)14)15) 0.6 — 0.35 — tCK.AVG tCK.AVG — ps 9)16) tAC.MIN 2 x tAC.MIN tAC.MAX tAC.MAX tAC.MAX ps 9)16) ps 9)16) — 240 ps 17) Min(tCH.ABS, tCL.ABS) __ ps 18) — 340 ps 19) DQ/DQS output hold time from DQS tQHS tQH tHP – tQHS — ps 20) Write command to DQS associated clock edges WL RL–1 DQ hold skew factor 10)11) nCK 21) DQS latching rising transition to associated clock tDQSS edges – 0.25 + 0.25 tCK.AVG DQS input high pulse width tDQSH tDQSL DQS falling edge to CK setup time tDSS DQS falling edge hold time from CK tDSH Write postamble tWPST Write preamble tWPRE Address and control input setup time tIS.BASE Address and control input hold time tIH.BASE Read preamble tRPRE Read postamble tRPST CAS to CAS command delay tCCD tWR Write recovery time Auto-Precharge write recovery + precharge time tDAL Internal write to read command delay tWTR 0.35 — DQS input low pulse width 0.35 — 0.2 — 0.2 — 0.4 0.6 0.35 — tCK.AVG tCK.AVG tCK.AVG tCK.AVG tCK.AVG tCK.AVG 200 — ps 22)23) 275 — ps 23)24) 0.9 1.1 25)26) 0.4 0.6 tCK.AVG tCK.AVG 2 — nCK 15 — ns 28) WR + tnRP — nCK 29)30) 7.5 — ns 28)31) Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 16 21) 21) 25)27) Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Parameter Symbol DDR2–667 Unit Note 1)2)3)4)5)6)7)8) Min. Max. tRTP tXSNR tXSRD tXP 7.5 — ns 28) tRFC +10 — ns 28) 200 — nCK 2 — nCK tXARD tXARDS 2 — nCK 7 – AL — nCK CKE minimum pulse width ( high and low pulse width) tCKE 3 — nCK Mode register set command cycle time tMRD tMOD tOIT tDELAY 2 — nCK 0 12 ns 28) 0 12 ns 28) tIS + tCK .AVG + tIH — ns Internal Read to Precharge command delay Exit self-refresh to a non-read command Exit self-refresh to read command Exit precharge power-down to any valid command (other than NOP or Deselect) Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) MRS command to ODT update delay OCD drive mode output delay Minimum time clocks remain ON after CKE asynchronously drops LOW 32) 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 5)6)7)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ). 12) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 3. 13) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 14) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 3. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 17 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 16) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 17) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 18) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 19) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 20) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 21) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 22) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 4. 23) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 24) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 4. 25) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 26) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 27) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 28) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 29) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 30) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 31) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. 32) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 18 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules FIGURE 2 Method for calculating transitions and endpoint 92+[P9 977[P9 92+[P9 977[P9 W/= W+= W535(EHJLQSRLQW W5367 H QGSRLQW 92/[P9 977[P9 92/[P9 977[P9 7 7 7 7 W+=W5367 HQGSRLQW 77 W/=W535( E HJLQSRLQW 7 7 FIGURE 3 Differential input waveform timing - tDS and tDS '46 '46 W'6 W'+ W'6 W'+ 9''4 9,+ DF PL Q 9,+ GF PL Q 95() GF 9,/ GF PD [ 9,/ DF PD [ 966 FIGURE 4 Differential input waveform timing - tlS and tlH &. &. W,6 W,+ W,6 W,+ 9''4 9,+DF PLQ 9,+GF PLQ 95() GF 9,/ GF PD[ 9,/ DF PD[ 966 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 