Vishay MBR2545CT-1TRLPBF Schottky rectifier, 2 x 15 a Datasheet

VS-MBRB25..CTPbF, VS-MBR25..CT-1PbF Series
Vishay High Power Products
Schottky Rectifier, 2 x 15 A
FEATURES
VS-MBR25..CT-1PbF
VS-MBRB25..CTPbF
•
•
•
•
•
Base
common
cathode
2
Base
common
cathode
2
•
•
2
1 Common
3
Anode cathode Anode
2
1 Common
3
Anode cathode Anode
D2PAK
TO-262
•
•
•
150 °C TJ operation
Center tap D2PAK and TO-262 packages
Low forward voltage drop
High frequency operation
High purity, high temperature epoxy
encapsulation for enhanced mechanical
strength and moisture resistance
Guard ring for enhanced ruggedness and long
term reliability
Meets MSL level 1, per J-STD-020, LF maximum peak of
260 °C
Halogen-free according to IEC 61249-2-21 definition
Compliant to RoHS directive 2002/95/EC
AEC-Q101 qualified
DESCRIPTION
This center tap Schottky rectifier has been optimized for low
reverse leakage at high temperature. The proprietary barrier
technology allows for reliable operation up to 150 °C
junction temperature. Typical applications are in switching
power supplies, converters, freewheeling diodes, and
reverse battery protection.
PRODUCT SUMMARY
IF(AV)
2 x 15 A
VR
35 V/45 V
IRM
40 mA at 125 °C
MAJOR RATINGS AND CHARACTERISTICS
SYMBOL
CHARACTERISTICS
VALUES
IF(AV)
Rectangular waveform (per device)
30
IFRM
TC = 130 °C (per leg)
30
VRRM
IFSM
tp = 5 μs sine
VF
30 Apk, TJ = 125 °C
TJ
Range
UNITS
A
35/45
V
1060
A
0.73
V
- 65 to 150
°C
VOLTAGE RATINGS
PARAMETER
SYMBOL
Maximum DC reverse voltage
VR
Maximum working peak reverse voltage
VRWM
VS-MBRB2535CTPbF
VS-MBR2535CT-1PbF
VS-MBRB2545CTPbF
VS-MBR2545CT-1PbF
UNITS
35
45
V
ABSOLUTE MAXIMUM RATINGS
PARAMETER
Maximum average
forward current
SYMBOL
per leg
per device
Peak repetitive forward current per leg
Non-repetitive peak surge current
TEST CONDITIONS
TC = 130 °C, rated VR
IFRM
Rated VR, square wave, 20 kHz, TC = 130 °C
IFSM
UNITS
15
IF(AV)
5 μs sine or 3 μs
rect. pulse
VALUES
30
Following any rated load
condition and with rated
VRRM applied
30
1060
Surge applied at rated load conditions halfwave,
single phase, 60 Hz
150
A
Non-repetitive avalanche energy per leg
EAS
TJ = 25 °C, IAS = 2 A, L = 8 mH
16
mJ
Repetitive avalanche current per leg
IAR
Current decaying linearly to zero in 1 μs
Frequency limited by TJ maximum VA = 1.5 x VR typical
2
A
Document Number: 94308
Revision: 16-Mar-10
For technical questions, contact: [email protected]
www.vishay.com
1
VS-MBRB25..CTPbF, VS-MBR25..CT-1PbF Series
Vishay High Power Products Schottky Rectifier, 2 x 15 A
ELECTRICAL SPECIFICATIONS
PARAMETER
SYMBOL
Maximum forward voltage drop
VFM (1)
Maximum instantaneous
reverse current
IRM (1)
Threshold voltage
VF(TO)
TEST CONDITIONS
30 A
TJ = 25 °C
TJ = 25 °C
0.82
TJ = 125 °C
0.73
Rated DC voltage
TJ = 125 °C
VALUES
TJ = TJ maximum
0.2
40
UNITS
V
mA
0.355
V
12.3
mΩ
Forward slope resistance
rt
Maximum junction capacitance
CT
VR = 5 VDC (test signal range 100 kHz to 1 MHz), 25 °C
700
pF
Typical series inductance
LS
Measured from top of terminal to mounting plane
8.0
nH
10 000
V/μs
VALUES
UNITS
Maximum voltage rate of change
dV/dt
Rated VR
Note
(1) Pulse width < 300 μs, duty cycle < 2 %
THERMAL - MECHANICAL SPECIFICATIONS
PARAMETER
SYMBOL
TEST CONDITIONS
Maximum junction temperature range
TJ
- 65 to 150
Maximum storage temperature range
TStg
- 65 to 175
Maximum thermal resistance,
junction to case per leg
RthJC
DC operation
1.5
Typical thermal resistance,
case to heatsink
RthCS
Mounting surface, smooth and greased
0.50
°C/W
Approximate weight
Mounting torque
Marking device
www.vishay.com
2
minimum
maximum
°C
Non-lubricated threads
2
g
0.07
oz.
