LTC5577 300MHz to 6GHz High Signal Level Active Downconverting Mixer Description Features n n n n n n n n n n n +30dBm IIP3 +15dBm Input P1dB 0dB Conversion Gain Wideband Differential IF Output Very Low 2 × 2 and 3 × 3 Spurs IF Frequency Range Up to 1.5GHz Low LO-RF Leakage LO Input 50Ω Matched when Shutdown –40°C to 105°C Operation (TC) Very Small Solution Size 16-Lead (4mm × 4mm) QFN package The LTC®5577 active mixer is optimized for RF downconverting applications that require high input signal handling capability and wide bandwidth. The wideband IF output uses external resistors to set the output impedance, allowing the flexibility to match directly into differential IF loads, such as filters and amplifiers. The part is characterized and specified with a 100Ω differential output impedance, although it can be used with output impedances ranging from 50Ω to 400Ω, with higher gain and reduced IIP3 and P1dB at the higher impedance levels. The IF output is usable up to 1.5GHz. In receiver applications, the high input P1dB and IIP3 allow the use of higher gain low noise amplifiers, resulting in higher receiver sensitivity. Integrated transformers on the RF and LO inputs provide single-ended 50Ω interfaces, while minimizing the solution size. Applications n n n Wireless Infrastructure Receivers DPD Observation Receivers CATV Infrastructure L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application Wideband Downconverting Mixer with 1GHz IF Bandwidth and +15dBm Input P1dB into 100Ω Load Voltage Conversion Gain and IIP3 vs IF Output Frequency 100Ω IF LOAD LTC5577 560nH 560nH 115Ω 115Ω 33 1nF IF – IF + 3.9pF 1nF RF LO RF 0.7pF EN 30 8 27 7 RF = 1.6GHz TO 2.6GHz 24 LO = 1.59GHz/0dBm ZRF = 50Ω Z = 100Ω DIFFERENTIAL 21 IF TC = 25°C 15 VCC 1nF 6 5 18 LO BIAS EN 9 IIP3 IADJ 5577 TA01a 3.3V 180mA GV (dB) 8.2pF 50Ω IIP3 (dBm) 1nF 50Ω 4 GV 3 12 2 10 110 210 310 410 510 610 710 810 910 1010 IF OUTPUT FREQUENCY (MHz) 5577 TA01b 5577f For more information www.linear.com/LTC5577 1 LTC5577 Pin Configuration Supply Voltage (VCC, IF+, IF –)...................................4.0V Enable Input Voltage (EN).................–0.3V to VCC + 0.3V LO Input Power (300MHz to 6GHz)..................... +10dBm LO Input DC Voltage................................................ ±0.1V RF Input Power (300MHz to 6GHz)..................... +18dBm RF Input DC Voltage................................................ ±0.1V TEMP Monitor Input Current...................................10mA Operating Temperature Range (TC)......... –40°C to 105°C Junction Temperature (TJ)..................................... 150°C Storage Temperature Range................... –65°C to 150°C GND IF – IF+ GND TOP VIEW 16 15 14 13 GND 1 12 TEMP RF 2 11 NC 17 GND NC 3 10 LO GND 4 6 7 8 VCC IADJ 9 5 EN (Note 1) VCC Absolute Maximum Ratings GND UF PACKAGE 16-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 150°C, θJC = 8°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB CAUTION: THIS PART IS SENSITIVE TO ELECTROSTATIC DISCHARGE (ESD). PROPER ESD HANDLING PRECAUTIONS MUST BE OBSERVED. Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE LTC5577IUF#PBF LTC5577IUF#TRPBF 5577 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on nonstandard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C, VCC = 3.3V, EN = High. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS MIN TYP MAX UNITS RF Input Frequency Range External Matching Required l 300 to 6000 MHz LO Input Frequency Range External Matching Required l 300 to 6000 MHz IF Output Frequency Range External Matching Required l 1 to 1500 MHz RF Input Return Loss ZO = 50Ω, 1300MHz to 4300MHz, C3 = 8.2pF, C4 = 0.7pF >10 dB LO Input Return Loss ZO = 50Ω, 930MHz to 4000MHz, C5 = 3.9pF >10 dB IF+, IF – Output Return Loss ZO = 50Ω, 20MHz to 500MHz, L1, L2 = 560nH, R1, R2 = 115Ω LO Input Power >10 –6 0 dB 6 dBm RF to LO Isolation RF = 300MHz to 2500MHz RF = 2500MHz to 4000MHz RF = 4000MHz to 6000MHz >64 >50 >40 dB dB dB RF to IF Isolation RF = 300MHz to 6000MHz >30 dB 2 5577f For more information www.linear.com/LTC5577 LTC5577 AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, PLO = 0dBm, IF = 153MHz, PRF = –3dBm (–3dBm/ tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS Power Conversion Gain RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1900MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO RF = 4900MHz, Low Side LO, IF = 900MHz RF = 5900MHz, Low Side LO, IF = 900MHz MIN –1.0 TYP MAX UNITS dB dB dB dB dB dB dB –0.5 0.5 0.7 0.5 0.2 0.1 –0.7 Conversion Gain Flatness RF = 1900 ±140MHz, LO = 1747MHz, IF = 153 ±140MHz Conversion Gain vs Temperature TC = –40°C to 105ºC, RF = 1900MHz, Low Side LO 2-Tone Input 3rd Order Intercept (∆fRF = 