19 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 14 DRAM Component Timing Parameter by Speed Grade - DDR2–533 Parameter Symbol DDR2–533 Unit Note 1)2)3)4)5)6)7) Min. Max. tAC tCCD tCH tCKE tCL tDAL –500 +500 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH — ns 9) DQ and DM input hold time (differential data strobe) tDH(base) 225 — ps 10) –25 — ps 11) tDIPW tDQSCK tDQSL,H tDQSQ 0.35 — tCK –450 +450 ps 0.35 — tCK — 300 ps tDQSS tDS(base) – 0.25 + 0.25 tCK 100 — ps 11) –25 — ps 11) tDSH 0.2 — tCK DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe) DQ and DM input setup time (single ended data tDS1(base) strobe) DQS falling edge hold time from CK (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Rev. 1.11, 2006-11 03062006-HT1R-Z2PY tHP tHZ tIH(base) tIPW MIN. (tCL, tCH) tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS 20 8)18) 11) — 12) — tAC.MAX ps 13) 375 — ps 11) 0.6 — tCK 250 — ps 11) 2 × tAC.MIN ps 14) tAC.MIN tAC.MAX tAC.MAX ps 14) 2 — tCK 0 12 ns tHP –tQHS — — — 400 ps Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Parameter Symbol DDR2–533 Unit Note 1)2)3)4)5)6)7) Average periodic refresh Interval tREFI Min. Max. — 7.8 µs 14)15) — 3.9 µs 16)18) 17) Auto-Refresh to Active/Auto-Refresh command period tRFC 105 — ns Precharge-All (4 banks) command period tRP tRP tRPRE tRPST tRRD tRP + 1tCK 15 + 1tCK — ns — ns 0.9 1.1 14) 0.40 0.60 tCK tCK Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period 14) 7.5 — ns 14)18) 10 — ns 16)20) tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns Write recovery time for write with AutoPrecharge WR tWR/tCK — tCK 20) Internal Write to Read command delay tWTR tXARD 7.5 — ns 21) 2 — tCK 22) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 22) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns 200 — tCK Internal Read to Precharge command delay Write preamble Write postamble Write recovery time for write without AutoPrecharge Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command 19) 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 10) For timing definition, refer to the Component data sheet. 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 21 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 15) 0 °C≤ TCASE ≤ 85 °C 16) 85 °C < TCASE ≤ 95 °C 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Informationfor RoHS Compliant Products” on Page 4. 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 21) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 MHz. 22) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 22 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 15 DRAM Component Timing Parameter by Speed Grade - DDR2-400 Parameter Symbol DDR2–400 Unit Note 1)2)3)4)5)6)7) Min. Max. tAC tCCD tCH tCKE tCL tDAL –600 +600 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH — ns 9) DQ and DM input hold time (differential data strobe) tDH(base) 275 — ps 10) –25 — ps 11) 0.35 — tCK –500 +500 ps 0.35 — tCK — 350 ps – 0.25 + 0.25 tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) tDIPW tDQSCK tDQSL,H tDQSQ Write command to 1st DQS latching transition tDQSS 8)22) 11) DQ and DM input setup time (differential data strobe) tDS(base) 150 — ps 11) DQ and DM input setup time (single ended data strobe) tDS1(base) –25 — ps 11) DQS falling edge hold time from CK (write cycle) tDSH 0.2 — tCK DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Rev. 1.11, 2006-11 03062006-HT1R-Z2PY tHP tHZ tIH(base) tIPW MIN. (tCL, tCH) tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS 23 — 12) — tAC.MAX ps 13) 475 — ps 11) 0.6 — tCK 350 — ps 11) 2 × tAC.MIN ps 14) tAC.MIN tAC.MAX tAC.MAX ps 14) 2 — tCK 0 12 ns tHP –tQHS — — — 450 ps Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Parameter Symbol DDR2–400 Unit Note 1)2)3)4)5)6)7) Average periodic refresh Interval tREFI Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period tRP tRP tRPRE tRPST tRRD