LINER LTC5577 300mhz to 6ghz high signal level active downconverting mixer Datasheet

LTC5577
300MHz to 6GHz
High Signal Level Active
Downconverting Mixer
Description
Features
n
n
n
n
n
n
n
n
n
n
n
+30dBm IIP3
+15dBm Input P1dB
0dB Conversion Gain
Wideband Differential IF Output
Very Low 2 × 2 and 3 × 3 Spurs
IF Frequency Range Up to 1.5GHz
Low LO-RF Leakage
LO Input 50Ω Matched when Shutdown
–40°C to 105°C Operation (TC)
Very Small Solution Size
16-Lead (4mm × 4mm) QFN package
The LTC®5577 active mixer is optimized for RF downconverting applications that require high input signal handling
capability and wide bandwidth. The wideband IF output uses
external resistors to set the output impedance, allowing
the flexibility to match directly into differential IF loads,
such as filters and amplifiers. The part is characterized
and specified with a 100Ω differential output impedance,
although it can be used with output impedances ranging
from 50Ω to 400Ω, with higher gain and reduced IIP3
and P1dB at the higher impedance levels. The IF output
is usable up to 1.5GHz.
In receiver applications, the high input P1dB and IIP3 allow
the use of higher gain low noise amplifiers, resulting in
higher receiver sensitivity. Integrated transformers on the
RF and LO inputs provide single-ended 50Ω interfaces,
while minimizing the solution size.
Applications
n
n
n
Wireless Infrastructure Receivers
DPD Observation Receivers
CATV Infrastructure
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
Typical Application
Wideband Downconverting Mixer with 1GHz IF Bandwidth and
+15dBm Input P1dB into 100Ω Load
Voltage Conversion Gain and
IIP3 vs IF Output Frequency
100Ω IF LOAD
LTC5577
560nH
560nH
115Ω
115Ω
33
1nF
IF –
IF +
3.9pF
1nF
RF
LO
RF
0.7pF
EN
30
8
27
7
RF = 1.6GHz TO 2.6GHz
24 LO = 1.59GHz/0dBm
ZRF = 50Ω
Z = 100Ω DIFFERENTIAL
21 IF
TC = 25°C
15
VCC
1nF
6
5
18
LO
BIAS
EN
9
IIP3
IADJ
5577 TA01a
3.3V
180mA
GV (dB)
8.2pF
50Ω
IIP3 (dBm)
1nF
50Ω
4
GV
3
12
2
10 110 210 310 410 510 610 710 810 910 1010
IF OUTPUT FREQUENCY (MHz)
5577 TA01b
5577f
For more information www.linear.com/LTC5577
1
LTC5577
Pin Configuration
Supply Voltage (VCC, IF+, IF –)...................................4.0V
Enable Input Voltage (EN).................–0.3V to VCC + 0.3V
LO Input Power (300MHz to 6GHz)..................... +10dBm
LO Input DC Voltage................................................ ±0.1V
RF Input Power (300MHz to 6GHz)..................... +18dBm
RF Input DC Voltage................................................ ±0.1V
TEMP Monitor Input Current...................................10mA
Operating Temperature Range (TC)......... –40°C to 105°C
Junction Temperature (TJ)..................................... 150°C
Storage Temperature Range................... –65°C to 150°C
GND
IF –
IF+
GND
TOP VIEW
16 15 14 13
GND 1
12 TEMP
RF 2
11 NC
17
GND
NC 3
10 LO
GND 4
6
7
8
VCC
IADJ
9
5
EN
(Note 1)
VCC
Absolute Maximum Ratings
GND
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
TJMAX = 150°C, θJC = 8°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
CAUTION: THIS PART IS SENSITIVE TO ELECTROSTATIC
DISCHARGE (ESD). PROPER ESD HANDLING PRECAUTIONS MUST BE OBSERVED.
Order Information
LEAD FREE FINISH
TAPE AND REEL
PART MARKING
PACKAGE DESCRIPTION
CASE TEMPERATURE RANGE
LTC5577IUF#PBF
LTC5577IUF#TRPBF
5577
16-Lead (4mm × 4mm) Plastic QFN
–40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
AC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C, VCC = 3.3V, EN = High. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
RF Input Frequency Range
External Matching Required
l
300 to 6000
MHz
LO Input Frequency Range
External Matching Required
l
300 to 6000
MHz
IF Output Frequency Range
External Matching Required
l
1 to 1500
MHz
RF Input Return Loss
ZO = 50Ω, 1300MHz to 4300MHz, C3 = 8.2pF, C4 = 0.7pF
>10
dB
LO Input Return Loss
ZO = 50Ω, 930MHz to 4000MHz, C5 = 3.9pF
>10
dB
IF+, IF – Output Return Loss
ZO = 50Ω, 20MHz to 500MHz, L1, L2 = 560nH, R1, R2 = 115Ω
LO Input Power
>10
–6
0
dB
6
dBm
RF to LO Isolation
RF = 300MHz to 2500MHz
RF = 2500MHz to 4000MHz
RF = 4000MHz to 6000MHz
>64
>50
>40
dB
dB
dB
RF to IF Isolation
RF = 300MHz to 6000MHz
>30
dB
2
5577f
For more information www.linear.com/LTC5577
LTC5577
AC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, PLO = 0dBm, IF = 153MHz, PRF = –3dBm (–3dBm/
tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
Power Conversion Gain
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1900MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
RF = 4900MHz, Low Side LO, IF = 900MHz
RF = 5900MHz, Low Side LO, IF = 900MHz
MIN
–1.0
TYP
MAX
UNITS
dB
dB
dB
dB
dB
dB
dB
–0.5
0.5
0.7
0.5
0.2
0.1
–0.7
Conversion Gain Flatness
RF = 1900 ±140MHz, LO = 1747MHz, IF = 153 ±140MHz
Conversion Gain vs Temperature
TC = –40°C to 105ºC, RF = 1900MHz, Low Side LO
2-Tone Input 3rd Order Intercept
(∆fRF = 2MHz)
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1900MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
RF = 4900MHz, Low Side LO, IF = 900MHz
RF = 5900MHz, Low Side LO, IF = 900MHz
2-Tone Input 2nd Order Intercept
(∆fRF = 154MHz = fIM2)
RF = 450MHz (527MHz/373MHz), LO = 603MHz
RF = 850MHz (927MHz/773MHz), LO = 1003MHz
RF = 1900MHz (1977MHz/1823MHz), LO = 1747MHz
RF = 2550MHz (2627MHz/2473MHz), LO = 2397MHz