2MHz) RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1900MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO RF = 4900MHz, Low Side LO, IF = 900MHz RF = 5900MHz, Low Side LO, IF = 900MHz 2-Tone Input 2nd Order Intercept (∆fRF = 154MHz = fIM2) RF = 450MHz (527MHz/373MHz), LO = 603MHz RF = 850MHz (927MHz/773MHz), LO = 1003MHz RF = 1900MHz (1977MHz/1823MHz), LO = 1747MHz RF = 2550MHz (2627MHz/2473MHz), LO = 2397MHz RF = 3500MHz (3577MHz/3423MHz), LO = 3347MHz SSB Noise Figure RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1900MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO RF = 4900MHz, Low Side LO, IF = 900MHz RF = 5900MHz, Low Side LO, IF = 900MHz 13.4 11.7 11.8 12.5 14.3 15.2 15.0 RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm RF = 1900MHz, Low Side LO, 2000MHz Blocker at 5dBm 16.1 15.8 dB dB 850MHz: fRF = 926.5MHz at –3dBm, fLO = 1003MHz 1/2IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz) 1900MHz: fRF = 1823.5MHz at –3dBm, fLO = 1747MHz –85 –79 dBc dBc 850MHz: fRF = 952MHz at –3dBm, fLO = 1003MHz 1/3IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz) 1900MHz: fRF = 1798MHz at –3dBm, fLO = 1747MHz –86 –81 dBc dBc Input 1dB Compression RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1900MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO RF = 4900MHz, Low Side LO, IF = 900MHz RF = 5900MHz, Low Side LO, IF = 900MHz 15.7 15.3 15.2 15.6 15.4 14.0 13.5 dBm dBm dBm dBm dBm dBm dBm LO to RF Leakage LO = 300MHz to 2500MHz LO = 2500MHz to 5200MHz LO = 5200MHz to 6000MHz ≤60 ≤50 ≤35 dBm dBm dBm LO to IF Leakage LO = 300MHz to 1800MHz LO = 1800MHz to 6000MHz ≤28 ≤33 dBm dBm SSB Noise Figure Under Blocking ±0.2 l dB –0.013 dB/°C 29.5 29.8 30.2 31.0 28.0 24.0 26.0 dBm dBm dBm dBm dBm dBm dBm 68 68 61 60 66 dBm dBm dBm dBm dBm 14.0 dB dB dB dB dB dB dB 5577f For more information www.linear.com/LTC5577 3 LTC5577 DC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C, VCC = 3.3V, EN = High, unless otherwise noted. Test circuit shown in Figure 1. (Note 2) PARAMETER CONDITIONS Supply Voltage (VCC) l Supply Current Enabled Disabled MIN TYP MAX 3.0 3.3 3.6 V 180 217 200 mA µA EN = High EN = Low UNITS Enable Logic Input (EN) Input High Voltage (On) l Input Low Voltage (Off) l –0.3V to VCC + 0.3V Input Current 2.5 V –60 0.3 V 200 µA Turn-On Time 0.3 µs Turn-Off Time 0.1 µs 2.2 V Pin Shorted to Ground 3.6 mA DC Voltage at TJ = 25°C IIN = 10µA IIN = 80µA 716 773 mV mV Voltage Temperature Coefficient IIN = 10µA IIN = 80µA Mixer DC Current Adjust (IADJ) Open-Circuit DC Voltage Short-Circuit DC Current Temperature Sensing Diode (TEMP) Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5577 is guaranteed functional over the –40°C to 105°C case temperature range (θJC = 8°C/W). l l 900 192 850 TEMP DIODE VOLTAGE (mV) SUPPLY CURRENT (mA) 196 180 176 172 168 3.0 800 IIN = 80µA 750 700 650 IIN = 10µA 600 550 3.1 3.4 3.3 3.5 3.2 VCC SUPPLY VOLTAGE (V) TC = 105°C TC = 85°C TC = 55°C 4 EN = High, Test circuit shown in Figure 1. TEMP Diode Voltage vs Junction Temperature Supply Current vs Supply Voltage 184 mV/°C mV/°C Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 2dB matching pad on RF input, and bandpass filter on the LO input. Note 4: Specified performance excludes external 180° IF combiner loss. Typical DC Performance Characteristics 188 –1.75 –1.56 3.6 500 –45 5577 G01 5 30 55 80 105 –20 JUNCTION TEMPERATURE (°C) 130 5577 G02 TC = 25°C TC = –10°C TC = –40°C 5577f For more information www.linear.com/LTC5577 LTC5577 Typical Performance Characteristics 1300MHz to 4300MHz application. Test circuit shown in Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Conversion Gain, IIP3 and NF vs RF Frequency 2-Tone IIP2 vs RF Frequency (∆fRF = 154MHz = fIM2) 32 75 30 IIP3 2 18 0 –1 NF 10 –2 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 RF FREQUENCY (GHz) 5577 G03 29 IIP3 GC (dB), IIP3 (dBm), NF (dB) RF = 1900MHz LOW SIDE LO 17 NF 14 11 8 5 –40°C 25°C 85°C GC 2 –6 –4 –2 2 0 LO INPUT POWER (dBm) 4 RF = 2550MHz LOW SIDE LO 20 17 NF 14 11 –40°C 25°C 85°C 8 5 5577 G06 GC –6 –4 –2 2 0 LO INPUT POWER (dBm) 4 40 35 30 25 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 RF FREQUENCY (GHz) 5577 G09 14 11 5 0 –5 GC –6 –4 –2 2 0 LO INPUT POWER (dBm) 4 6 5577 G08 MEASURED WITHOUT 180° IF COMBINER (SINGLE ENDED) –10 –40 LO-IF –45 –50 –55 –65 –40°C 25°C 85°C 8 LO to Unbalanced IF Port Leakage vs LO Frequency –30 –60 NF 17 5577 G07 –25 LO LEAKAGE (dBm) RF-IF RF = 3500MHz LOW SIDE LO 20 –1 6 –35 50 IIP3 23 2 –20 RF-LO 55 26 LO Leakage vs LO Frequency 60 ISOLATION (dB) IIP3 23 –1 70 45 3500MHz Conversion Gain, IIP3 and NF vs LO Power 29 26 RF Isolation vs RF Frequency 65 8 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 RF FREQUENCY (GHz) 5577 G05 32 2 