Min. Max. — 7.8 µs 14)15) — 3.9 µs 16)18) 105 — ns 17) tRP + 1tCK 15 + 1tCK — ns — ns 0.9 1.1 14) 0.40 0.60 tCK tCK 14) 7.5 — ns 14)18) 10 — ns 16)20) tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns Write recovery time for write with AutoPrecharge WR tWR/tCK — tCK 20) Internal Write to Read command delay tWTR tXARD 10 — ns 21) 2 — tCK 22) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 22) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns 200 — tCK Internal Read to Precharge command delay Write preamble Write postamble Write recovery time for write without AutoPrecharge Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command 19) 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 10) For timing definition, refer to the Component data sheet. 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 24 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 15) 0 °C≤ TCASE ≤ 85 °C 16) 85 °C < TCASE ≤ 95 °C 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Informationfor RoHS Compliant Products” on Page 4. 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 21) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 MHz. 22) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 25 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 3.3.3 ODT AC Electrical Characteristics This chapter contains the ODT AC electrical characteristic tables. TABLE 16 ODT AC Character. and Operating Conditions for DDR2-667 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Parameter / Condition Values Unit Note Min. Max. ODT turn-on delay 2 2 nCK 1) ODT turn-on tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns ns 1)2) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns 1) ODT turn-off delay 2.5 2.5 nCK 1) ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns 1)3) ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns 1) ODT to Power Down Mode Entry Latency 3 — nCK 1) 1) ODT Power Down Exit Latency 8 — nCK 1) New units, 'tCK.AVG' and 'nCK', are introduced in DDR2-667 and DDR2-800. Unit 'tCK.AVG' represents the actual tCK.AVG of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, 'tCK' is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 × tCK.AVG+ tEPR.2PER(MIN). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800,if tCK.AVG = 3 ns is assumed, tAOFD= 1.5 ns (0.5 × 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edge. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 26 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 17 ODT AC Character. and Operating Conditions for DDR2-533 & DDR2-400 Symbol Parameter / Condition Values Min. tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Unit Note Max. ODT turn-on delay 2 2 tCK ODT turn-on tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns ns ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT turn-off delay 2.5 2.5 tCK ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT to Power Down Mode Entry Latency 3 — ODT Power Down Exit Latency 8 — tCK tCK 1) ns 2) ns 1) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 27 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 3.4 IDD Specifications and Conditions This chapter describes the IDD Specifications and Conditions. TABLE 18 IDD Measurement Conditions Parameter Symbol Note 1)2)3)4)5) Operating Current 0 IDD0 One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. Operating Current 1 One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. IDD1 6) Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING, Databus inputs are SWITCHING. Precharge Power-Down Current Other control and address inputs are STABLE, Data bus inputs are FLOATING. IDD2P Precharge Quiet Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE, Data bus inputs are FLOATING. IDD2Q Active Standby Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA. IDD3N Active Power-Down Current IDD3P(0) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit); Active