RF = 3500MHz (3577MHz/3423MHz), LO = 3347MHz
SSB Noise Figure
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1900MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
RF = 4900MHz, Low Side LO, IF = 900MHz
RF = 5900MHz, Low Side LO, IF = 900MHz
13.4
11.7
11.8
12.5
14.3
15.2
15.0
RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm
RF = 1900MHz, Low Side LO, 2000MHz Blocker at 5dBm
16.1
15.8
dB
dB
850MHz: fRF = 926.5MHz at –3dBm, fLO = 1003MHz
1/2IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 153MHz) 1900MHz: fRF = 1823.5MHz at –3dBm, fLO = 1747MHz
–85
–79
dBc
dBc
850MHz: fRF = 952MHz at –3dBm, fLO = 1003MHz
1/3IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 153MHz) 1900MHz: fRF = 1798MHz at –3dBm, fLO = 1747MHz
–86
–81
dBc
dBc
Input 1dB Compression
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1900MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
RF = 4900MHz, Low Side LO, IF = 900MHz
RF = 5900MHz, Low Side LO, IF = 900MHz
15.7
15.3
15.2
15.6
15.4
14.0
13.5
dBm
dBm
dBm
dBm
dBm
dBm
dBm
LO to RF Leakage
LO = 300MHz to 2500MHz
LO = 2500MHz to 5200MHz
LO = 5200MHz to 6000MHz
≤60
≤50
≤35
dBm
dBm
dBm
LO to IF Leakage
LO = 300MHz to 1800MHz
LO = 1800MHz to 6000MHz
≤28
≤33
dBm
dBm
SSB Noise Figure Under Blocking
±0.2
l
dB
–0.013
dB/°C
29.5
29.8
30.2
31.0
28.0
24.0
26.0
dBm
dBm
dBm
dBm
dBm
dBm
dBm
68
68
61
60
66
dBm
dBm
dBm
dBm
dBm
14.0
dB
dB
dB
dB
dB
dB
dB
5577f
For more information www.linear.com/LTC5577
3
LTC5577
DC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C, VCC = 3.3V, EN = High, unless otherwise noted. Test circuit shown in
Figure 1. (Note 2)
PARAMETER
CONDITIONS
Supply Voltage (VCC)
l
Supply Current
Enabled
Disabled
MIN
TYP
MAX
3.0
3.3
3.6
V
180
217
200
mA
µA
EN = High
EN = Low
UNITS
Enable Logic Input (EN)
Input High Voltage (On)
l
Input Low Voltage (Off)
l
–0.3V to VCC + 0.3V
Input Current
2.5
V
–60
0.3
V
200
µA
Turn-On Time
0.3
µs
Turn-Off Time
0.1
µs
2.2
V
Pin Shorted to Ground
3.6
mA
DC Voltage at TJ = 25°C
IIN = 10µA
IIN = 80µA
716
773
mV
mV
Voltage Temperature Coefficient
IIN = 10µA
IIN = 80µA
Mixer DC Current Adjust (IADJ)
Open-Circuit DC Voltage
Short-Circuit DC Current
Temperature Sensing Diode (TEMP)
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5577 is guaranteed functional over the –40°C to 105°C
case temperature range (θJC = 8°C/W).
l
l
900
192
850
TEMP DIODE VOLTAGE (mV)
SUPPLY CURRENT (mA)
196
180
176
172
168
3.0
800
IIN = 80µA
750
700
650
IIN = 10µA
600
550
3.1
3.4
3.3
3.5
3.2
VCC SUPPLY VOLTAGE (V)
TC = 105°C
TC = 85°C
TC = 55°C
4
EN = High, Test circuit shown in Figure 1.
TEMP Diode Voltage vs Junction
Temperature
Supply Current vs Supply Voltage
184
mV/°C
mV/°C
Note 3: SSB Noise Figure measured with a small-signal noise source,
bandpass filter and 2dB matching pad on RF input, and bandpass filter on
the LO input.
Note 4: Specified performance excludes external 180° IF combiner loss.
Typical DC Performance Characteristics
188
–1.75
–1.56
3.6
500
–45
5577 G01
5
30
55
80 105
–20
JUNCTION TEMPERATURE (°C)
130
5577 G02
TC = 25°C
TC = –10°C
TC = –40°C
5577f
For more information www.linear.com/LTC5577
LTC5577
Typical Performance Characteristics
1300MHz to 4300MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted.
Conversion Gain, IIP3 and NF
vs RF Frequency
2-Tone IIP2 vs RF Frequency
(∆fRF = 154MHz = fIM2)
32
75
30
IIP3
2
18
0
–1
NF
10
–2
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3
RF FREQUENCY (GHz)
5577 G03
29
IIP3
GC (dB), IIP3 (dBm), NF (dB)
RF = 1900MHz
LOW SIDE LO
17
NF
14
11
8
5
–40°C
25°C
85°C
GC
2
–6
–4
–2
2
0
LO INPUT POWER (dBm)
4
RF = 2550MHz
LOW SIDE LO
20
17
NF
14
11
–40°C
25°C
85°C
8
5
5577 G06
GC
–6
–4
–2
2
0
LO INPUT POWER (dBm)
4
40
35
30
25
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3
RF FREQUENCY (GHz)
5577 G09
14
11
5
0
–5
GC
–6
–4
–2
2
0
LO INPUT POWER (dBm)
4
6
5577 G08
MEASURED WITHOUT 180°
IF COMBINER (SINGLE ENDED)
–10
–40
LO-IF
–45
–50
–55
–65
–40°C
25°C
85°C
8
LO to Unbalanced IF Port Leakage
vs LO Frequency
–30
–60
NF
17
5577 G07
–25
LO LEAKAGE (dBm)
RF-IF
RF = 3500MHz
LOW SIDE LO
20
–1
6
–35
50
IIP3
23
2
–20
RF-LO
55
26
LO Leakage vs LO Frequency
60
ISOLATION (dB)
IIP3
23
–1
70
45
3500MHz Conversion Gain, IIP3
and NF vs LO Power
29
26
RF Isolation vs RF Frequency
65
8
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3
RF FREQUENCY (GHz)
5577 G05
32
2
6
TC = –40°C
TC = 25°C
TC = 85°C
9
LO-RF
–70
–75
–80
0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9
LO FREQUENCY (GHz)
5577 G10
LO LEAKAGE (dBm)
GC (dB), IIP3 (dBm), NF (dB)
32
29
20
12
2550MHz Conversion Gain, IIP3
and NF vs LO Power
32
23
13
10
45
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3
RF FREQUENCY (GHz)
5577 G04
1900MHz Conversion Gain, IIP3
and NF vs LO Power
26
14
11
50
LOW SIDE LO
HIGH SIDE LO
12
60
55
16
14
15
GC (dB), IIP3 (dBm), NF (dB)
20
16
P1dB (dBm)
1
GC
IIP2 (dBm)
22
17
65
24
GC (dB)
NF (dB), IIP3 (dBm)
70
26
–1
TC = –40°C
TC = 25°C
TC = 85°C
3
28
RF Input P1dB vs RF Frequency
18
–15
–20
–25
IF –
–30
–35
IF +
–40
0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9
LO FREQUENCY (GHz)
5577 G11
5577f
For more information www.linear.com/LTC5577
5
LTC5577
Typical Performance Characteristics
1300MHz to 4300MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted.