6 TC = –40°C TC = 25°C TC = 85°C 9 LO-RF –70 –75 –80 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 LO FREQUENCY (GHz) 5577 G10 LO LEAKAGE (dBm) GC (dB), IIP3 (dBm), NF (dB) 32 29 20 12 2550MHz Conversion Gain, IIP3 and NF vs LO Power 32 23 13 10 45 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 RF FREQUENCY (GHz) 5577 G04 1900MHz Conversion Gain, IIP3 and NF vs LO Power 26 14 11 50 LOW SIDE LO HIGH SIDE LO 12 60 55 16 14 15 GC (dB), IIP3 (dBm), NF (dB) 20 16 P1dB (dBm) 1 GC IIP2 (dBm) 22 17 65 24 GC (dB) NF (dB), IIP3 (dBm) 70 26 –1 TC = –40°C TC = 25°C TC = 85°C 3 28 RF Input P1dB vs RF Frequency 18 –15 –20 –25 IF – –30 –35 IF + –40 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 LO FREQUENCY (GHz) 5577 G11 5577f For more information www.linear.com/LTC5577 5 LTC5577 Typical Performance Characteristics 1300MHz to 4300MHz application. Test circuit shown in Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. 15 IFOUT 5 –20 –40 RF1 = 1899MHz RF2 = 1901MHz LO = 1747MHz –50 –60 IM3 –70 –90 –12 –25 –35 –45 –65 –9 0 –6 –3 3 RF INPUT POWER (dBm/TONE) –95 –12 –9 6 5577 G12 31 RF = 1900MHz BLOCKER = 2000MHz LO = 1747MHz 17 16 PLO = 0dBm 15 14 13 PLO = +3dBm 12 11 –25 –20 –15 –10 –5 5 0 RF BLOCKER POWER (dBm) 25 23 7 5 4 P1dB 13 3 SSB NF GC 11 2 1 9 75 15 45 –15 CASE TEMPERATURE (°C) 5577 G15 25 20 15 10 0.0 0.3 0.6 0.9 1.2 CONVERSION GAIN (dB) TC = 85°C TC = 25°C TC = –40°C 1.5 1.8 5577 G18 21 NF 15 12 9 6 –40°C 25°C 85°C GC 3.1 3.4 3.3 3.2 3.5 VCC SUPPLY VOLTAGE (V) 3.6 5577 G17 1900MHz SSB NF Distribution 30 RF = 1900MHz LOW SIDE LO RF = 1900MHz LOW SIDE LO 25 20 15 10 0 27.5 5577 G14 RF = 1900MHZ LOW SIDE LO 18 5577 G16 20 15 10 5 5 5 6 4 IIP3 0 3.0 –1 105 25 30 2 –2 0 LO INPUT POWER (dBm) 24 1900MHz IIP3 Distribution 30 –4 27 3 0 7 –45 DISTRIBUTION (%) DISTRIBUTION (%) 30 19 10 35 6 33 8 RF = 1900MHz LOW SIDE LO 15 3RF-3LO (RF = 1798MHz) –85 10 6 40 0 –0.3 –80 11 9 17 2RF-2LO (RF = 1823.5MHz) Conversion Gain, IIP3 and NF vs Supply Voltage 21 RF = 1900MHz LOW SIDE LO 45 –75 5577 G13 27 1900MHz Conversion Gain Distribution 50 –70 –90 –6 15 GC (dB) SSB NF (dB) PLO = –3dBm 18 12 IIP3 29 19 6 –6 –3 0 9 3 RF INPUT POWER (dBm) RF = 1900MHz PRF = –3dBm LO = 1747MHz –65 Conversion Gain, IIP3, NF and RF Input P1dB vs Temperature NF (dB), IIP3 (dBm), P1dB (dBm) 20 2RF-2LO (RF = 1823.5MHz) –85 SSB Noise Figure vs RF Blocker Level 21 3RF-3LO (RF = 1798MHz) –55 –75 IM5 –80 22 IFOUT (RF = 1900MHz) –15 DISTRIBUTION (%) –30 –60 LO = 1747MHz –5 –10 2 × 2 and 3 × 3 Spur Suppression vs LO Power GC (dB), IIP3 (dBm), SSB NF (dB) 0 OUTPUT POWER (dBm) OUTPUT POWER/TONE (dBm/TONE) 10 Single Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power RELATIVE SPUR LEVEL (dBc) 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 28.5 TC = 85°C TC = 25°C TC = –40°C 29.5 30.5 IIP3 (dBm) 31.5 32.5 5577 G19 For more information www.linear.com/LTC5577 0 9 10 11 12 13 SSB NOISE FIGURE (dB) TC = 85°C TC = 25°C TC = –40°C 14 5577 G20 5577f LTC5577 Typical Performance Characteristics 700MHz to 1000MHz application. Test circuit shown in Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Conversion Gain, IIP3 and NF vs RF Frequency 21 18 15 NF 12 9 6 3 GC 0 –3 700 750 18 900 800 850 RF FREQUENCY (MHz) 12 9 6 950 1000 –50 30 –60 LO-RF LEAKAGE 10 –70 P1dB 12 NF 9 3 OUTPUT POWER (dBm) OUTPUT POWER/TONE (dBm/TONE) –40 IM3 –70 –45 –55 –65 PLO = 0dBm PLO = +3dBm NF 11 –25 105 –20 5577 G25 IFOUT (RF = 850MHz) 3LO-3RF (RF = 952MHz) 2LO-2RF (RF = 926.5MHz) 5577 G27 –95 –12 –9 10 5577 G26 RF = 850MHz PRF = –3dBm LO = 1003MHz –75 –80 2LO-2RF (RF = 926.5MHz) –85 3LO-3RF (RF = 952MHz) –85 6 –15 –10 –5 5 0 RF BLOCKER POWER (dBm) 2 × 2 and 3 × 3 Spur Suppression vs LO Power –70 –25 –75 IM5 –9 0 –6 –3 3 RF INPUT POWER (dBm/TONE) 16 15 13 LO = 1003MHz –35 PLO = –3dBm 17 Single Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 5 RF = 850MHz BLOCKER = 750MHz LO = 1003MHz 12 15 –15 75 45 CASE TEMPERATURE (°C) 3.6 5577 G23 14 GC 5577 G24 RF1 = 849MHz RF2 = 851MHz LO = 1003MHz –90 –12 RF = 850MHz HIGH SIDE LO 6 3.2 3.4 3.5 3.3 VCC SUPPLY VOLTAGE (V) SSB Noise Figure vs RF Blocker Power 21 15 3.1 5577 G22 18 –20 –80 6 4 19 15 –40°C 25°C 85°C GC 3 18 –5 –60 6 20 –15 –50 9 21 –10 –30 12 22 –3 –45 IFOUT 0 –2 2 0 LO INPUT POWER (dBm) IIP3 0 –80 1200 NF 15 24 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 10 –4 27 GC, NF (dB), IIP3, P1dB (dBm) RF ISOLATION (dB) –40 RF-IF ISO 900 1000 1100 800 RF/LO FREQUENCY (MHz) 18 –3 3.0 30 LO LEAKAGE (dBm) LO-IF LEAKAGE –30 RF = 850MHz HIGH SIDE LO 21 Conversion Gain, IIP3, NF and RF Input P1dB vs Temperature –20 IIP3 24 0 5577 G21 RF-LO ISO 0 700 –40°C 25°C 85°C GC 3 –3 –6 –10 50 20 NF 15 0 70 40 RF = 850MHz HIGH SIDE LO 21 RF Isolation and LO Leakage vs Frequency 