Power-Down Current IDD3P(1) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit); Operating Current - Burst Read IDD4R All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX; tRP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data bus inputs are SWITCHING; IOUT = 0mA. Operating Current - Burst Write All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IDD4W Burst Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. IDD5B Distributed Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. IDD5D Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 28 6) Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Parameter Symbol Note 1)2)3)4)5) Self-Refresh Current IDD6 CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max. All Bank Interleave Read Current IDD7 All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. Iout = 0 mA. 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled. 3) Definitions for IDD see Table 19 4) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P 6) 5) For details and notes see the relevant Qimonda component data sheet 6) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH. TABLE 19 Definitions for IDD Parameter Description LOW VIN ≤ VIL(ac).MAX, HIGH is defined as VIN ≥ VIH(ac).MIN STABLE Inputs are stable at a HIGH or LOW level FLOATING Inputs are VREF = VDDQ /2 SWITCHING Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ signals not including mask or strobes Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 29 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 20 IDD Specification for HYS64T[32000/64020]HM-3S-A 380 mA 2) 420 440 mA 2) 200 400 mA 3) 20 40 mA 3) 160 320 mA 3) 200 400 mA 3) 80 150 mA 3) 20 50 mA 3) 600 620 mA 2) 680 700 mA 2) 560 580 mA 2) 20 50 mA 3)4) 20 40 mA 3)4) 910 930 mA 2) HYS64T64020HM-3S-A Note1) HYS64T32000HM-3S-A Unit Product Type Organization 256MB 512MB 1 Rank 2 Ranks ×64 ×64 –3S –3S Symbol Max. Max. IDD0 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P( MRS = 0) IDD3P( MRS = 1) IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 360 1) 2) 3) 4) Calculated values from component data. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled The other rank is in IDD2P Precharge Power-Down Standby Current mode Both ranks are in the same IDD mode Values for 0 °C ≤ TCASE ≤ 85 °C Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 30 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 21 Product Type HYS64T32000HM-3.7-A HYS64T64020HM-3.7-A IDD Specification for HYS64T[32000/64020]HM–3.7–A Organization 256 MB 512 MB 1 Rank 2 Ranks ×64 ×64 –3.7 –3.7 Symbol Max. Max. IDD0 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P( MRS = 0) IDD3P( MRS = 1) IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 320 1) 2) 3) 4) Unit Note1) 340 mA 2) 360 380 mA 2) 160 320 mA 3) 20 30 mA 3) 120 240 mA 3) 160 320 mA 3) 60 130 mA 3) 20 40 mA 3) 400 420 mA 2) 440 460 mA 2) 520 540 mA 2) 20 50 mA 3)4) 16 32 mA 3)4) 900 mA Calculated values from component data. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled The other rank is in IDD2P Precharge Power-Down Standby Current mode Both ranks are in the same IDD mode Values for 0 °C ≤ TCASE ≤ 85 °C Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 880 31 2) Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules TABLE 22 IDD Specification for HYS64T[32000/64020]HM–5–A 300 mA 2) 320 mA 2) mA 3) HYS64T64020HM-5-A Note1) HYS64T32000HM-5-A Unit Product Type Organization 256 MB 512 MB 1 Rank 2 Ranks ×64 ×64 –5 –5 Symbol Max. Max. IDD0 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P( MRS = 0) IDD3P( MRS = 1) IDD4R IDD4W IDD5B IDD5D 280 300 20 30 mA 3) 100 200 mA 3) 140 280 mA 3) 50 100 mA 3) 20 40 mA 3) 340 360 mA 2) 360 380 mA 2) 480 500 mA 2) 20 50 mA 3)4) IDD6 16 32 mA 3)4) IDD7 840 1) 2) 3) 4) 860 mA Calculated values from component data. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled The other rank is in IDD2P Precharge Power-Down Standby Current mode Both ranks are in the same IDD mode Values for 0 °C ≤ TCASE ≤ 85 °C Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 32 2) Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 4 SPD Codes This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands for serial presence detect. All values with XX in the table are module specific bytes which are defined during production. List of SPD Code Tables • Table 23 “SPD codes for HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A” on Page 33 TABLE 23 Product Type HYS64T32000HM–3S–A HYS64T64020HM–3S–A HYS64T32000HM–3.7–A HYS64T64020HM–3.7–A HYS64T32000HM–5–A HYS64T64020HM–5–A SPD codes for HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Organization 256MB 512MB 256MB 512MB 256MB 512MB ×64 ×64 ×64 ×64 ×64 ×64 1 Rank (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks (×16) Label Code PC2– PC2– PC2– PC2– PC2– PC2– 5300M– 5300M– 4200M– 4200M– 3200M– 3200M– 555 555 444 444 333 333 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1 Byte# Description HEX HEX HEX HEX HEX HEX 0 Programmed SPD Bytes in EEPROM 80 80 80 80 80 80 1 Total number of Bytes in EEPROM 08 08 08 08 08 08 2 Memory Type (DDR2) 08 08 08 08 08 08 3 Number of Row Addresses 0D 0D 0D 0D 0D 0D 4 Number of Column Addresses 0A 0A 0A 0A 0A 0A 5 DIMM Rank and Stacking Information 60 61 60 61 60 61 6 Data Width 40 40 40 40 40 40 7 Not used 00 00 00 00 00 00 8 Interface Voltage Level 05 05 05 05 05 05 9 tCK @ CLMAX (Byte 18) [ns] 30 30 3D 3D 50 50 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 33 Internet Data Sheet Product Type HYS64T32000HM–3S–A HYS64T64020HM–3S–A HYS64T32000HM–3.7–A HYS64T64020HM–3.7–A HYS64T32000HM–5–A HYS64T64020HM–5–A HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Organization 256MB 512MB 256MB 512MB 256MB 512MB ×64 ×64 ×64 ×64 ×64 ×64 1 Rank (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks (×16) Label Code PC2– PC2– PC2– PC2– PC2– PC2– 5300M– 5300M– 4200M– 4200M– 3200M– 3200M– 555 555 444 444 333 333 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1 Byte# Description 10 HEX HEX HEX HEX HEX HEX tAC SDRAM @ CLMAX (Byte 18) 45 45 50 50 60 60 11 Error Correction Support (non- 00 ECC, ECC) 00 00 00 00 00 12 Refresh Rate and Type 82 82 82 82 82 82 13 Primary SDRAM Width 10 10 10 10 10 10 14 Error Checking SDRAM Width 00 00 00 00 00 00 15 Not used 00 00 00 00 00 00 16 Burst Length Supported 0C 0C 0C 0C 0C 0C 17 Number of Banks on SDRAM Device 04 04 04 04 04 04 18 Supported CAS Latencies 38 38 38 38 38 38 19 DIMM Mechanical Characteristics 01 01 00 00 00 00 20 DIMM Type Information 08 08 08 08 08 08 21 DIMM Attributes 00 00 00 00 00 00 22 Component Attributes 03 03 01 01 01 01 23 tCK @ CLMAX -1 (Byte 18) [ns] tAC SDRAM @ CLMAX -1 [ns] tCK @ CLMAX -2 (Byte 18) [ns] tAC SDRAM @ CLMAX -2 [ns] tRP.MIN [ns] tRRD.MIN [ns] tRCD.MIN [ns] tRAS.MIN [ns] 3D 3D 3D 3D 50 50 50 50 50 50 60 60 50 50 50 50 50 50 [ns] 24 25 26 27 28 29 30 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 34 60 60 60 60 60 60 3C 3C 3C 3C 3C 3C 28 28 28 28 28 28 3C 3C 3C 3C 3C 3C 2D 2D 2D 2D 28 28 Internet Data Sheet Product Type HYS64T32000HM–3S–A HYS64T64020HM–3S–A HYS64T32000HM–3.7–A HYS64T64020HM–3.7–A HYS64T32000HM–5–A HYS64T64020HM–5–A HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Organization 256MB 512MB 256MB 512MB 256MB 512MB ×64 ×64 ×64 ×64 ×64 ×64 1 Rank (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks (×16) Label Code PC2– PC2– PC2– PC2– PC2– PC2– 5300M– 5300M– 4200M– 4200M– 3200M– 3200M– 555 555 444 444 333 333 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1 Byte# Description HEX HEX HEX HEX HEX HEX 31 Module Density per Rank 40 40 40 40 40 40 32 20 20 25 25 35 35 27 27 37 37 47 47 10 10 10 10 15 15 38 tAS.MIN and tCS.MIN [ns] tAH.MIN and tCH.MIN [ns] tDS.MIN [ns] tDH.MIN [ns] tWR.MIN [ns] tWTR.MIN [ns] tRTP.MIN [ns] 39 