15
IFOUT
5
–20
–40
RF1 = 1899MHz
RF2 = 1901MHz
LO = 1747MHz
–50
–60
IM3
–70
–90
–12
–25
–35
–45
–65
–9
0
–6
–3
3
RF INPUT POWER (dBm/TONE)
–95
–12 –9
6
5577 G12
31
RF = 1900MHz
BLOCKER = 2000MHz
LO = 1747MHz
17
16
PLO = 0dBm
15
14
13
PLO = +3dBm
12
11
–25
–20
–15 –10 –5
5
0
RF BLOCKER POWER (dBm)
25
23
7
5
4
P1dB
13
3
SSB NF
GC
11
2
1
9
75
15
45
–15
CASE TEMPERATURE (°C)
5577 G15
25
20
15
10
0.0
0.3
0.6
0.9
1.2
CONVERSION GAIN (dB)
TC = 85°C
TC = 25°C
TC = –40°C
1.5
1.8
5577 G18
21
NF
15
12
9
6
–40°C
25°C
85°C
GC
3.1
3.4
3.3
3.2
3.5
VCC SUPPLY VOLTAGE (V)
3.6
5577 G17
1900MHz SSB NF Distribution
30
RF = 1900MHz
LOW SIDE LO
RF = 1900MHz
LOW SIDE LO
25
20
15
10
0
27.5
5577 G14
RF = 1900MHZ
LOW SIDE LO
18
5577 G16
20
15
10
5
5
5
6
4
IIP3
0
3.0
–1
105
25
30
2
–2
0
LO INPUT POWER (dBm)
24
1900MHz IIP3 Distribution
30
–4
27
3
0
7
–45
DISTRIBUTION (%)
DISTRIBUTION (%)
30
19
10
35
6
33
8
RF = 1900MHz
LOW SIDE LO
15
3RF-3LO
(RF = 1798MHz)
–85
10
6
40
0
–0.3
–80
11
9
17
2RF-2LO
(RF = 1823.5MHz)
Conversion Gain, IIP3 and NF
vs Supply Voltage
21
RF = 1900MHz
LOW SIDE LO
45
–75
5577 G13
27
1900MHz Conversion Gain Distribution
50
–70
–90
–6
15
GC (dB)
SSB NF (dB)
PLO = –3dBm
18
12
IIP3
29
19
6
–6 –3 0
9
3
RF INPUT POWER (dBm)
RF = 1900MHz
PRF = –3dBm
LO = 1747MHz
–65
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
NF (dB), IIP3 (dBm), P1dB (dBm)
20
2RF-2LO
(RF = 1823.5MHz)
–85
SSB Noise Figure
vs RF Blocker Level
21
3RF-3LO
(RF = 1798MHz)
–55
–75
IM5
–80
22
IFOUT
(RF = 1900MHz)
–15
DISTRIBUTION (%)
–30
–60
LO = 1747MHz
–5
–10
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
GC (dB), IIP3 (dBm), SSB NF (dB)
0
OUTPUT POWER (dBm)
OUTPUT POWER/TONE (dBm/TONE)
10
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
RELATIVE SPUR LEVEL (dBc)
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
28.5
TC = 85°C
TC = 25°C
TC = –40°C
29.5
30.5
IIP3 (dBm)
31.5
32.5
5577 G19
For more information www.linear.com/LTC5577
0
9
10
11
12
13
SSB NOISE FIGURE (dB)
TC = 85°C
TC = 25°C
TC = –40°C
14
5577 G20
5577f
LTC5577
Typical Performance Characteristics 700MHz to 1000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted.
Conversion Gain, IIP3 and NF
vs RF Frequency
21
18
15
NF
12
9
6
3
GC
0
–3
700
750
18
900
800
850
RF FREQUENCY (MHz)
12
9
6
950
1000
–50
30
–60
LO-RF LEAKAGE
10
–70
P1dB
12
NF
9
3
OUTPUT POWER (dBm)
OUTPUT POWER/TONE (dBm/TONE)
–40
IM3
–70
–45
–55
–65
PLO = 0dBm
PLO = +3dBm
NF
11
–25
105
–20
5577 G25
IFOUT
(RF = 850MHz)
3LO-3RF
(RF = 952MHz)
2LO-2RF
(RF = 926.5MHz)
5577 G27
–95
–12 –9
10
5577 G26
RF = 850MHz
PRF = –3dBm
LO = 1003MHz
–75
–80
2LO-2RF
(RF = 926.5MHz)
–85
3LO-3RF
(RF = 952MHz)
–85
6
–15 –10 –5
5
0
RF BLOCKER POWER (dBm)
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
–70
–25
–75
IM5
–9
0
–6
–3
3
RF INPUT POWER (dBm/TONE)
16
15
13
LO = 1003MHz
–35
PLO = –3dBm
17
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
5
RF = 850MHz
BLOCKER = 750MHz
LO = 1003MHz
12
15
–15
75
45
CASE TEMPERATURE (°C)
3.6
5577 G23
14
GC
5577 G24
RF1 = 849MHz
RF2 = 851MHz
LO = 1003MHz
–90
–12
RF = 850MHz
HIGH SIDE LO
6
3.2
3.4
3.5
3.3
VCC SUPPLY VOLTAGE (V)
SSB Noise Figure
vs RF Blocker Power
21
15
3.1
5577 G22
18
–20
–80
6
4
19
15
–40°C
25°C
85°C
GC
3
18
–5
–60
6
20
–15
–50
9
21
–10
–30
12
22
–3
–45
IFOUT
0
–2
2
0
LO INPUT POWER (dBm)
IIP3
0
–80
1200
NF
15
24
2-Tone IF Output Power, IM3
and IM5 vs RF Input Power
10
–4
27
GC, NF (dB), IIP3, P1dB (dBm)
RF ISOLATION (dB)
–40
RF-IF ISO
900
1000
1100
800
RF/LO FREQUENCY (MHz)
18
–3
3.0
30
LO LEAKAGE (dBm)
LO-IF LEAKAGE –30
RF = 850MHz
HIGH SIDE LO
21
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
–20
IIP3
24
0
5577 G21
RF-LO ISO
0
700
–40°C
25°C
85°C
GC
3
–3
–6
–10
50
20
NF
15
0
70
40
RF = 850MHz
HIGH SIDE LO
21
RF Isolation and LO Leakage
vs Frequency
60
GC (dB), IIP3 (dBm), SSB NF (dB)
HIGH SIDE LO
27
IIP3
24
SSB NF (dB)
24
30
27
GC (dB), IIP3 (dBm), SSB NF (dB)
GC (dB), IIP3 (dBm), SSB NF (dB)
27
30
IIP3
30
850MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
RELATIVE SPUR LEVEL (dBc)
33
850MHz Conversion Gain,
IIP3 and NF vs LO Power
6
–6 –3 0
9
3
RF INPUT POWER (dBm)
12
15
5577 G28
–90
–6
–4
–2
2
0
LO INPUT POWER (dBm)
4
6
5577 G29
5577f
For more information www.linear.com/LTC5577
7
LTC5577
Typical Performance Characteristics 375MHz to 525MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted.