60 GC (dB), IIP3 (dBm), SSB NF (dB) HIGH SIDE LO 27 IIP3 24 SSB NF (dB) 24 30 27 GC (dB), IIP3 (dBm), SSB NF (dB) GC (dB), IIP3 (dBm), SSB NF (dB) 27 30 IIP3 30 850MHz Conversion Gain, IIP3 and NF vs Supply Voltage RELATIVE SPUR LEVEL (dBc) 33 850MHz Conversion Gain, IIP3 and NF vs LO Power 6 –6 –3 0 9 3 RF INPUT POWER (dBm) 12 15 5577 G28 –90 –6 –4 –2 2 0 LO INPUT POWER (dBm) 4 6 5577 G29 5577f For more information www.linear.com/LTC5577 7 LTC5577 Typical Performance Characteristics 375MHz to 525MHz application. Test circuit shown in Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. IIP3 25 IIP2 80 31 75 28 70 25 HIGH SIDE LO 19 16 60 55 NF 13 50 10 45 7 40 4 35 1 30 GC –2 375 400 425 475 450 RF FREQUENCY (MHz) 500 80 22 HIGH SIDE LO 19 NF 16 13 10 –40°C 25°C 85°C 7 4 GC –2 –6 –4 5577 G30 –10 RF-LO ISO 70 IIP3 1 25 525 RF Isolation and LO Leakage vs Frequency –2 2 0 LO INPUT POWER (dBm) 60 50 –30 –40 RF-IF ISO 40 –50 –60 30 LO-RF LEAKAGE 20 10 375 6 4 –20 LO-IF LEAKAGE 425 5577 G31 475 575 625 525 RF/LO FREQUENCY (MHz) LO LEAKAGE (dBm) 65 22 IIP2 (dBm) GC (dB), IIP3 (dBm), NF (dB) 28 GC (dB), IIP3 (dBm), NF (dB) 31 450MHz Conversion Gain, IIP3 and NF vs LO Power RF ISOLATION (dB) Conversion Gain, IIP3, IIP2 and NF vs RF Frequency –70 –80 675 5577 G32 4.9GHz and 5.9GHz applications. IF = 900MHz, Low Side LO, PLO = 0dBm. Test circuit shown in Figure 1. Conversion Gain and IIP3 vs RF Frequency (4.9GHz Application) 4.9GHz Conversion Gain, IIP3 and NF vs LO Power 27 27 IIP3 12 9 6 3 GC 0 –3 4.5 4.6 4.7 4.8 4.9 5.0 RF FREQUENCY (GHz) 18 15 12 6 5.1 –3 –6 5.2 GC (dB), IIP3 (dBm), SSB NF (dB) 24 18 15 12 9 6 3 GC 0 –3 5.6 5.7 5.8 6.0 5.9 RF FREQUENCY (GHz) –30 30 –40 20 –60 3.6 6 4 3.8 5577 G34 6.2 5577 G36 0 5.2 5577 G35 60 RF-IF ISO IIP3 NF 18 15 12 9 –40°C 25°C 85°C 6 –3 –6 5.0 RF Isolation and LO Leakage vs Frequency (5.9GHz Application) GC –10 50 –20 40 RF-LO ISO –30 20 –40 –50 –4 –2 2 0 LO INPUT POWER (dBm) 4 6 5577 G37 30 LO-IF LEAKAGE –60 4.6 10 LO-RF LEAKAGE 0 6.1 4.0 4.2 4.4 4.6 4.8 RF/LO FREQUENCY (GHz) 0 21 3 10 LO-RF LEAKAGE 4.8 5.0 5.2 5.4 5.6 5.8 RF/LO FREQUENCY (GHz) RF ISOLATION (dB) GC (dB), IIP3 (dBm) –2 2 0 LO INPUT POWER (dBm) 27 TC = 25°C LO-IF LEAKAGE 5.9GHz Conversion Gain, IIP3 and NF vs LO Power IIP3 27 8 –4 RF-LO ISO 40 –20 –50 5577 G33 30 21 GC 0 Conversion Gain and IIP3 vs RF Frequency (5.9GHz Application) 24 –40°C 25°C 85°C 9 3 50 NF LO LEAKAGE (dBm) 15 –10 IIP3 21 LO LEAKAGE (dBm) GC (dB), IIP3 (dBm) TC = 25°C 60 RF-IF ISO RF ISOLATION (dB) 18 0 24 GC (dB), IIP3 (dBm), SSB NF (dB) 24 21 RF Isolation and LO Leakage vs Frequency (4.9GHz Application) 6.0 0 6.2 5577 G38 5577f For more information www.linear.com/LTC5577 LTC5577 Pin Functions GND (Pins 1, 4, 9, 13, 16, Exposed Pad Pin 17): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. IADJ (Pin 8): Mixer Core Current Adjust Pin. Connecting a resistor between this pin and ground will reduce the mixer core DC supply current. Typical open-circuit DC voltage is 2.2V. This pin should be left floating for optimum performance. RF (Pin 2): Single-Ended RF Input. This pin is internally connected to the primary winding of the integrated RF transformer, which has low DC resistance to ground. A series DC-blocking capacitor must be used if the RF source has DC voltage present. The RF input is 50Ω impedance matched, using the matching element values shown in Figure 1, when the mixer is enabled. LO (Pin 10): Single-Ended Local Oscillator Input. This pin is internally connected to the primary winding of an integrated transformer, which has low DC resistance to ground. A series DC-blocking capacitor must be used to avoid damage to the internal transformer. This input is 50Ω impedance matched from 930MHz to 4GHz, even when the IC is disabled. Operation down to 300MHz or up to 6GHz is possible with the external matching shown in Figure 1. NC (Pins 3, 11): These pins are not connected internally. They can be left floating, connected to ground, or to VCC. EN (Pin 5): Enable Pin. When the input voltage is greater than 2.5V, the mixer is enabled. When the input voltage is less than 0.3V, the mixer is disabled. Typical input current is less than 30µA. This pin has an internal pull-down resistor. VCC (Pins 6, 7): Power Supply Pins. These pins must be connected to a regulated 3.3V supply, with a bypass capacitor located close to the pin. Typical DC current consumption is 68mA. TEMP (Pin 12): Temperature Sensing Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage. IF+/IF – (Pin 15/Pin 14): Open-Collector Differential IF Output. These pins must be connected to the VCC supply through impedance-matching inductors or a transformer center tap. Typical DC current consumption is 56mA into each pin. Block Diagram 