Analysis Characteristics 40 tRC and tRFC Extension tRC.MIN [ns] tRFC.MIN [ns] tCK.MAX [ns] tDQSQ.MAX [ns] tQHS.MAX [ns] 46 PLL Relock Time 47 48 Psi(T-A) DRAM 49 ∆T0 (DT0) 50 33 34 17 17 22 22 27 27 3C 3C 3C 3C 3C 3C 1E 1E 1E 1E 28 28 1E 1E 1E 1E 1E 1E 00 00 00 00 00 00 00 00 00 00 00 00 3C 3C 3C 3C 37 37 69 69 69 69 69 69 80 80 80 80 80 80 18 18 1E 1E 23 23 22 22 28 28 2D 2D 00 00 00 00 00 00 TCASE.MAX Delta / ∆T4R4W Delta 55 55 53 53 51 51 72 72 72 72 72 72 5F 5F 53 53 43 43 ∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM) 36 36 2B 2B 23 23 51 ∆T2P (DT2P) 24 24 1D 1D 1D 1D 52 ∆T3N (DT3N) 24 24 1D 1D 19 19 53 ∆T3P.fast (DT3P fast) 29 29 23 23 1C 1C 35 36 37 41 42 43 44 45 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 35 Internet Data Sheet Product Type HYS64T32000HM–3S–A HYS64T64020HM–3S–A HYS64T32000HM–3.7–A HYS64T64020HM–3.7–A HYS64T32000HM–5–A HYS64T64020HM–5–A HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Organization 256MB 512MB 256MB 512MB 256MB 512MB ×64 ×64 ×64 ×64 ×64 ×64 1 Rank (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks (×16) Label Code PC2– PC2– PC2– PC2– PC2– PC2– 5300M– 5300M– 4200M– 4200M– 3200M– 3200M– 555 555 444 444 333 333 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1 Byte# Description HEX HEX HEX HEX HEX HEX 54 ∆T3P.slow (DT3P slow) 1A 1A 16 16 16 16 55 ∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W) 52 52 36 36 2E 2E 56 ∆T5B (DT5B) 1E 1E 1C 1C 1A 1A 57 ∆T7 (DT7) 31 31 30 30 2D 2D 58 Psi(ca) PLL 00 00 00 00 00 00 59 Psi(ca) REG 00 00 00 00 00 00 60 ∆TPLL (DTPLL) 00 00 00 00 00 00 61 ∆TREG (DTREG) / Toggle Rate 00 00 00 00 00 00 62 SPD Revision 12 12 11 11 11 11 63 Checksum of Bytes 0-62 D0 D1 C0 C1 08 09 64 Manufacturer’s JEDEC ID Code (1) 7F 7F 7F 7F 7F 7F 65 Manufacturer’s JEDEC ID Code (2) 7F 7F 7F 7F 7F 7F 66 Manufacturer’s JEDEC ID Code (3) 7F 7F 7F 7F 7F 7F 67 Manufacturer’s JEDEC ID Code (4) 7F 7F 7F 7F 7F 7F 68 Manufacturer’s JEDEC ID Code (5) 7F 7F 7F 7F 7F 7F 69 Manufacturer’s JEDEC ID Code (6) 51 51 51 51 51 51 70 Manufacturer’s JEDEC ID Code (7) 00 00 00 00 00 00 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 36 Internet Data Sheet Product Type HYS64T32000HM–3S–A HYS64T64020HM–3S–A HYS64T32000HM–3.7–A HYS64T64020HM–3.7–A HYS64T32000HM–5–A HYS64T64020HM–5–A HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Organization 256MB 512MB 256MB 512MB 256MB 512MB ×64 ×64 ×64 ×64 ×64 ×64 1 Rank (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks (×16) Label Code PC2– PC2– PC2– PC2– PC2– PC2– 5300M– 5300M– 4200M– 4200M– 3200M– 3200M– 555 555 444 444 333 333 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1 Byte# Description HEX HEX HEX HEX HEX HEX 71 Manufacturer’s JEDEC ID Code (8) 00 00 00 00 00 00 72 Module Manufacturer Location xx xx xx xx xx xx 73 Product Type, Char 1 36 36 36 36 36 36 74 Product Type, Char 2 34 34 34 34 34 34 75 Product Type, Char 3 54 54 54 54 54 54 76 Product Type, Char 4 33 36 33 36 33 36 77 Product Type, Char 5 32 34 32 34 32 34 78 Product Type, Char 6 30 30 30 30 30 30 79 Product Type, Char 7 30 32 30 32 30 32 80 Product Type, Char 8 30 30 30 30 30 30 81 Product Type, Char 9 48 48 48 48 48 48 82 Product Type, Char 10 4D 4D 4D 4D 4D 4D 83 Product Type, Char 11 33 33 33 33 35 35 84 Product Type, Char 12 53 53 2E 2E 41 41 85 Product Type, Char 13 41 41 37 37 20 20 86 Product Type, Char 14 20 20 41 41 20 20 87 Product Type, Char 15 20 20 20 20 20 20 88 Product Type, Char 16 20 20 20 20 20 20 89 Product Type, Char 17 20 20 20 20 20 20 90 Product Type, Char 18 20 20 20 20 20 20 91 Module Revision Code 3x 3x 5x 5x 5x 5x 92 Test Program Revision Code xx xx xx xx xx xx 93 Module Manufacturing Date Year xx xx xx xx xx xx Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 37 Internet Data Sheet Product Type HYS64T32000HM–3S–A HYS64T64020HM–3S–A HYS64T32000HM–3.7–A HYS64T64020HM–3.7–A HYS64T32000HM–5–A HYS64T64020HM–5–A HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Organization 256MB 512MB 256MB 512MB 256MB 512MB ×64 ×64 ×64 ×64 ×64 ×64 1 Rank (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks 1 Rank (×16) (×16) 2 Ranks (×16) Label Code PC2– PC2– PC2– PC2– PC2– PC2– 5300M– 5300M– 4200M– 4200M– 3200M– 3200M– 555 555 444 444 333 333 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1 Byte# Description HEX HEX HEX HEX HEX HEX 94 Module Manufacturing Date Week xx xx xx xx xx xx 95 - 98 Module Serial Number xx xx xx xx xx xx 99 - 127 Not used 00 00 00 00 00 00 128 - 255 Blank for customer use FF FF FF FF FF FF Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 38 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 5 Package Outlines This chapter contains the package outlines of the products. FIGURE 5 Package Outline Raw Card A L-DIM-214-1 0$; 0$; % [ % $ $ 0 & % 0 % & $ ' & 'WDLO RI FRQWDFWV $$ %% ( 0 $ % 0 &RQWDFW $UD & ' ( [ %XUQLVKG QR EXUU DOORZG */' Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 39 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules FIGURE 6 Package Outline Raw Card B L-DIM-214-2 0$; % [ % $ $ 0 & % 0 % & $ ' & 'WDLO RI FRQWDFWV %% $$ ( 0 $ % 0 &RQWDFW $UD & ' ( [ %XUQLVKG QR EXUU DOORZG */' Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 40 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules 6 Product Type Nomenclature Qimonda’s nomenclature uses simple coding combined with some proprietary coding. Table 24 provides examples for module and component product type number as well as the field number. The detailed field description together with possible values and coding explanation is listed for modules in Table 25 and for components in Table 26. TABLE 24 Nomenclature Fields and Examples Example for Field Number 1 2 3 4 5 6 7 8 9 10 11 Micro-DIMM HYS 64 T 64/128 0 2 0 K M –5 –A DDR2 DRAM HYB 18 T 512/1G 16 0 A C –5 TABLE 25 DDR2 DIMM Nomenclature Field Description Values Coding 1 Qimonda Module Prefix HYS Constant 2 Module Data Width [bit] 64 Non-ECC 72 ECC 3 DRAM Technology T DDR2 4 Memory Density per I/O [Mbit]; Module Density1) 32 256 MByte 64 512 MByte 128 1 GByte 256 2 GByte 512 4 GByte 5 Raw Card Generation 0 .. 9 Look up table 6 Number of Module Ranks 0, 2, 4 1, 2, 4 7 Product Variations 0 .. 9 Look up table 8 Package, Lead-Free Status A .. Z Look up table 9 Module Type D SO-DIMM M Micro-DIMM R Registered U Unbuffered F Fully Buffered Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 41 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Field Description Values Coding 10 Speed Grade –2.5F PC2–6400 5–5–5 –2.5 PC2–6400 6–6–6 11 Die Revision –3 PC2–5300 4–4–4 –3S PC2–5300 5–5–5 –3.7 PC2–4200 4–4–4 –5 PC2–3200 3–3–3 –A First –B Second 1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall module memory density in MBytes as listed in column “Coding”. TABLE 26 DDR2 DRAM Nomenclature Field Description Values Coding 1 Qimonda Component Prefix HYB Constant 2 Interface Voltage [V] 18 SSTL_18 3 DRAM Technology T DDR2 4 Component Density [Mbit] 256 256 Mbit 512 512 Mbit 1G 1 Gbit 2G 2 Gbit 40 ×4 80 ×8 16 ×16 5+6 Number of I/Os 7 Product Variations 0 .. 9 Look up table 8 Die Revision A First B Second 9 10 Package, Lead-Free Status Speed Grade Rev. 1.11, 2006-11 03062006-HT1R-Z2PY C FBGA, lead-containing F FBGA, lead-free –25F DDR2-800 5-5-5 –2.5 DDR2-800 6-6-6 –3 DDR2-667 4-4-4 –3S DDR2-667 5-5-5 –3.7 DDR2-533 4-4-4 –5 DDR2-400 3-3-3 42 Internet Data Sheet HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A Micro-DIMM DDR2 SDRAM Modules Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 2.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 13 13 14 15 15 16 26 28 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Rev. 1.11, 2006-11 03062006-HT1R-Z2PY 43 Internet Data Sheet Edition 2006-11 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2006. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com