IIP3
25
IIP2
80
31
75
28
70
25
HIGH SIDE LO
19
16
60
55
NF
13
50
10
45
7
40
4
35
1
30
GC
–2
375
400
425
475
450
RF FREQUENCY (MHz)
500
80
22
HIGH SIDE LO
19
NF
16
13
10
–40°C
25°C
85°C
7
4
GC
–2
–6
–4
5577 G30
–10
RF-LO ISO
70
IIP3
1
25
525
RF Isolation and LO Leakage
vs Frequency
–2
2
0
LO INPUT POWER (dBm)
60
50
–30
–40
RF-IF ISO
40
–50
–60
30
LO-RF LEAKAGE
20
10
375
6
4
–20
LO-IF LEAKAGE
425
5577 G31
475
575
625
525
RF/LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
65
22
IIP2 (dBm)
GC (dB), IIP3 (dBm), NF (dB)
28
GC (dB), IIP3 (dBm), NF (dB)
31
450MHz Conversion Gain,
IIP3 and NF vs LO Power
RF ISOLATION (dB)
Conversion Gain, IIP3, IIP2 and NF
vs RF Frequency
–70
–80
675
5577 G32
4.9GHz and 5.9GHz applications. IF = 900MHz, Low Side LO, PLO = 0dBm. Test circuit shown in Figure 1.
Conversion Gain and IIP3 vs
RF Frequency (4.9GHz Application)
4.9GHz Conversion Gain,
IIP3 and NF vs LO Power
27
27
IIP3
12
9
6
3
GC
0
–3
4.5
4.6
4.7 4.8 4.9 5.0
RF FREQUENCY (GHz)
18
15
12
6
5.1
–3
–6
5.2
GC (dB), IIP3 (dBm), SSB NF (dB)
24
18
15
12
9
6
3
GC
0
–3
5.6
5.7
5.8
6.0
5.9
RF FREQUENCY (GHz)
–30
30
–40
20
–60
3.6
6
4
3.8
5577 G34
6.2
5577 G36
0
5.2
5577 G35
60
RF-IF ISO
IIP3
NF
18
15
12
9
–40°C
25°C
85°C
6
–3
–6
5.0
RF Isolation and LO Leakage
vs Frequency (5.9GHz Application)
GC
–10
50
–20
40
RF-LO ISO
–30
20
–40
–50
–4
–2
2
0
LO INPUT POWER (dBm)
4
6
5577 G37
30
LO-IF LEAKAGE
–60
4.6
10
LO-RF LEAKAGE
0
6.1
4.0 4.2 4.4 4.6 4.8
RF/LO FREQUENCY (GHz)
0
21
3
10
LO-RF LEAKAGE
4.8
5.0 5.2 5.4 5.6 5.8
RF/LO FREQUENCY (GHz)
RF ISOLATION (dB)
GC (dB), IIP3 (dBm)
–2
2
0
LO INPUT POWER (dBm)
27
TC = 25°C
LO-IF LEAKAGE
5.9GHz Conversion Gain, IIP3
and NF vs LO Power
IIP3
27
8
–4
RF-LO ISO 40
–20
–50
5577 G33
30
21
GC
0
Conversion Gain and IIP3 vs
RF Frequency (5.9GHz Application)
24
–40°C
25°C
85°C
9
3
50
NF
LO LEAKAGE (dBm)
15
–10
IIP3
21
LO LEAKAGE (dBm)
GC (dB), IIP3 (dBm)
TC = 25°C
60
RF-IF ISO
RF ISOLATION (dB)
18
0
24
GC (dB), IIP3 (dBm), SSB NF (dB)
24
21
RF Isolation and LO Leakage
vs Frequency (4.9GHz Application)
6.0
0
6.2
5577 G38
5577f
For more information www.linear.com/LTC5577
LTC5577
Pin Functions
GND (Pins 1, 4, 9, 13, 16, Exposed Pad Pin 17): Ground.
These pins must be soldered to the RF ground plane on
the circuit board. The exposed pad metal of the package
provides both electrical contact to ground and good thermal
contact to the printed circuit board.
IADJ (Pin 8): Mixer Core Current Adjust Pin. Connecting
a resistor between this pin and ground will reduce the
mixer core DC supply current. Typical open-circuit DC
voltage is 2.2V. This pin should be left floating for optimum performance.
RF (Pin 2): Single-Ended RF Input. This pin is internally
connected to the primary winding of the integrated RF
transformer, which has low DC resistance to ground. A
series DC-blocking capacitor must be used if the RF
source has DC voltage present. The RF input is 50Ω
impedance matched, using the matching element values
shown in Figure 1, when the mixer is enabled.
LO (Pin 10): Single-Ended Local Oscillator Input. This
pin is internally connected to the primary winding of an
integrated transformer, which has low DC resistance to
ground. A series DC-blocking capacitor must be used
to avoid damage to the internal transformer. This input
is 50Ω impedance matched from 930MHz to 4GHz, even
when the IC is disabled. Operation down to 300MHz or
up to 6GHz is possible with the external matching shown
in Figure 1.