6 (5)
kgf · cm
(lbf · in)
12 (10)
Case style D2PAK
MBRB2545CT
Case style TO-262
MBR2545CT-1
For technical questions, contact: [email protected]
Document Number: 94308
Revision: 16-Mar-10
VS-MBRB25..CTPbF, VS-MBR25..CT-1PbF Series
Schottky Rectifier, 2 x 15 A Vishay High Power Products
100
TJ = 150 °C
TJ = 125 °C
TJ = 25 °C
10
1
0.2
IR - Reverse Current (mA)
IF - Instantaneous
Forward Current (A)
100
10
TJ = 150 °C
1
TJ = 125 °C
TJ = 100 °C
0.1
TJ = 75 °C
0.01
TJ = 50 °C
0.001
TJ = 25 °C
0.0001
0.4
0.6
0.8
1.0
1.2
1.4
0
5
10
15
20
25
30
35
40
45
VR - Reverse Voltage (V)
VFM - Forward Voltage Drop (V)
Fig. 1 - Maximum Forward Voltage Drop Characteristics
(Per Leg)
Fig. 2 - Typical Values of Reverse Current vs.
Reverse Voltage (Per Leg)
CT - Junction Capacitance (pF)
1000
TJ = 25 °C
100
0
10
20
30
40
50
VR - Reverse Voltage (V)
ZthJC - Thermal Impedance (°C/W)
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)
10
1
PDM
t1
D = 0.75
D = 0.50
D = 0.33
D = 0.25
D = 0.20
0.1
Single pulse
(thermal resistance)
0.01
0.00001
0.0001
0.001
0.01
t2
Notes:
1. Duty factor D = t1/t2
2. Peak TJ = PDM x ZthJC + TC
0.1
1
10
t1 - Rectangular Pulse Duration (s)
Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)
Document Number: 94308
Revision: 16-Mar-10
For technical questions, contact: [email protected]
www.vishay.com
3
VS-MBRB25..CTPbF, VS-MBR25..CT-1PbF Series
14
150
Average Power Loss (W)
Allowable Case Temperature (°C)
Vishay High Power Products Schottky Rectifier, 2 x 15 A
140
DC
130
Square wave (D = 0.50)
Rated VR applied
120
110
D = 0.20
D = 0.25
D = 0.33
D = 0.50
D = 0.75
12
10
RMS limit
8
6
4
DC
2
See note (1)
0
100
0
4
8
12
16
20
0
24
5
10
15
20
25
IF(AV) - Average Forward Current (A)
Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current (Per Leg)
Fig. 6 - Forward Power Loss Characteristics (Per Leg)
IFSM - Non-Repetitive Surge Current (A)
IF(AV) - Average Forward Current (A)
1000
At any rated load condition
and with rated VRRM applied
following surge
100
10
100
1000
10 000
tp - Square Wave Pulse Duration (µs)
Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)
Note
Formula used: TC = TJ - (Pd + PdREV) x RthJC;
Pd = Forward power loss = IF(AV) x VFM at (IF(AV)/D) (see fig. 6);
PdREV = Inverse power loss = VR1 x IR (1 - D); IR at VR1 = Rated VR
(1)
www.vishay.com
4
For technical questions, contact: [email protected]
Document Number: 94308
Revision: 16-Mar-10
VS-MBRB25..CTPbF, VS-MBR25..CT-1PbF Series
Schottky Rectifier, 2 x 15 A Vishay High Power Products
ORDERING INFORMATION TABLE
Device code
VS- MBR
2
1
B
25
45
CT
-1
3
4
5
6
7
1
-
HPP product suffix
2
-
Essential part number
3
-
4
-
None = TO-262 7 = -1
Current rating (25 = 25 A)
5
-
Voltage ratings
6
-
CT = Essential part number
7
-
8
-
B = D2PAK
7
TRL PbF
8
9
None
35 = 35 V
45 = 45 V
None = D2PAK
3
=B
-1 = TO-262
3
None
None = Tube (50 pieces)
TRL = Tape and reel (left oriented - for D2PAK only)
TRR = Tape and reel (right oriented - for D2PAK only)
9
-
PbF = Lead (Pb)-free (for TO-262 and D2PAK tube)
P = Lead (Pb)-free (for D2PAK TRR and TRL)
LINKS TO RELATED DOCUMENTS
Dimensions
www.vishay.com/doc?95014
Part marking information
www.vishay.com/doc?95008
Packaging information
www.vishay.com/doc?95032
Document Number: 94308
Revision: 16-Mar-10
For technical questions, contact: [email protected]
www.vishay.com
5
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1
Similar pages