16 1 GND 2 15 14 IF+ GND 13 IF – GND RF 12 NC 11 RF LO 3 NC LO 4 GND 17 GND (EXPOSED PAD) TEMP 10 BIAS GND 9 EN 5 VCC 6 VCC 7 IADJ 8 5577 BD 5577f For more information www.linear.com/LTC5577 9 LTC5577 test circuit IF OUT 50Ω 0° IF + 50Ω DC2070A EVALUATION BOARD LAYER STACK-UP (NELCO N4000-13) 0.062" 0.015" 0.015" C7 RF GND BIAS GND 180° 180° COMBINER IF – 50Ω L1 L2 R1 R2 C8 C2 16 15 14 13 GND IF+ IF – GND 1 GND TEMP 12 LTC5577 RFIN 50Ω C3 L3 2 RF NC 11 C4 17 GND C5 3 NC LOIN 50Ω LO 10 C6 4 GND GND 9 EN VCC VCC IADJ 5 6 7 8 EN C1 DC2070A EVAL BOARD C9 VCC 3.3V 180mA 5577 F01 APPLICATION RF MATCH RF (MHz) LO C3 C4 300 to 400 HS 330pF 18pF 375 to 525 HS 330pF 15pF 700 to 1000 HS 330pF 6pF 1300 to 4300 LS, HS 8.2pF 0.7pF 4900 LS 1.8nH (L) 0.7pF 5900 LS 0.25pF — LS = Low side, HS = High side. *IF = 900MHz REF DES C1, C2, C7, C8 C3 - C6 R1, R2 C9 L1, L2 L3 VALUE 1nF See Table 115Ω, 1% 1µF See Table See Table L3 2.2nH 2nH — — — — LO MATCH C5 C6 47pF 15pF 27pF 8.2pF 6.8pF 2.7pF 3.9pF — 1pF — 1pF — SIZE 0402 0402 0402 0603 0603 0402 IF MATCH L1, L2 560nH 560nH 560nH 560nH 10nH* 10nH* VENDOR Murata Murata AVX Coilcraft 0603LS Coilcraft 0402HP Figure 1. Standard Downmixer Test Circuit Schematic (Wideband 100Ω Differential IF Output) 10 5577f For more information www.linear.com/LTC5577 LTC5577 Applications Information Introduction The LTC5577 incorporates a high linearity double-balanced active mixer, a high-speed limiting LO buffer and bias/ enable circuits. See the Pin Functions and Block Diagram sections for a description of each pin. A test circuit schematic showing all external components required for the data sheet specified performance is shown in Figure 1. A few additional components may be used to modify the DC supply current or frequency response, which will be discussed in the following sections. The LO and RF inputs are single ended. The test circuit, shown in Figure 1, is configured with a 100Ω differential IF output. An external broadband 180° passive combiner is used to combine the differential IF outputs to 50Ω single-ended for characterization and test purposes. The evaluation board layout is shown in Figure 2. the other terminal is DC-grounded internally. For this reason, a series DC-blocking capacitor (C3) is needed if the RF source has DC voltage present. The DC resistance of the primary winding is approximately 3Ω. The secondary winding of the RF transformer is internally connected to the RF buffer amplifier. ESD protection diodes are not used on the RF input due to the high RF voltage swing associated with the LTC5577’s high IIP3 and input P1dB. The internal RF transformer provides some protection for the RF matching capacitor against human-body model ESD strikes up to 3kV. Proper ESD handling techniques must be employed to avoid damaging this capacitor. LTC5577 RFIN C3 RF Input A simplified schematic of the mixer’s RF input is shown in Figure 3. As shown, one terminal of the integrated RF transformer’s primary winding is connected to Pin 2, while L3 C4 2 RF RF BUFFER 5577 F03 Figure 3. RF Input Schematic Figure 2. Evaluation Board Layout 5577f For more information www.linear.com/LTC5577 11 LTC5577 Applications Information 0 –5 RETURN LOSS (dB) The RF input is 50Ω matched from 1300MHz to 4300MHz using C3 = 8.2pF and C4 = 0.7pF. Matching to RF frequencies above or below this frequency range is easily accomplished by using the the element values shown in Figure 1. For RF frequencies below 500MHz, series inductor L3 is also needed. The evaluation board does not have provisions for L3, so the RF input trace needs to be cut to install it in series. Measured RF input return losses are shown in Figure 4. The RF input impedance and input reflection coefficient, versus frequency are listed in Table 1. –10 –15 –20 –25 –30 TC = 25°C 0.2 0.7 Table 1. RF Input Impedance and S11 (at Pin 2, No External Matching, Mixer Enabled) INPUT IMPEDANCE MAG ANGLE 200 4.4 + j8.5 0.84 163 350 6.6 + j12.0 0.78 153 450 8.3 + j14.4 0.74 147 575 10.1 + j17.2 0.69 141 700 12.0 + j19.9 0.66 136 900 15.4 + j22.8 0.60 127 1100 18.9 + j25.9 0.55 120 1400 25.2 + j29.5 0.48 109 1700 33.2 + j30.9 0.40 98 1950 40.0 + j29.1 0.33 91 2200 45.2 + j24.3 0.25 87 2450 47.1 + j18.0 0.18 89 2700 44.7 + j12.8 0.15 105 3000 39.1 + j10.7 0.17 129 3300 33.0 + j13.8 0.26 132 3600 28.4 + j20.1 0.36 123 3900 25.2 + j29.1 0.48 109 4200 23.5 + j39.1 0.57 95 4500 22.8 + j52.1 0.66 82 4800 23.6 + j66.1 0.72 70 5400 28.6 + j98.2 0.80 51 6000 38.0 + j134.4 0.84 38 1.7 2.2 2.7 3.2 3.7 4.2 RF FREQUENCY (GHz) 4.7 5.2 5.7 6.2 5577 F04 375MHz TO 525MHz APP 700MHz TO 1000MHz APP 1300MHz TO 4300MHz APP 4.9GHz APP 5.9GHz APP S11 FREQUENCY (MHz) 1.2 Figure 4. RF Input Return Loss LO Input A simplified schematic of the LO