NC (Pins 3, 11): These pins are not connected internally.
They can be left floating, connected to ground, or to VCC.
EN (Pin 5): Enable Pin. When the input voltage is greater
than 2.5V, the mixer is enabled. When the input voltage is
less than 0.3V, the mixer is disabled. Typical input current is
less than 30µA. This pin has an internal pull-down resistor.
VCC (Pins 6, 7): Power Supply Pins. These pins must be
connected to a regulated 3.3V supply, with a bypass
capacitor located close to the pin. Typical DC current
consumption is 68mA.
TEMP (Pin 12): Temperature Sensing Diode. This pin is
connected to the anode of a diode that may be used to
measure the die temperature, by forcing a current and
measuring the voltage.
IF+/IF – (Pin 15/Pin 14): Open-Collector Differential IF
Output. These pins must be connected to the VCC supply
through impedance-matching inductors or a transformer
center tap. Typical DC current consumption is 56mA into
each pin.
Block Diagram
16
1 GND
2
15
14
IF+
GND
13
IF –
GND
RF
12
NC 11
RF
LO
3 NC
LO
4 GND
17 GND
(EXPOSED
PAD)
TEMP
10
BIAS
GND 9
EN
5
VCC
6
VCC
7
IADJ
8
5577 BD
5577f
For more information www.linear.com/LTC5577
9
LTC5577
test circuit
IF OUT
50Ω
0°
IF +
50Ω
DC2070A
EVALUATION BOARD
LAYER STACK-UP
(NELCO N4000-13)
0.062"
0.015"
0.015"
C7
RF
GND
BIAS
GND
180°
180°
COMBINER
IF –
50Ω
L1
L2
R1
R2
C8
C2
16
15
14
13
GND
IF+
IF –
GND
1 GND
TEMP 12
LTC5577
RFIN
50Ω
C3
L3
2 RF
NC 11
C4
17
GND
C5
3 NC
LOIN
50Ω
LO 10
C6
4 GND
GND 9
EN
VCC
VCC
IADJ
5
6
7
8
EN
C1
DC2070A
EVAL BOARD
C9
VCC
3.3V
180mA
5577 F01
APPLICATION
RF MATCH
RF (MHz)
LO
C3
C4
300 to 400
HS
330pF
18pF
375 to 525
HS
330pF
15pF
700 to 1000
HS
330pF
6pF
1300 to 4300
LS, HS
8.2pF
0.7pF
4900
LS
1.8nH (L)
0.7pF
5900
LS
0.25pF
—
LS = Low side, HS = High side. *IF = 900MHz
REF DES
C1, C2, C7, C8
C3 - C6
R1, R2
C9
L1, L2
L3
VALUE
1nF
See Table
115Ω, 1%
1µF
See Table
See Table
L3
2.2nH
2nH
—
—
—
—
LO MATCH
C5
C6
47pF
15pF
27pF
8.2pF
6.8pF
2.7pF
3.9pF
—
1pF
—
1pF
—
SIZE
0402
0402
0402
0603
0603
0402
IF MATCH
L1, L2
560nH
560nH
560nH
560nH
10nH*
10nH*
VENDOR
Murata
Murata
AVX
Coilcraft 0603LS
Coilcraft 0402HP
Figure 1. Standard Downmixer Test Circuit Schematic (Wideband 100Ω Differential IF Output)
10
5577f
For more information www.linear.com/LTC5577
LTC5577
Applications Information
Introduction
The LTC5577 incorporates a high linearity double-balanced
active mixer, a high-speed limiting LO buffer and bias/
enable circuits. See the Pin Functions and Block Diagram
sections for a description of each pin. A test circuit schematic showing all external components required for the
data sheet specified performance is shown in Figure 1.
A few additional components may be used to modify the
DC supply current or frequency response, which will be
discussed in the following sections.
The LO and RF inputs are single ended. The test circuit,
shown in Figure 1, is configured with a 100Ω differential
IF output. An external broadband 180° passive combiner
is used to combine the differential IF outputs to 50Ω
single-ended for characterization and test purposes. The
evaluation board layout is shown in Figure 2.
the other terminal is DC-grounded internally. For this reason, a series DC-blocking capacitor (C3) is needed if the
RF source has DC voltage present. The DC resistance of
the primary winding is approximately 3Ω. The secondary
winding of the RF transformer is internally connected to
the RF buffer amplifier.
ESD protection diodes are not used on the RF input due to
the high RF voltage swing associated with the LTC5577’s
high IIP3 and input P1dB. The internal RF transformer
provides some protection for the RF matching capacitor
against human-body model ESD strikes up to 3kV. Proper
ESD handling techniques must be employed to avoid
damaging this capacitor.
LTC5577
RFIN
C3
RF Input
A simplified schematic of the mixer’s RF input is shown
in Figure 3. As shown, one terminal of the integrated RF
transformer’s primary winding is connected to Pin 2, while
L3
C4
2
RF
RF
BUFFER
5577 F03
Figure 3. RF Input Schematic
Figure 2. Evaluation Board Layout
5577f
For more information www.linear.com/LTC5577
11
LTC5577
Applications Information
0
–5
RETURN LOSS (dB)
The RF input is 50Ω matched from 1300MHz to 4300MHz
using C3 = 8.2pF and C4 = 0.7pF. Matching to RF frequencies above or below this frequency range is easily
accomplished by using the the element values shown
in Figure 1. For RF frequencies below 500MHz, series
inductor L3 is also needed. The evaluation board does not
have provisions for L3, so the RF input trace needs to be
cut to install it in series. Measured RF input return losses
are shown in Figure 4. The RF input impedance and input
reflection coefficient, versus frequency are listed in Table 1.
–10
–15
–20
–25
–30
TC = 25°C
0.2
0.7
Table 1. RF Input Impedance and S11 (at Pin 2, No External
Matching, Mixer Enabled)
INPUT
IMPEDANCE
MAG
ANGLE
200
4.4 + j8.5
0.84
163
350
6.6 + j12.0
0.78
153
450
8.3 + j14.4
0.74
147
575
10.1 + j17.2
0.69
141
700
12.0 + j19.9
0.66
136
900
15.4 + j22.8
0.60
127
1100
18.9 + j25.9
0.55
120
1400
25.2 + j29.5
0.48
109
1700
33.2 + j30.9
0.40
98
1950
40.0 + j29.1
0.33
91
2200
45.2 + j24.3
0.25
87
2450
47.1 + j18.0
0.18
89
2700
44.7 + j12.8
0.15
105
3000
39.1 + j10.7
0.17
129
3300
33.0 + j13.8
0.26
132
3600
28.4 + j20.1
0.36
123
3900
25.2 + j29.1
0.48
109
4200
23.5 + j39.1
0.57
95
4500
22.8 + j52.1
0.66
82
4800
23.6 + j66.1
0.72
70
5400
28.6 + j98.2
0.80
51
6000
38.0 + j134.4
0.84
38
1.7
2.2
2.7 3.2 3.7 4.2
RF FREQUENCY (GHz)
4.7
5.2
5.7
6.2
5577 F04
375MHz TO 525MHz APP
700MHz TO 1000MHz APP
1300MHz TO 4300MHz APP
4.9GHz APP
5.9GHz APP
S11
FREQUENCY
(MHz)
1.2
Figure 4. RF Input Return Loss
LO Input
A simplified schematic of the LO input, with external
components is shown in Figure 5. Similar to the RF input, the integrated LO transformer’s primary winding is
DC‑grounded internally, and therefore requires an external
DC-blocking capacitor. Capacitor C5 provides the necessary
DC-blocking, and optimizes the LO input match over the
930MHz to 4GHz frequency range. The nominal LO input
level is 0dBm although the limiting amplifiers will deliver
excellent performance over a ±6dB input power range. LO
input power greater than +6dBm may cause conduction
of the internal ESD diodes.
LTC5577
LO
C5
LOIN
10
LO
BUFFER
C6
5577 F05
Figure 5. LO Input Schematic
12
5577f
For more information www.linear.com/LTC5577
LTC5577
Applications Information
To optimize the LO input match for frequencies below
1GHz, the value of C5 is increased and shunt capacitor C6
is added. A summary of values for C5 and C6, versus LO
frequency range is listed in Table 2. Measured LO input
return losses are shown in Figure 6. Finally, LO input impedance and input reflection coefficient, versus frequency
is shown in Table 3.
Table 2. LO Input Matching Values vs LO Frequency Range
FREQUENCY (MHz)
C5 (pF)
C6 (pF)
285 to 392
330
33
338 to 415
330
22
415 to 505
56
18
525 to 700
27
8.2
645 to 803
15
7.5
800 to 1150
6.8
2.7
930 to 4000
3.9
—
3500 to 6000
1.0
—
0
RETURN LOSS (dB)
–5
–10
S11
FREQUENCY
(MHz)
INPUT
IMPEDANCE
MAG
ANGLE
350
5.2 + j14.9
0.83
146.5
400
6.0 + j17.3
0.81
141.7
450
6.6 + j19.5
0.80
137.0
500
7.2 + j21.5
0.78
132.7
600
9.1 + j26.5
0.75
123.6
800
15.1 + j35.7
0.67
106.0
1000
24.9 + j43.6
0.58
89.5
1500
67.5 + j36.4
0.33
47.1
2000
61.7 – j4.2
0.11
–18.3
2500
40.3 – j7.1
0.13
–139.4
3000
31.7 + j1.8
0.23
173.1
3500
29.8 + j12.3
0.29
140.0
4000
31.5 + j22.9
0.35
113.2
4500
36.0 + j32.4
0.38
92.8
5000
59.0 + j40.6
0.36
57.1
5500
64.2 + j30.8
0.29
50.1
6000
57.4 + j19.7
0.19
59.0
0
TC = 25°C
C5 = 3.9pF
–2
–4
RETURN LOSS (dB)
The LO buffers have been designed such that the LO input
impedance does not change significantly when the IC is
disabled. This feature only requires that supply voltage is
applied. The actual performance of this feature is shown
in Figure 7. As shown, the LO input return loss is better
than 10dB over the 1GHz to 4GHz frequency range when
the IC is enabled or disabled.
Table 3. LO Input Impedance and S11 (at Pin 10, No External
Matching, Mixer Enabled)
–6
–8
–10
–12
–14
DISABLED
ENABLED
–16
–15
–18
0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7
FREQUENCY (GHz)
–20
5577 F07
TC = 25°C
–25
0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2
FREQUENCY (GHz)
5577 F06
Figure 7. LO Input Return Loss—Mixer Enabled and Disabled
C5 = 27pF, C6 = 8.2pF
C5 = 6.8pF, C6 = 2.7pF
C5 = 3.9pF
C5 = 1.0pF
Figure 6. LO Input Return Loss
5577f
For more information www.linear.com/LTC5577
13
LTC5577
Applications Information
IF Output
The IF output schematic with external matching components is shown in Figure 8. As shown, the output is differential open collector. Each IF output pin must be biased
at the supply voltage (VCC), which is applied through the
external matching inductors (L1 and L2) shown in Figure 8. Each pin draws approximately 56mA of DC supply
current (112mA total). Inductors with less than 1Ω DC
resistance, such as Coilcraft 0603LS, are required for the
highest IIP3 and P1dB.
The differential IF output impedance can be modeled as a
frequency-dependent parallel R-C circuit, using the values
listed in Table 4. This data is referenced to the package
pins (with no external components) and includes the
effects of the IC and package parasitics. Resistors R1
and R2 are used to reduce the output resistance, which
increases the IF bandwidth and input P1dB, but reduces
the conversion gain.
100Ω Differential IF Output Matching
The standard downmixer test circuit shown in Figure 1
uses 115Ω resistors to realize a 100Ω differential output.
560nH pull-up inductors are used to deliver a broadband
IF output from 10MHz to greater than 600MHz. C7 and
C8 are 1nF DC-blocking capacitors.
IF+
50Ω
IF –
50Ω
C7
L1
L2
R1
R2
C8
To match the IF output for frequencies greater than 600MHz,
the values of L1 and L2 are selected to resonate with
the internal IF capacitance (CIF) at the desired IF center
frequency, using the following equation:
L1, L2 =
1
(2 • π • fIF )2 • 2 •CIF
Table 4 summarizes the optimum IF matching element
values, versus IF center frequency, to be used in the
standard downmixer test circuit shown in Figure 1. The
inductor values are slightly less than the ideal calculated
values due to the additional capacitance of the evaluation
board traces. Measured differential IF output return losses
are shown in Figure 9.
Table 4. IF Output Impedance and Bandpass Matching Element
Values vs IF Frequency.