input, with external components is shown in Figure 5. Similar to the RF input, the integrated LO transformer’s primary winding is DC‑grounded internally, and therefore requires an external DC-blocking capacitor. Capacitor C5 provides the necessary DC-blocking, and optimizes the LO input match over the 930MHz to 4GHz frequency range. The nominal LO input level is 0dBm although the limiting amplifiers will deliver excellent performance over a ±6dB input power range. LO input power greater than +6dBm may cause conduction of the internal ESD diodes. LTC5577 LO C5 LOIN 10 LO BUFFER C6 5577 F05 Figure 5. LO Input Schematic 12 5577f For more information www.linear.com/LTC5577 LTC5577 Applications Information To optimize the LO input match for frequencies below 1GHz, the value of C5 is increased and shunt capacitor C6 is added. A summary of values for C5 and C6, versus LO frequency range is listed in Table 2. Measured LO input return losses are shown in Figure 6. Finally, LO input impedance and input reflection coefficient, versus frequency is shown in Table 3. Table 2. LO Input Matching Values vs LO Frequency Range FREQUENCY (MHz) C5 (pF) C6 (pF) 285 to 392 330 33 338 to 415 330 22 415 to 505 56 18 525 to 700 27 8.2 645 to 803 15 7.5 800 to 1150 6.8 2.7 930 to 4000 3.9 — 3500 to 6000 1.0 — 0 RETURN LOSS (dB) –5 –10 S11 FREQUENCY (MHz) INPUT IMPEDANCE MAG ANGLE 350 5.2 + j14.9 0.83 146.5 400 6.0 + j17.3 0.81 141.7 450 6.6 + j19.5 0.80 137.0 500 7.2 + j21.5 0.78 132.7 600 9.1 + j26.5 0.75 123.6 800 15.1 + j35.7 0.67 106.0 1000 24.9 + j43.6 0.58 89.5 1500 67.5 + j36.4 0.33 47.1 2000 61.7 – j4.2 0.11 –18.3 2500 40.3 – j7.1 0.13 –139.4 3000 31.7 + j1.8 0.23 173.1 3500 29.8 + j12.3 0.29 140.0 4000 31.5 + j22.9 0.35 113.2 4500 36.0 + j32.4 0.38 92.8 5000 59.0 + j40.6 0.36 57.1 5500 64.2 + j30.8 0.29 50.1 6000 57.4 + j19.7 0.19 59.0 0 TC = 25°C C5 = 3.9pF –2 –4 RETURN LOSS (dB) The LO buffers have been designed such that the LO input impedance does not change significantly when the IC is disabled. This feature only requires that supply voltage is applied. The actual performance of this feature is shown in Figure 7. As shown, the LO input return loss is better than 10dB over the 1GHz to 4GHz frequency range when the IC is enabled or disabled. Table 3. LO Input Impedance and S11 (at Pin 10, No External Matching, Mixer Enabled) –6 –8 –10 –12 –14 DISABLED ENABLED –16 –15 –18 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 FREQUENCY (GHz) –20 5577 F07 TC = 25°C –25 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2 FREQUENCY (GHz) 5577 F06 Figure 7. LO Input Return Loss—Mixer Enabled and Disabled C5 = 27pF, C6 = 8.2pF C5 = 6.8pF, C6 = 2.7pF C5 = 3.9pF C5 = 1.0pF Figure 6. LO Input Return Loss 5577f For more information www.linear.com/LTC5577 13 LTC5577 Applications Information IF Output The IF output schematic with external matching components is shown in Figure 8. As shown, the output is differential open collector. Each IF output pin must be biased at the supply voltage (VCC), which is applied through the external matching inductors (L1 and L2) shown in Figure 8. Each pin draws approximately 56mA of DC supply current (112mA total). Inductors with less than 1Ω DC resistance, such as Coilcraft 0603LS, are required for the highest IIP3 and P1dB. The differential IF output impedance can be modeled as a frequency-dependent parallel R-C circuit, using the values listed in Table 4. This data is referenced to the package pins (with no external components) and includes the effects of the IC and package parasitics. Resistors R1 and R2 are used to reduce the output resistance, which increases the IF bandwidth and input P1dB, but reduces the conversion gain. 100Ω Differential IF Output Matching The standard downmixer test circuit shown in Figure 1 uses 115Ω resistors to realize a 100Ω differential output. 560nH pull-up inductors are used to deliver a broadband IF output from 10MHz to greater than 600MHz. C7 and C8 are 1nF DC-blocking capacitors. IF+ 50Ω IF – 50Ω C7 L1 L2 R1 R2 C8 To match the IF output for frequencies greater than 600MHz, the values of L1 and L2 are selected to resonate with the internal IF capacitance (CIF) at the desired IF center frequency, using the following equation: L1, L2 = 1 (2 • π • fIF )2 • 2 •CIF Table 4 summarizes the optimum IF matching element values, versus IF center frequency, to be used in the standard downmixer test circuit shown in Figure 1. The inductor values are slightly less than the ideal calculated values due to the additional capacitance of the evaluation board traces. Measured differential IF output return losses are shown in Figure 9. Table 4. IF Output Impedance and Bandpass Matching Element Values vs IF Frequency. IF FREQUENCY (MHz) DIFFERENTIAL IF OUTPUT IMPEDANCE (RIF || CIF) 10-600 450 EXTERNAL MATCHING ELEMENT VALUES (100Ω DIFFERENTIAL OUTPUT) L1, L2 R1, R2 390Ω||1.55pF 560nH 115Ω 390Ω||1.55pF 39nH 115Ω 800 367Ω ||1.68pF 10nH 115Ω 1000 343Ω ||1.73pF 6nH 133Ω 1200 317Ω ||1.81pF 3.3nH 191Ω 1400 261Ω ||1.91pF 1600 212Ω ||2.02pF 1800 156Ω ||2.19pF 2000 105Ω ||2.43pF VCC C2 1nF 15 IF+ LTC5577 14 IF– VCC 5577 F08 Figure 8. IF Output Schematic with External Matching 14 5577f For more information www.linear.com/LTC5577 LTC5577 Applications Information Measured conversion gain and IIP3 using a Mini-Circuits TC2-1T+ (2:1) IF transformer are shown in Figure 11, with the measured performance of the standard 100Ω differential output for comparison. As shown, the single-ended conversion gain is about 0.5dB less up to 700MHz due to the transformer loss. Above 700MHz, the IF transformer loss increases rapidly. Up to 600MHz, both solutions have similar IIP3. Above 600MHz, the transformer version has about 1dB lower IIP3. 0 –10 –15 –20 –25 –30 ZO = 100Ω DIFFERENTIAL TC = 25°C 50 250 450 650 850 1050 1250 1450 1650 IF FREQUENCY (MHz) 5577 F09 30 27 Figure 9. Differential IF Output Return Loss— 100Ω Differential Load Wideband 50Ω Single-Ended IF Output Matching For applications that require a 50Ω single-ended IF output, a 2:1 transformer can be added to the 100Ω differential output as shown in Figure 10. Recommended transformers include the Mini-Circuits TC2-1T+, or Coilcraft WBC2-1T. No other IF matching element changes are required. IIP3 50Ω 24 100Ω 21 50Ω 18 3 100Ω 2 1 0 GC (dB) L = 560nH, R = 115Ω L = 39nH, R = 115Ω L = 10nH, R = 115Ω L = 6nH, R = 133Ω L = 3.3nH, R = 191Ω 4 33 IIP3 (dBm) RETURN LOSS (dB) –5 GC –1 RF = 1.6GHz TO 2.6GHz LO = 1.59GHz/0dBm –2 15 Z = 50Ω RF TC = 25°C –3 12 10 110 210 310 410 510 610 710 810 910 1010 IF OUTPUT FREQUENCY (MHz) 5577 F11 Figure 11. Conversion Gain and IIP3 vs IF Output Frequency. 50Ω Single-Ended Output Using a Transformer vs 100Ω Differential Output IFOUT 50Ω 2:1 1nF VCC 560nH 1nF 560nH 115Ω 115Ω IF + IF – LTC5577 5577 F10 Figure 10. 50Ω Single-Ended IF Output 5577f For more information www.linear.com/LTC5577 15 LTC5577 Applications Information Mixer Bias Current Reduction The IADJ pin (Pin 8) is available for reducing the mixer core DC current consumption at the expense of linearity and P1dB. For the highest performance, this pin should be left floating. As shown in Figure 12, an internal bias circuit produces a 6mA reference current for the mixer core. If a resistor is connected to Pin 8, as shown in Figure 12, a portion of the reference current can be shunted to ground, resulting in reduced mixer core current. For example, R3 = 220Ω will shunt away 3mA from Pin 8 and reduce the mixer core current by 50%. The nominal, open-circuit DC voltage at the IADJ pin is 2.2V. Table 5 lists DC supply current and RF performance at 1900MHz for various values of R3. Table 5. Mixer Performance with Reduced Current (RF = 1900MHz, Low Side LO, IF = 153MHz) R3 (Ω) ICC (mA) GC (dB) IIP3 (dBm) P1dB (dBm) NF (dB) Open 180 0.7 30.2 15.2 11.8 2k 166 0.6 28.0 15.0 11.1 1k 156 0.5 26.7 14.8 10.9 220 133 0.2 23.9 13.4 10.4 120 125 0.0 22.3 12.4 10.3 75 122 0.0 22.0 12.0 10.3 MIXER CORE CURRENT ICC L1 68mA L2 15 IF+ VCC 14 IF – 7 VCC 6mA BIAS 6 VCC LTC5577 360Ω 112mA BIAS IADJ 8 R3 5577 F12 Figure 12. IADJ Interface 16 5577f For more information www.linear.com/LTC5577 LTC5577 Applications Information Enable Interface Spurious Output Levels Figure 13 shows a simplified schematic of the enable interface. To enable the mixer, the EN voltage must be higher than 2.5V. If the enable function is not required, the pin should be connected directly to VCC. The voltage at the EN pin should never exceed the power supply voltage (VCC) by more than 0.3V. If this should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC. Mixer spurious output levels versus harmonics of the RF and LO are tabulated in Table 6. The spur levels were measured on a standard evaluation board using the test circuit shown in Figure 1. Table 6a shows the relative spur levels with an RF input power level of –3dBm while Table 6b shows the same relative spur levels with the RF input power reduced to –6dBm. The EN pin has an internal 300k pull-down resistor. Therefore, the mixer will be disabled with the enable pin left floating. Supply Voltage Ramping Fast ramping of the supply voltage can cause a current glitch in the internal ESD clamp circuits connected to the VCC pin. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the 4.0V maximum rating. A supply voltage ramp time greater than 1ms is recommended. 