IF FREQUENCY
(MHz)
DIFFERENTIAL
IF OUTPUT
IMPEDANCE
(RIF || CIF)
10-600
450
EXTERNAL MATCHING
ELEMENT VALUES
(100Ω DIFFERENTIAL OUTPUT)
L1, L2
R1, R2
390Ω||1.55pF
560nH
115Ω
390Ω||1.55pF
39nH
115Ω
800
367Ω ||1.68pF
10nH
115Ω
1000
343Ω ||1.73pF
6nH
133Ω
1200
317Ω ||1.81pF
3.3nH
191Ω
1400
261Ω ||1.91pF
1600
212Ω ||2.02pF
1800
156Ω ||2.19pF
2000
105Ω ||2.43pF
VCC
C2
1nF
15
IF+
LTC5577
14
IF–
VCC
5577 F08
Figure 8. IF Output Schematic with External Matching
14
5577f
For more information www.linear.com/LTC5577
LTC5577
Applications Information
Measured conversion gain and IIP3 using a Mini-Circuits
TC2-1T+ (2:1) IF transformer are shown in Figure 11, with
the measured performance of the standard 100Ω differential output for comparison. As shown, the single-ended
conversion gain is about 0.5dB less up to 700MHz due to
the transformer loss. Above 700MHz, the IF transformer
loss increases rapidly. Up to 600MHz, both solutions have
similar IIP3. Above 600MHz, the transformer version has
about 1dB lower IIP3.
0
–10
–15
–20
–25
–30
ZO = 100Ω DIFFERENTIAL
TC = 25°C
50
250 450 650 850 1050 1250 1450 1650
IF FREQUENCY (MHz)
5577 F09
30
27
Figure 9. Differential IF Output Return Loss—
100Ω Differential Load
Wideband 50Ω Single-Ended IF Output Matching
For applications that require a 50Ω single-ended IF output,
a 2:1 transformer can be added to the 100Ω differential
output as shown in Figure 10. Recommended transformers
include the Mini-Circuits TC2-1T+, or Coilcraft WBC2-1T.
No other IF matching element changes are required.
IIP3
50Ω
24
100Ω
21
50Ω
18
3
100Ω
2
1
0
GC (dB)
L = 560nH, R = 115Ω
L = 39nH, R = 115Ω
L = 10nH, R = 115Ω
L = 6nH, R = 133Ω
L = 3.3nH, R = 191Ω
4
33
IIP3 (dBm)
RETURN LOSS (dB)
–5
GC
–1
RF = 1.6GHz TO 2.6GHz
LO = 1.59GHz/0dBm
–2
15 Z = 50Ω
RF
TC = 25°C
–3
12
10 110 210 310 410 510 610 710 810 910 1010
IF OUTPUT FREQUENCY (MHz)
5577 F11
Figure 11. Conversion Gain and IIP3 vs IF Output Frequency.
50Ω Single-Ended Output Using a Transformer vs 100Ω
Differential Output
IFOUT
50Ω
2:1
1nF
VCC
560nH
1nF
560nH
115Ω
115Ω
IF +
IF –
LTC5577
5577 F10
Figure 10. 50Ω Single-Ended IF Output
5577f
For more information www.linear.com/LTC5577
15
LTC5577
Applications Information
Mixer Bias Current Reduction
The IADJ pin (Pin 8) is available for reducing the mixer
core DC current consumption at the expense of linearity
and P1dB. For the highest performance, this pin should
be left floating. As shown in Figure 12, an internal bias
circuit produces a 6mA reference current for the mixer
core. If a resistor is connected to Pin 8, as shown in Figure 12, a portion of the reference current can be shunted
to ground, resulting in reduced mixer core current. For
example, R3 = 220Ω will shunt away 3mA from Pin 8
and reduce the mixer core current by 50%. The nominal,
open-circuit DC voltage at the IADJ pin is 2.2V. Table 5
lists DC supply current and RF performance at 1900MHz
for various values of R3.
Table 5. Mixer Performance with Reduced Current
(RF = 1900MHz, Low Side LO, IF = 153MHz)
R3 (Ω)
ICC (mA)
GC (dB)
IIP3
(dBm)
P1dB
(dBm)
NF (dB)
Open
180
0.7
30.2
15.2
11.8
2k
166
0.6
28.0
15.0
11.1
1k
156
0.5
26.7
14.8
10.9
220
133
0.2
23.9
13.4
10.4
120
125
0.0
22.3
12.4
10.3
75
122
0.0
22.0
12.0
10.3
MIXER CORE
CURRENT
ICC
L1
68mA
L2
15
IF+
VCC
14
IF –
7
VCC
6mA
BIAS
6
VCC
LTC5577
360Ω
112mA
BIAS
IADJ
8
R3
5577 F12
Figure 12. IADJ Interface
16
5577f
For more information www.linear.com/LTC5577
LTC5577
Applications Information
Enable Interface
Spurious Output Levels
Figure 13 shows a simplified schematic of the enable
interface. To enable the mixer, the EN voltage must be
higher than 2.5V. If the enable function is not required,
the pin should be connected directly to VCC. The voltage
at the EN pin should never exceed the power supply voltage (VCC) by more than 0.3V. If this should occur, the
supply current could be sourced through the ESD diode,
potentially damaging the IC.
Mixer spurious output levels versus harmonics of the
RF and LO are tabulated in Table 6. The spur levels were
measured on a standard evaluation board using the test
circuit shown in Figure 1. Table 6a shows the relative
spur levels with an RF input power level of –3dBm while
Table 6b shows the same relative spur levels with the RF
input power reduced to –6dBm.
The EN pin has an internal 300k pull-down resistor.
Therefore, the mixer will be disabled with the enable pin
left floating.
Supply Voltage Ramping
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD clamp circuits connected to the
VCC pin. Depending on the supply inductance, this could
result in a supply voltage transient that exceeds the 4.0V
maximum rating. A supply voltage ramp time greater than
1ms is recommended.
7
LTC5577
6
VCC
VCC
CLAMP
500Ω
EN
5
CMOS
300k
fSPUR = (M • fRF) – (N • fLO)
Table 6. IF Output Spur Levels (dBc). RF = 1900MHz,
IF = 153MHz, Low Side LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C
Table 6a. PRF = –3dBm
0
1
0
–25
1 –34
0
2 –72 –59
*
–70
M 3
4 –88
*
5
*
*
6
*
–88
7
*
–88
*Less than –90dBc
2
–35
–34
–70
*
–90
*
*
*
Table 6b. PRF = –6dBm
0
5577 F13
Figure 13. Enable Input Circuit
EN
The spur frequencies can be calculated using the following equation:
1
0
–22
1 –34
0
2 –76 –62
M 3 –87 –76
4
*
*
5
*
–87
6
*
*
7
*
–86
*Less than –90dBc
2
–31
–34
–73
*
–87
*
*
*
N
3
4
–35 –39
–18 –46
–65 –81
–79
*
*
*
*
*
*
*
*
*
5
–55
–41
*
–86
*
*
*
*
6
–35
–71
–81
*
*
*
*
*
7
–58
–53
*
–83
*
*
*
*
8
–55
–72
–76
*
*
*
*
*
N
3
4
–18 –36
–68 –46
–84 –84
*
*
*
*
*
*
*
*
*
*
5
–41
–86
*
*
*
*
*
*
6
–32
–71
–85
*
*
*
*
*
7
–55
–53
*
*
*
*
*
*
8
–51
–73
–80
*
*
*
*
*
5577f
For more information www.linear.com/LTC5577
17
LTC5577
Typical Applications
700MHz to 4GHz Wideband RF Application
100Ω DIFFERENTIAL LOAD
50Ω
50Ω
IF –
50Ω
IF +
50Ω
C7
1nF
L1 560nH
L2 560nH
R1 115Ω
R2 115Ω
C8
1nF
C2
1nF
16
15
14
13
GND
IF+
IF –
GND
1 GND
RFIN
700MHz
TO 4GHz
TEMP 12
LTC5577
C3
3.9pF
L4
9.5nH
C4
1pF
2 RF
NC 11
17
GND
C3
2.7pF
3 NC
LO 10
L7
15nH
4 GND
LOIN
820MHz
TO 4.3GHz
GND 9
EN
VCC
VCC
IADJ
5
6
7
8
EN
DC2070A
EVAL BOARD
VCC
3.3V
C9
1µF
C1
1nF
5577 TA02a
RF and LO Input Return Loss
7
32 IIP3
6
30
5
28
26
HIGH
SIDE
LO
LOW
SIDE
LO
3
IF = 153MHz
PLO = 0dBm
TC = 25°C
24
22
20
4
LOW SIDE AND
HIGH SIDE LO
2
1
GC
0
–5
RETURN LOSS (dB)
34
GC (dB)
IIP3 (dBm)
Conversion Gain and IIP3
vs RF Input Frequency
–10
LO
–15
RF
–20
0
18
–1
0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0
RF FREQUENCY (GHz)
–25
0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7
RF/LO FREQUENCY (GHz)
5577 TA02b
18
5577 TA02c
5577f
For more information www.linear.com/LTC5577
LTC5577
Package Description
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
0.72 ±0.05
4.35 ±0.05
2.15 ±0.05
2.90 ±0.05 (4 SIDES)
PACKAGE OUTLINE
0.30 ±0.05
0.65 BSC
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
BOTTOM VIEW—EXPOSED PAD
4.00 ±0.10
(4 SIDES)
0.75 ±0.05
R = 0.115
TYP
15
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
16
0.55 ±0.20
PIN 1
TOP MARK
(NOTE 6)
1
2.15 ±0.10
(4-SIDES)
2
(UF16) QFN 10-04
0.200 REF
0.00 – 0.05
0.30 ±0.05
0.65 BSC
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
5577f
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection
of its circuits
as described
herein will not infringe on existing patent rights.
For more
information
www.linear.com/LTC5577
19
LTC5577
Typical Application
Measured Performance Using 50Ω, 100Ω, 200Ω and 400Ω Differential IF Output Impedance
IFOUT
50Ω
1nF
8.2pF
LTC5577
RF = 1900MHz, IF = 153MHz, Low Side LO,
PLO = 0dBm, TC = 25°C
T1
560nH
560nH
R1
R2
IF –
IF +
ZIF
T1
(DIFF) R1, R2 (RATIO)
1nF
3.9pF
1nF
RF
LO
RF
0.7pF
LO
BIAS
EN
EN
IADJ
VCC
5577 TA03
1nF
3.3V
Input
10dB IF
GC IIP3 P1dB Return Loss
(dB) (dBm) (dBm) BW (MHz)
50Ω
53.6Ω
TC1-1+
(1:1)
–2.8
30.9
17.0
9-855
100Ω
115Ω
TC2-1T+
(2:1)
0.2
30.1
15.2
20-636
200Ω
249Ω TC4-1W+ 2.2
(4:1)
29.6
12.2
35-300
400Ω
Open
27.4
8.1
54-193
TC8-1+
(8:1)
4.0
Measured performance includes IF transformer loss
Related Parts
PART NUMBER
Infrastructure
LTC5567
LTC5510
LTC5551
DESCRIPTION
COMMENTS
1.9dB Gain, 26.9dBm IIP3 and 11.8dB NF at 1950MHz, 3.3V/89mA Supply
1.5dB Gain, Up- and Downconversion, 3.3V or 5V Supply
2.4dB Gain, 36dBm IIP3, <10dB NF, 3.3V/204mA Supply
LTC5541
LTC6400-X
400MHz to 4GHz, Active Downconverting Mixer
1MHz to 6GHz Wideband High Linearity Active Mixer
300MHz to 3.5GHz Ultrahigh Dynamic Range
Downconverting Mixer
600MHz to 4.5GHz Dual Downconverting Mixer Family
300MHz to 4GHz, 3.3V Dual Active Downconverting
Mixer
600MHz to 4GHz, 5V Downconverting Mixer Family
300MHz Low Distortion IF Amp/ADC Driver
LTC6412
LT5554
LTC6430-15
LTC6431-15
31dB Linear Analog VGA
Ultralow Distort IF Digital VGA
High Linearity Differential IF Amplifier
High Linearity 50Ω Gain Block
LTC559x
LTC5569
RF Power Detectors
LT5538
40MHz to 3.8GHz Log Detector
LT5581
6GHz Low Power RMS Detector
LTC5582
40MHz to 10GHz RMS Detector
LTC5583
Dual 6GHz RMS Power Detector
ADCs
LTC2208
LTC2153-14
16-Bit, 130Msps ADC
14-Bit, 310Msps Low Power ADC
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply
8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply
Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz,
Differential I/O
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
50dBm OIP3 at 240MHz, 15dB Gain, 3dB NF
47dBm OIP3 at 240MHz, NF = 3.3dB, 15.5dB Gain, Single-Ended 50Ω Input and
Output Ports
±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic
Range
Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB
Isolation
78dBFS Noise Floor, >83dB SFDR at 250MHz
68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
20 Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
For more information www.linear.com/LTC5577
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com/LTC5577
5577f
LT 1213 • PRINTED IN USA
 LINEAR TECHNOLOGY CORPORATION 2013
Similar pages