7 LTC5577 6 VCC VCC CLAMP 500Ω EN 5 CMOS 300k fSPUR = (M • fRF) – (N • fLO) Table 6. IF Output Spur Levels (dBc). RF = 1900MHz, IF = 153MHz, Low Side LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C Table 6a. PRF = –3dBm 0 1 0 –25 1 –34 0 2 –72 –59 * –70 M 3 4 –88 * 5 * * 6 * –88 7 * –88 *Less than –90dBc 2 –35 –34 –70 * –90 * * * Table 6b. PRF = –6dBm 0 5577 F13 Figure 13. Enable Input Circuit EN The spur frequencies can be calculated using the following equation: 1 0 –22 1 –34 0 2 –76 –62 M 3 –87 –76 4 * * 5 * –87 6 * * 7 * –86 *Less than –90dBc 2 –31 –34 –73 * –87 * * * N 3 4 –35 –39 –18 –46 –65 –81 –79 * * * * * * * * * 5 –55 –41 * –86 * * * * 6 –35 –71 –81 * * * * * 7 –58 –53 * –83 * * * * 8 –55 –72 –76 * * * * * N 3 4 –18 –36 –68 –46 –84 –84 * * * * * * * * * * 5 –41 –86 * * * * * * 6 –32 –71 –85 * * * * * 7 –55 –53 * * * * * * 8 –51 –73 –80 * * * * * 5577f For more information www.linear.com/LTC5577 17 LTC5577 Typical Applications 700MHz to 4GHz Wideband RF Application 100Ω DIFFERENTIAL LOAD 50Ω 50Ω IF – 50Ω IF + 50Ω C7 1nF L1 560nH L2 560nH R1 115Ω R2 115Ω C8 1nF C2 1nF 16 15 14 13 GND IF+ IF – GND 1 GND RFIN 700MHz TO 4GHz TEMP 12 LTC5577 C3 3.9pF L4 9.5nH C4 1pF 2 RF NC 11 17 GND C3 2.7pF 3 NC LO 10 L7 15nH 4 GND LOIN 820MHz TO 4.3GHz GND 9 EN VCC VCC IADJ 5 6 7 8 EN DC2070A EVAL BOARD VCC 3.3V C9 1µF C1 1nF 5577 TA02a RF and LO Input Return Loss 7 32 IIP3 6 30 5 28 26 HIGH SIDE LO LOW SIDE LO 3 IF = 153MHz PLO = 0dBm TC = 25°C 24 22 20 4 LOW SIDE AND HIGH SIDE LO 2 1 GC 0 –5 RETURN LOSS (dB) 34 GC (dB) IIP3 (dBm) Conversion Gain and IIP3 vs RF Input Frequency –10 LO –15 RF –20 0 18 –1 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 RF FREQUENCY (GHz) –25 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 RF/LO FREQUENCY (GHz) 5577 TA02b 18 5577 TA02c 5577f For more information www.linear.com/LTC5577 LTC5577 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. UF Package 16-Lead Plastic QFN (4mm × 4mm) (Reference LTC DWG # 05-08-1692 Rev Ø) 0.72 ±0.05 4.35 ±0.05 2.15 ±0.05 2.90 ±0.05 (4 SIDES) PACKAGE OUTLINE 0.30 ±0.05 0.65 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS BOTTOM VIEW—EXPOSED PAD 4.00 ±0.10 (4 SIDES) 0.75 ±0.05 R = 0.115 TYP 15 PIN 1 NOTCH R = 0.20 TYP OR 0.35 × 45° CHAMFER 16 0.55 ±0.20 PIN 1 TOP MARK (NOTE 6) 1 2.15 ±0.10 (4-SIDES) 2 (UF16) QFN 10-04 0.200 REF 0.00 – 0.05 0.30 ±0.05 0.65 BSC NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 5577f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. For more information www.linear.com/LTC5577 19 LTC5577 Typical Application Measured Performance Using 50Ω, 100Ω, 200Ω and 400Ω Differential IF Output Impedance IFOUT 50Ω 1nF 8.2pF LTC5577 RF = 1900MHz, IF = 153MHz, Low Side LO, PLO = 0dBm, TC = 25°C T1 560nH 560nH R1 R2 IF – IF + ZIF T1 (DIFF) R1, R2 (RATIO) 1nF 3.9pF 1nF RF LO RF 0.7pF LO BIAS EN EN IADJ VCC 5577 TA03 1nF 3.3V Input 10dB IF GC IIP3 P1dB Return Loss (dB) (dBm) (dBm) BW (MHz) 50Ω 53.6Ω TC1-1+ (1:1) –2.8 30.9 17.0 9-855 100Ω 115Ω TC2-1T+ (2:1) 0.2 30.1 15.2 20-636 200Ω 249Ω TC4-1W+ 2.2 (4:1) 29.6 12.2 35-300 400Ω Open 27.4 8.1 54-193 TC8-1+ (8:1) 4.0 Measured performance includes IF transformer loss Related Parts PART NUMBER Infrastructure LTC5567 LTC5510 LTC5551 DESCRIPTION COMMENTS 1.9dB Gain, 26.9dBm IIP3 and 11.8dB NF at 1950MHz, 3.3V/89mA Supply 1.5dB Gain, Up- and Downconversion, 3.3V or 5V Supply 2.4dB Gain, 36dBm IIP3, <10dB NF, 3.3V/204mA Supply LTC5541 LTC6400-X 400MHz to 4GHz, Active Downconverting Mixer 1MHz to 6GHz Wideband High Linearity Active Mixer 300MHz to 3.5GHz Ultrahigh Dynamic Range Downconverting Mixer 600MHz to 4.5GHz Dual Downconverting Mixer Family 300MHz to 4GHz, 3.3V Dual Active Downconverting Mixer 600MHz to 4GHz, 5V Downconverting Mixer Family 300MHz Low Distortion IF Amp/ADC Driver LTC6412 LT5554 LTC6430-15 LTC6431-15 31dB Linear Analog VGA Ultralow Distort IF Digital VGA High Linearity Differential IF Amplifier High Linearity 50Ω Gain Block LTC559x LTC5569 RF Power Detectors LT5538 40MHz to 3.8GHz Log Detector LT5581 6GHz Low Power RMS Detector LTC5582 40MHz to 10GHz RMS Detector LTC5583 Dual 6GHz RMS Power Detector ADCs LTC2208 LTC2153-14 16-Bit, 130Msps ADC 14-Bit, 310Msps Low Power ADC 8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply 2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply 8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps 50dBm OIP3 at 240MHz, 15dB Gain, 3dB NF 47dBm OIP3 at 240MHz, NF = 3.3dB, 15.5dB Gain, Single-Ended 50Ω Input and Output Ports ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation 78dBFS Noise Floor, >83dB SFDR at 250MHz 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption 20 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTC5577 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTC5577 5577f LT 1213 • PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 2013